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Abstract

Forecasting on sparse multivariate time series (MTS) aims to
model the predictors of future values of time series given their
incomplete past, which is important for many emerging ap-
plications. However, most existing methods process MTS’s
individually, and do not leverage the dynamic distributions
underlying the MTS’s, leading to sub-optimal results when
the sparsity is high. To address this challenge, we propose a
novel generative model, which tracks the transition of latent
clusters, instead of isolated feature representations, to achieve
robust modeling. It is characterized by a newly designed dy-
namic Gaussian mixture distribution, which captures the dy-
namics of clustering structures, and is used for emitting time
series. The generative model is parameterized by neural net-
works. A structured inference network is also designed for
enabling inductive analysis. A gating mechanism is further
introduced to dynamically tune the Gaussian mixture distri-
butions. Extensive experimental results on a variety of real-
life datasets demonstrate the effectiveness of our method.

Introduction
Multivariate time series (MTS) analysis is heavily used in a
variety of applications, such as cyber-physical system moni-
toring (Zhang et al. 2019), financial forecasting (Binkowski,
Marti, and Donnat 2018), traffic analysis (Li et al. 2018),
and clinical diagnosis (Che et al. 2018a). Recent advances
in deep learning have spurred on many innovative machine
learning models on MTS data, which have shown remark-
able results on a number of fundamental tasks, including
forecasting (Qin et al. 2017), event prediction (Choi et al.
2016), and anomaly detection (Zhang et al. 2019). Despite
these successes, most existing models treat the input MTS
as homogeneous and complete sequences. In many emerg-
ing applications, however, MTS signals are integrated from
heterogeneous sources and are very sparse.

For example, consider MTS signals collected for dialysis
patients. Dialysis is an important renal replacement therapy
for purifying the blood of patients whose kidneys are not
working normally (Inaguma et al. 2019). Dialysis patients
have routines of dialysis, blood tests, chest X-ray, etc., which
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Figure 1: An illustration of latent structures underlying the
sparse MTS of two dialysis patients. The vector below each
state is a temporal feature generated from some distribution.

record data such as venous pressure, glucose level, and car-
diothoracic ratio (CTR). These signal sources may have dif-
ferent frequencies. For instance, blood tests and CTR are of-
ten evaluated less frequently than dialysis. Different sources
may not be aligned in time and what makes things worse
is that some sources may be irregularly sampled, and miss-
ing entries may present. Despite such discrepancies, differ-
ent signals give complementary views on a patient’s physical
condition, and therefore are all important to the diagnostic
analysis. However, simply combining the signals will induce
highly sparse MTS data. Similar scenarios are also found in
other domains: In finance, time series from financial news,
stock markets, and investment banks are collected at asyn-
chronous time steps, but are correlated strongly (Binkowski,
Marti, and Donnat 2018). In large-scale complex monitor-
ing systems, sensors of multiple sub-components may have
different running environments, thus continuously emitting
asynchronous time series that may still be related (Safari,
Shabani, and Simon 2014).

The sparsity of MTS signals when integrated from hetero-
geneous sources presents several challenges. In particular,
it complicates temporal dependencies and prevents popular
models, such as recurrent neural networks (RNNs), from be-
ing directly used. The most common way to handle sparsity
is to first impute missing values, and then make predictions
on the imputed MTS. However, as discussed in (Che et al.
2018a), this two-step approach fails to account for the rela-
tionship between missing patterns and predictive tasks, lead-
ing to sub-optimal results when the sparsity is severe.

Recently, some end-to-end models have been proposed.



One approach is to consider missing time steps as inter-
vals, and design RNNs with continuous dynamics via func-
tional decays between observed time steps (Cao et al. 2018;
Rubanova, Chen, and Duvenaud 2019). Another approach
is to parameterize all missed entries and jointly train the pa-
rameters with predictive models, so that the missing patterns
are learned to fit downstream tasks (Che et al. 2018a; Shukla
and Marlin 2019; Tang et al. 2020). However, these methods
have the drawback that MTS samples are assessed individu-
ally. Latent relational structures that are shared by different
MTS samples are seldom explored for robust modeling.

In many applications, MTS’s are not independent, but are
related by hidden structures. Fig. 1 shows an example of
two dialysis patients. Throughout the course of treatments,
each patient may experience different latent states, such as
kidney disorder and anemia, which are externalized by time
series, such as glucose, albumin, and platelet levels. If two
patients have similar pathological conditions, some of their
data may be generated from similar state patterns, and could
form clustering structures. Thus, inferring latent states and
modeling their dynamics are promising for leveraging the
complementary information in clusters, which can alleviate
the issue of sparsity. This idea is not limited to the medical
domain. For example, in meteorology, nearby observing sta-
tions that monitor climate may experience similar weather
conditions (i.e., latent states), which govern the generation
of metrics, such as temperature and precipitation, over time.
Although promising, inferring the latent clustering struc-
tures while modeling the dynamics underlying sparse MTS
data is a challenging problem.

To address this problem, we propose a novel Dynamic
Gaussian Mixture based Deep Generative Model (DGM2).
DGM2 has a state space model under a non-linear transition-
emission framework. For each MTS, it models the transition
of latent cluster variables, instead of isolated feature repre-
sentations, where all transition distributions are parameter-
ized by neural networks. DGM2 is characterized by its emis-
sion step, where a dynamic Gaussian mixture distribution is
proposed to capture the dynamics of clustering structures.
For inductive analysis, we resort to variational inferences,
and develop structured inference networks to approximate
posterior distributions. To ensure reliable inferences, we also
adopt the paradigm of parametric pre-imputation, and link a
pre-imputation layer ahead of the inference networks. The
DGM2 model is carefully designed to handle discrete vari-
ables and is constructed to be end-to-end trainable. Our con-
tributions are summarized as follows:
• We investigate the problem of sparse MTS forecasting by

modeling the latent dynamic clustering structures.
• We propose DGM2, a novel deep generative model that

leverages the transition of latent clusters and the emission
from dynamic Gaussian mixture for robust forecasting.

• We perform extensive experiments on real-life datasets to
validate the effectiveness of our proposed method.

Related Work
To the best of our knowledge, this is the first work to ex-
ploit latent clustering structures via dynamic Gaussian mix-

ture distributions for robust forecasting on sparse MTS.
Traditional forecasting methods are mainly developed for

homogeneously complete MTS data, such as autoregression,
ARIMA, and boosting trees (Chen and Guestrin 2016). Re-
cently, to tackle non-linear temporal dynamics, various deep
learning models have been proposed (Shi et al. 2015; Qin
et al. 2017). These methods, however, are not designed to
handle the challenges of highly sparse MTS. Their applica-
bility relies heavily on pre-processing steps such as statis-
tical imputation (e.g., mean imputation) (Che et al. 2018a),
kernel based methods (Rehfeld et al. 2011), matrix comple-
tion (Koren, Bell, and Volinsky 2009), multivariate impu-
tation by chained equations (Azur et al. 2011), and recent
GAN based methods (Luo et al. 2018). Such a two-step ap-
proach neglects the sparsity patterns that could be aligned
with the downstream tasks, thus often leading to sub-optimal
solutions on highly sparse MTS (Che et al. 2018a).

A more reasonable way is to apply end-to-end training
methods on sparse MTS, which can be divided into two cat-
egories. The first is to transform the sparsity to time gaps
between observations, which are integrated into the predic-
tive models via (1) being explicit parts of the input fea-
tures (Lipton, Kale, and Wetzel 2016; Binkowski, Marti, and
Donnat 2018), and (2) decaying the hidden states by expo-
nential functions (Baytas et al. 2017; Che et al. 2018a), or
solving ordinary differential equations (ODEs) (Rubanova,
Chen, and Duvenaud 2019; De Brouwer et al. 2019). The
second category trains a joint model for concurrent impu-
tation and forecasting, so that task-aware missing patterns
can be learned from the back-propagated errors. For exam-
ple, Che et al. (2018a) and Tang et al. (2020) used a train-
able decay mechanism for approximating missing values,
Cao et al. (2018) regarded unobserved entries as variables
of a bidirectional RNN graph, Shukla and Marlin (2019)
exerted several kernel-based intensity functions to param-
eterize missing variables. In addition to these methods, Che
et al. (2018b) also studied a similar problem of modeling
multi-rate MTS. However, none of the above methods ex-
plores the dynamic clustering structures underlying a batch
of MTS samples for robust forecasting.

Vanilla Gaussian mixture (GM) model does not suit dy-
namic scenario. There are some works applying it on speech
recognition (Tüske et al. 2015a,b; Variani, McDermott, and
Heigold 2015; Zhang and Woodland 2017), which model the
transition of words, but keep conditional GM distributions
independent and static. Diaz-Rozo, Bielza, and Larrañaga
(2018) studied data streams of IoT systems, where a static
GM model was continuously retrained to fit new data. In
contrast to these methods, our model explicitly defines dy-
namic GM distributions with temporal dependencies, and
is inductive and end-to-end trainable. Some dynamic topic
models (Wei, Sun, and Wang 2007; Zaheer, Ahmed, and
Smola 2017) aim to unveil the flow of topics in documents.
These methods, however, are neither Gaussian nor inductive,
thus unable to be applied to solve the investigated problem.

Problem Statement
As suggested by the joint imputation-prediction framework
(Che et al. 2018a; Shukla and Marlin 2019), a sparse MTS



sample can be represented with missing entries against a set
of evenly spaced reference time points t = 1, ..., w.

Let x1:w = (x1, ...,xw) ∈ Rd×w be a length-w MTS
recorded from time steps 1 tow, where xt = (x1t , ..., x

d
t )
> ∈

Rd is a temporal feature vector at the t-th time step, xit is
the i-th variable of xt, and d is the total number of vari-
ables. To mark observation times, we employ a binary mask
m1:w = (m1,m2, ...,mw) ∈ {0, 1}d×w, where mi

t = 1
indicates xit is an observed entry; mi

t = 0 otherwise, with a
corresponding placeholder xit = NaN.

In this work, we are interested in a sparse MTS forecast-
ing problem, which is to estimate the most likely length-r
sequence in the future given the incomplete observations in
past w time steps, i.e., we aim to obtain

x̃w+1:w+r = arg max
xw+1:w+r

p(xw+1:w+r|x1:w,m1:w) (1)

where x̃w+1:w+r = (x̃w+1, ..., x̃w+r) are predicted esti-
mates, and p(·|·) is a forecasting function to be learned.

Our Proposed Model
In this section, we introduce our DGM2 model. Inspired by
the successful paradigm of joint imputation and prediction,
we design DGM2 to have a pre-imputation layer for captur-
ing (1) the temporal intensity, and (2) the multi-dimensional
correlations present in every MTS, for parameterizing miss-
ing entries. The parameterized MTS is fed to a forecasting
component, which has a deep generative model that esti-
mates the latent dynamic distributions for robust forecasting.

Pre-Imputation Layer
This layer aims to estimate the missing entries by leveraging
the smooth trends and temporal intensities of the observed
parts, which can help alleviate the impacts of sparsity in the
downstream predictive tasks.

Similar to (Shukla and Marlin 2019), for the i-th variable
at the t∗-th reference time point, we use a Gaussian kernel
κ(t∗, t;αi) = e−αi(t

∗−t)2 to evaluate the temporal influence
of any time step t (1 ≤ t ≤ w) on t∗, where αi is a param-
eter to be learned. Based on the kernel, we then employ a
weighted aggregation for estimating xit∗ by

x̄it∗ =
1

λ(t∗,mi;αi)

w∑
t=1

κ(t∗, t;αi)m
i
tx
i
t (2)

where mi = (mi
1, ...,m

i
w)> ∈ Rw is the mask of the i-

th variable, and λ(t∗,mi;αi) =
∑w
t=1m

i
tκ(t∗, t;αi) is an

intensity function that evaluates the observation density at
t∗, in which mi

t is used to zero out unobserved time steps.
To account for the correlations of different variables, we

also merge the information across d variables by introducing
learnable correlation coefficients ρij for i, j = 1, ..., d, and
formulating a parameterized output if xit∗ is unobserved.

x̂it∗ =

[ d∑
j=1

ρijλ(t∗,mi;αj)x̄
j
t∗

]
/

d∑
j′=1

λ(t∗,mi;αj′) (3)

where ρij is set as 1 for i = j, and λ(t∗,mi;αj) is in-
troduced to indicate the reliability of x̄jt∗ , because larger
λ(t∗,mi;αj) implies more observations near x̄jt∗ .

In this layer, the set of parameters are α = [α1, ..., αd],
and ρ = [ρij ]

d
i,j=1 ∈ Rd×d. DGM2 trains them jointly with

its generative model for aligning missing patterns with the
forecasting tasks.

Forecasting Component
Next, we design a generative model that captures the latent
dynamic clustering structures for robust forecasting.

Suppose there are k latent clusters underlying all tempo-
ral features xt’s in a batch of MTS samples. For every time
step t, we associate xt with a latent cluster variable zt to in-
dicate to which cluster xt belongs. Instead of the transition
of xt → xt+1, in this work, we propose to model the tran-
sition of the cluster variables zt → zt+1. Since the clusters
integrate the complementary information of similar features
across MTS samples at different time steps, leveraging them
is more robust than using individual sparse feature xt’s.

Generative Model. The generative process of our DGM2

follows the transition and emission framework of state space
models (Krishnan, Shalit, and Sontag 2017).

First, the transition process of DGM2 employs a recurrent
structure due to its effectiveness on modeling long-term tem-
poral dependencies of sequential variables. Each time, the
probability of a new state zt+1 is updated upon its previous
states z1:t = (z1, ..., zt). We use a learnable function to de-
fine the transition probability, i.e., p(zt+1|z1:t) = fθ(z1:t),
where the function fθ(·) is parameterized by θ, which can
be variants of RNNs, for encoding non-linear dynamics that
may be established between the latent variables.

For the emission process, we propose a dynamic Gaussian
mixture distribution, which is defined by dynamically tuning
a static basis mixture distribution. Let µi (i = 1, ..., k) be
the mean of the i-th mixture component of the basis distri-
bution, and p(µi) be its corresponding mixture probability.
The emission (or forecasting) of a new feature xt+1 at time
step t + 1 involves two steps: (1) draw a latent cluster vari-
able zt+1 from a categorical distribution on all mixture com-
ponents, and (2) draw xt+1 from the Gaussian distribution
N (µzt+1

, σ−1I), where σ is a hyperparameter, and I is an
identity matrix. Here, we use isotropic Gaussian because of
its efficiency and effectiveness in our experiments.

In step (1), the categorical distribution is usually defined
on p(µ) = [p(µ1), ..., p(µk)] ∈ Rk, i.e., the static mixture
probabilities, which cannot reflect the dynamics in MTS. In
light of this, and considering the fact that transition proba-
bility p(zt+1|z1:t) indicates to which cluster xt+1 belongs,
we propose to dynamically adjust the mixture probability at
each time step using p(zt+1|z1:t) by

ψt+1 = (1− γ)p(zt+1|z1:t)︸ ︷︷ ︸
dynamic adjustment

+ γp(µ)︸ ︷︷ ︸
basis mixture

(4)

where ψt+1 is the dynamic mixture distribution at time step
t + 1, and γ is a hyperparameter within [0, 1] that controls
the relative degree of change that deviates from the basis
mixture distribution.

Fig. 2(a) illustrates the dynamic adjustment process of
Eq. (4) on a Gaussian mixture with two components, where
p(zt+1|z1:t) adjusts the mixture towards the component (i.e.,
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Figure 2: Illustrative examples of (a) the dynamic adjustment of the Gaussian mixture according to Eq. (4), with two mixture
components, (b) the generative network, and (c) the inference network, where γ(·) is a gate function used in Eq. (4).

cluster) that xt+1 belongs to. It is noteworthy that adding
the basis mixture in Eq. (4) is indispensable because it de-
termines the relationships between different components,
which regularizes the learning of the meansµ = [µ1, ...,µk]
during model training.

As such, our generative process can be summarized as
1. for each MTS sample:

(a) draw z1 ∼ Uniform(k)

(b) for time step t = 1, ..., w:
i. compute transition probability by p(zt+1|z1:t) = fθ(z1:t)

ii. draw zt+1 ∼ Categorial(p(zt+1|z1:t)) for transition
iii. draw z̃t+1 ∼ Categorial(ψt+1) using Eq. (4) for emission
iv. draw a feature vector x̃t+1 ∼ N (µz̃t+1

, σ−1I)

where zt+1 (step ii) and z̃t+1 (step iii) are different: zt+1 is
used in transition (step i) for maintaining recurrent property;
z̃t+1 is used in emission from updated mixture distribution.

In the above process, the parameters in µi are shared by
samples in the same cluster, whereby consolidating comple-
mentary information for robust forecasting.

Parameterization of Generative Model. The key para-
metric function in the generative process is fθ(·), for which
we choose a recurrent neural network architecture as

p(zt+1|z1:t) = softmax(MLP(ht)),

where ht = RNN(zt,ht−1),
(5)

and ht is the t-th hidden state, MLP represents a multilayer
perceptron, RNN can be instantiated by either an LSTM or a
GRU. Moreover, to accommodate the applications where the
reference time steps of MTS’s could be unevenly spaced, we
can also incorporate the recently proposed neural ordinary
differential equations (ODE) based RNNs (Rubanova, Chen,
and Duvenaud 2019) to handle the time intervals. In our ex-
periments, we demonstrate the flexibility of our framework
in Eq. (5) by evaluating several choices of RNNs.

Fig. 2(b) illustrates our generative network. In summary,
the set of trainable parameters of the generative model is
ϑ = {θ,µ}. Given this, we aim at maximizing the log
marginal likelihood of observing each MTS sample, i.e.,

L(ϑ) = log(
∑
z1:w

pϑ(x1:w, z1:w)) (6)

where the joint probability in Eq. (6) can be factorized w.r.t.
the dynamic mixture distribution in Eq. (4) after the Jensen’s

inequality is applied on L(ϑ) by

L(ϑ) ≥
w−1∑
t=0

∑
z1:t+1

[
log
(
pϑ(xt+1|zt+1)

)
pθ(z1:t)

[
(1− γ)pθ(zt+1|z1:t) + γp(µzt+1

)
]] (7)

in which the above lower bound will serve as our objective to
be maximized. The detailed derivation of Eq. (7) is deferred
to the supplementary materials.

In order to estimate the parameters ϑ, our goal is to maxi-
mize Eq. (7). However, summing out z1:t+1 over all possible
sequences is computationally difficult. Therefore, evaluating
the true posterior density p(z|x1:w) is intractable. To cir-
cumvent this problem, meanwhile enabling inductive anal-
ysis, we resort to variational inference (Hoffman et al. 2013)
and introduce an inference network in the following.

Inference Network. We introduce an approximated poste-
rior qφ(z|x1:w), which is parameterized by neural networks
with parameters φ. We design our inference network to be
structural, and employ the idea of deep Markov processes
to maintain the temporal dependencies between latent vari-
ables, which leads to the following factorization.

qφ(z|x1:w) = qφ(z1|x1)

w−1∏
t=1

qφ(zt+1|x1:t+1, zt) (8)

With the introduction of qφ(z|x1:w), instead of maximiz-
ing the log marginal likelihood L(ϑ), we are interested in
maximizing the variational evidence lower bound (ELBO)
`(ϑ,φ) ≤ L(ϑ) with respect to both ϑ and φ. By incorpo-
rating the bounding step in Eq. (7), we can derive the EBLO
of our problem, which is written by

`(ϑ,φ) = (1− γ)

w∑
t=1

Eqφ(zt|x1:t)[log (pϑ(xt|zt))]

−
w−1∑
t=1

Eqφ(z1:t|x1:t)[DKL

(
qφ(zt+1|x1:t+1, zt)||pϑ(zt+1|z1:t)

)
]

−DKL

(
qφ(z1|x1)||pϑ(z1)

)
+ γ

w∑
t=1

k∑
zt=1

pϑ(µzt
) log (pϑ(xt|zt))

(9)
where DKL(·||·) is the KL-divergence. pϑ(z1) is a uniform
prior as described in the generative process. Similar to VAE



(Kingma and Welling 2013), it helps prevent overfitting and
improve the generalization capability of our model. The de-
tailed derivation of Eq. (9) can be found in the supplemen-
tary materials.

Eq. (9) also sheds some insights on how our dynamic mix-
ture distribution in Eq. (4) works: the first three terms encap-
sulate the learning criteria for dynamic adjustments; the last
term after γ regularizes the relationships between different
basis mixture components.

Fig. 2(c) illustrates the architecture of the inference net-
work, in which qφ(zt+1|x1:t+1, zt) is a recurrent structure

qφ(zt+1|x1:t+1, zt) = softmax(MLP(h̃t+1)),

where h̃t+1 = RNN(xt, h̃t),
(10)

h̃t is the t-th latent state of the RNNs, and z0 is set to 0 so
that it has no impact in the iteration.

Since sampling discrete variable zt from the categori-
cal distributions in Fig. 2(c) is not differentiable, it is dif-
ficult to optimize the model parameters. To get rid of it, we
employ the Gumbel-softmax reparameterization trick (Jang,
Gu, and Poole 2017) to generate differetiable discrete sam-
ples, which is illustrated by the “sample” steps in Fig. 2(c).
In this way, our DGM2 model is end-to-end trainable.

Gated Dynamic Distributions. In Eq. (4), the dynamics
of the Gaussian mixture distribution is tuned by a hyperpa-
rameter γ, which may require some tuning efforts on vali-
dation datasets. To circumvent it, we introduce a gate func-
tion γ(h̃t) = sigmoid(MLP(h̃t)) using the information ex-
tracted by the inference network, as shown in Fig. 2(c), to
substitute γ in Eq. (4). As such, ψt becomes a gated distri-
bution that can be dynamically tuned at each time step.

Model Training
We jointly learn the parameters {α,ρ,ϑ,φ} of the pre-
imputation layer, the generative network pϑ, and the infer-
ence network qφ by maximizing the ELBO in Eq. (9).

The main challenge to evaluate Eq. (9) is to obtain the gra-
dients of all terms under the expectation Eqφ . Because zt is
categorical, the first term can be analytically calculated with
the probability qφ(zt|x1:t). However, qφ(zt|x1:t) is not an
output of the inference network, so we derive a subroutine
to compute qφ(zt|x1:t) from qφ(zt|x1:t, zt−1). In the sec-
ond term, since the KL divergence is sequentially evaluated,
we employ ancestral sampling techniques to sample zt from
time step 1 to w to approximate the distribution qφ. It is also
noteworthy that in Eq. (9), we only evaluate observed values
in xt by using masks mt to mask out the unobserved parts.
The subroutine to compute qφ(zt|x1:t) can be found in the
supplementary materials.

As such, the entire DGM2 is differentiable, and we use
stochastic gradient descents to optimize Eq. (9). In the last
term of Eq. (9), we also need to perform density estimation
of the basis mixture distribution, i.e., to estimate p(µ). Given
a batch of MTS samples, suppose there are n temporal fea-
tures xt in this batch, and their collection is denoted by a set
X , we can estimate the mixture probability by

p(µi) =
∑
xt∈X

qφ(zt = i|x1:t, zt−1)/n, for i = 1, ..., k (11)

where qφ(zt = i|x1:t, zt−1) is the inferred membership
probability of xt to the i-th latent cluster by Eq. (10).

Experiments
In this section, we evaluate the performance of our DGM2

model on real-life datasets from different domains and com-
pare it with state-of-the-art approaches.

Datasets and Task Description
USHCN1 This dataset consists of daily meteorological
records collected from 1219 stations across the contiguous
states from 1887 to 2009. It has five climate features, such
as mean temperature and total daily precipitation. From the
dataset, we randomly extracted 5000 segments recorded at
all stations in NY state from 1900 to 2000. Each segment
is an MTS sample with 100 consecutive daily records. The
dataset has a missing ratio of 10.4%. Our task is to use the
past 80 days’ records to forecast the future 20 days’ weather.

KDD-CUP2 This is an air quality dataset from KDD CUP
challenge 2018, which consists of PM2.5 measurements
from 35 monitoring stations in Beijing. The values were
recorded hourly from 01/2017 to 12/2017, and the overall
missing ratio is 16.5%. On this dataset, our task is to fore-
cast the PM2.5 values for the 35 stations in future 12 hours
using the historical records in the past 24 hours.

MIMIC-III This is a public clinical dataset (Johnson et al.
2016), with over 58,000 hospital admission records. We col-
lected 31,332 adults’ ICU stay data, and extracted 17 clini-
cal features, such as glucose and heart rate, from the first 72
hours using the benchmark tool (Harutyunyan et al. 2019).
Because of the heterogeneous sources (e.g., lab tests, routine
signals, etc.), the MTS’s are highly sparse, with a missing ra-
tio of 72.7%. The task is to forecast the last 24 hour signals
using the recorded data in the first 48 hours.

Compared Methods
We compare our model with both conventional approaches
and state-of-the-art approaches, including Vector Autore-
gression (VAR), LSTM, Deep Markov Model (DMM) (Kr-
ishnan, Shalit, and Sontag 2017), XGBoost (Chen and
Guestrin 2016), GRU-I (Luo et al. 2018), GRU-D (Che et al.
2018a), Interpolation-Prediction Networks (IPN) (Shukla
and Marlin 2019), LGNet (Tang et al. 2020), and Latent
ODE (L-ODE) (Rubanova, Chen, and Duvenaud 2019).

Among these methods, VAR, XGBoost, LSTM and DMM
cannot handle missing values. Therefore, we follow (Tang
et al. 2020) to concatenate each MTS with its mask ma-
trix as their input features. GRU-I is a two-step approach,
which first imputes missing values with GAN-based net-
works, and then uses GRU for forecasting. GRU-D, IPN,
and LGNet deal with sparsity by jointly training parametic
imputation functions and RNNs. GRU-D and LGNet use ex-
ponential decay based imputation, IPN uses kernel intensity
based functions. In addition, LGNet has a memory module

1https://www.ncdc.noaa.gov/ushcn/introduction
2https://www.kdd.org/kdd2018/kdd-cup



Table 1: Forecasting results (RMSE and MAE) of the compared methods on different datasets

Method MIMIC-III USHCN KDD-CUP
RMSE MAE RMSE MAE RMSE MAE

VAR 6.7154±0.0360 3.7420±0.0246 0.9811±0.0183 0.7927±0.0195 0.8164±0.0377 0.5052±0.0256
LSTM 1.0587±0.0091 0.8203±0.0106 0.6340±0.0098 0.4456±0.0098 0.7465±0.0370 0.5082±0.0358
DMM 0.9852±0.0025 0.7510±0.0057 0.6068±0.0092 0.4058±0.0112 0.7067±0.0220 0.5052±0.0303
XGBoost 0.9900±0.0002 0.7209±0.0003 0.8664±0.0011 0.7816±0.0010 0.8841±0.0106 0.7580±0.0102
GRU-I 1.0322±0.0069 0.8256±0.0074 0.9491±0.0046 0.7764±0.0049 0.8233±0.0333 0.5925±0.0364
GRU-D 1.0495±0.0068 0.8502±0.0069 0.9695±0.0089 0.7912±0.0087 0.7268±0.0254 0.5051±0.0228
IPN 0.9888±0.0025 0.7856±0.0039 0.6097±0.0066 0.4204±0.0089 0.7207±0.0313 0.4834±0.0229
LGNet 0.9590±0.0033 0.7093±0.0033 0.5883±0.0071 0.3841±0.0063 0.7346±0.0272 0.5181±0.0218
L-ODE 0.9315±0.0034 0.7325±0.0035 0.6171±0.0056 0.4216±0.0038 0.8226±0.0387 0.5834±0.0331
DGM2-L 0.9143±0.0025 0.7089±0.0037 0.5426±0.0066 0.3848±0.0047 0.6975±0.0224 0.4748±0.0162
DGM2-O 0.9003±0.0015 0.6876±0.0027 0.4983±0.0053 0.3367±0.0059 0.6835±0.0276 0.4646±0.0213

Table 2: Imputation results (RMSE) before/after the fore-
casting component of DGM2-L (-L) and DGM2-O (-O)

Setting MIMIC-III USHCN KDD-CUP

-L before 1.4111 0.7780 5.2363
after 0.9052 0.5250 0.5506

-O before 1.4186 0.4761 4.2868
after 0.8979 0.4663 0.5362

Table 3: Ablation analysis (RMSE)
Model MIMIC-III USHCN KDD-CUP
(a) γ = 1.0 0.9832 0.9913 0.9998
(b) γ = 0.0 0.9191 0.5151 0.7533
(c) γ = 1e−2 0.9033 0.4958 0.6878
(d) Gate γ(·) 0.9003 0.4983 0.6835

to leverage global MTS patterns in its RNNs. Different from
the above methods, L-ODE addresses sparsity by model-
ing uneven time intervals via learnable ordinary differential
equations. If a temporal feature xt is too sparse (e.g., the
sparsity is above a threshold), L-ODE will replace it by an
interval, thus generating unevenly spaced MTS’s. It is worth
noting that none of these methods exploits the clustering
structures underlying the MTS set.

For our method, since it is a flexible framework, we use
LSTM and ODE as the RNNs, and denote them by DGM2-L
and DGM2-O, where the latter has the capability to handle
uneven time intervals. To gain further insights on some of
the design choices, we also compare DGM2 with its vari-
ants, which will be discussed in the ablation analysis.

Experimental Setup
For each dataset, train/valid/test sets were split as 70/10/20.
All compared methods were trained by Adam optimizer with
hyperparameters selected on the validation set. The configu-
rations of the compared methods are described in the supple-
mentary materials. For DGM2, we grid-searched k, i.e., the
number of mixture components (or µi’s), from 10 to 200.
The γ in Eq. (4) was searched within {1e−5, 1e−4, 1e−3,
1e−2, 1e−1}. The gate function γ(·) was also tested to au-
tomatically tune Eq. (4). The variance σ of Gaussian distri-
butions was selected from {1e−5, 1e−4, 1e−3, 1e−2, 1e−1}.
Similar to (Krishnan, Shalit, and Sontag 2017), we config-
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Figure 3: Forecasting results (RMSE) of the compared meth-
ods w.r.t. varying missing ratios on USHCN and KDD-CUP

ured DGM2-L with one-layer LSTMs, and searched the hid-
den dimensionality within {10, 20, 30, 40, 50}. For DGM2-
O, we follow (Rubanova, Chen, and Duvenaud 2019) to use
an MLP for instantiating the neural networks, with dimen-
sionality selected from {10, 20, 30, 40, 50}. The parameters
in µ were randomly initialized. Early stopping was applied
to avoid overfitting.

To evaluate the performance of the compared methods,
we use the widely used root mean square error (RMSE) and
mean absolute error (MAE) (Che et al. 2018b). For both met-
rics, smaller values indicate better performance.

Experimental Results
Forecasting Table 1 summarizes the average results of
the compared methods over 5 runs, from which we have
several observations. First, methods under joint imputation-
prediction framework, such as IPN and LGNet, often out-
perform traditional methods. This validates the usefulness
of learning task-aware missing patterns. Second, DMM per-
forms well even without special designs for handling spar-
sity, which suggests the superiority of generative models
on the forecasting tasks. We also observe good results of
L-ODE on USHCN and MIMIC-III. This may indicate the
effectiveness of modeling time intervals as another way to-
ward handling sparse MTS’s. Finally, the proposed DGM2-
L outperforms other methods in most cases, which validates
its design as a generative model with a joint imputation-
prediction paradigm. More importantly, this justifies its dy-
namic modeling of latent clustering structures. Furthermore,
our flexible framework enables DGM2-O, which incorpo-
rates the advantages of ODE. It obtains further improve-
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Figure 4: The tSNE visualization on MIMIC-III and USHCN datasets. Circles are temporal features. Different transparencies
indicate different MTS samples from which the features are extracted. “+” markers are the learned Gaussian means by DGM2.

ments, with relative improvements on RMSE of at least
3.5%, 18.1% and 3.4% on MIMIC-III, USHCN, and KDD-
CUP datasets, respectively. The statistics in Table 1 also
demonstrate that the improvements are significant.

To gain further insights about the usefulness of model-
ing clustering structures, we compare the outputs of the pre-
impulation layer and the forecasting component of DGM2.
Since the forecasting component generates values at every
time step, the generated values at those missing entries, i.e.,
xit = NaN, can be regarded as new imputations. If the newly
imputed values are more accurate than the pre-imputed val-
ues, then it implies the learned clustering structures can fa-
cilitate generating true MTS’s effectively. To this end, we
randomly removed 10% of the observations in each dataset,
and evaluated the imputation error. Table 2 summarizes the
average results of 5 runs. From Table 2, we can observe both
variants of DGM2 significantly reduce RMSE via the gen-
erative model, which hence validates the usefulness of the
learned clustering structures.

Robustness Next, we evaluate the robustness of DGM2

w.r.t. varying missing ratios using USHCN and KDD-CUP
datasets, which have moderate sparsity. Specifically, we ran-
domly dropped δ (0 ≤ δ ≤ 1) fraction of the observed val-
ues, and tuned δ from 0 to 0.8. The compared methods were
trained on the corrupted datasets, and evaluated on the same
forecasting tasks as before. Fig. 3 reports the results in terms
of RMSE. First of all, Fig. 3 shows that the forecasting er-
rors of the methods without handling sparsity, such as VAR,
LSTM, DMM, go up quickly as δ increases. In compari-
son, methods that explicitly address sparsity, e.g., GRU-D,
LGNet, and L-ODE, can maintain relatively stabler results
to varying extents. However, many of them still suffer when
the missing ratio is very high, e.g., δ ≥ 0.6. In such scenar-
ios, both DGM2-L and DGM2-O obtain the best forecasting
accuracy, which is attributed to the modeling of robust clus-
tering structures via dynamic Gaussian mixtures.

Ablation Analysis In this section, we focus on the analy-
sis of the gating mechanism γ(·) introduced in our inference
network. Recall in Eq. (4), γ is a hyperparameter controlling
the dynamics in the Gaussian mixture. Table 3 compares the
results of different choices on γ, as well as the use of γ(·),
in terms of RMSE. γ = 0 and γ = 1 correspond to the ex-
treme cases when there is no basis mixture and no dynamic
adjustment, respectively. From Table 3, both cases lead to
sub-optimal performance, especially when there is no mod-

eling of dynamics, i.e., γ = 1. γ = 1e−2 is the optimal
choice from grid search, which trades off the two cases for
improved results. The choice of a small γ also indicates a
few introduction of basis mixture is sufficient. Moreover, the
comparable results of cases (c) and (d) in Table 3 validates
the effective design of the gating function γ(·), which can
help save a lot of tuning efforts.

Visualization As discussed before, DGM2 explores the
latent clustering structures by learning a basis mixture dis-
tribution and tuning it over time. To understand how DGM2

uncovers the clustering structures, we randomly sampled a
batch of training (testing) samples for visualization (the full
set is too large to be visualized). We visualized every tem-
poral feature xt using tSNE (Maaten and Hinton 2008) in
a 2D space. The missing values in xt’s were imputed using
the outputs of the forecasting component.

Fig. 4 presents the visualization results and the Gaussian
means µ learned by DGM2-O (with gate function γ(·)) on
MIMIC-III and USHCN datasets. For the training set, we vi-
sualized all fitted data. For the testing set, we investigated the
forecasting parts, i.e., last 24 hours (20 days) on MIMIC-III
(USHCN). In the figure, circles represent temporal features,
“+” markers represent the learned Gaussian means. Differ-
ent transparencies indicate different MTS samples. From the
figure, we can clearly observe clusters. In particular, features
xt from different MTS’s may stay in the same cluster, which
implies different samples (e.g., patients) may share the same
state (e.g., pathological condition) at different periods. From
Fig. 4(a)(c), DGM2 can effectively learn Gaussian means in
dense areas from the training set, so that the mixture distri-
butions are well fitted. Moreover, Fig. 4(b)(d) demonstrate
the learned means fit the testing data as well, which explains
how the new time series are forecasted meanwhile.

Conclusions
In this paper, we proposed a new method, Dynamic Gaus-
sian Mixture based Deep Generative Model (DGM2), for
robust forecasting on sparse multivariate time series (MTS).
DGM2 achieves robustness by modeling the transition of la-
tent clusters of temporal features, and emitting MTS’s from
dynamic Gaussian mixture distributions. We parameterized
the generative model by neural networks and developed an
inference network for enabling inductive analysis. The ex-
tensive experimental results on a variety of real-life datasets
demonstrated the effectiveness of our proposed method.



Ethical Impact Statement
Multivariate time series forecasting has high impacts in wide
domains, such as medicine, finance, and meteorology. In
many emerging applications, MTS’s collected from different
sources are often interrelated and demands collective anal-
ysis for fully understanding the monitored targets, which
necessitates solutions to handle sparsity. Such solutions do
not only save engineering efforts for combining data, but
also enhances predictive performance in important scenarios
including clinical diagnosis, traffic surveillance, and large-
scale system debugging. Our proposed model was tested on
datasets from a variety of scenarios, which showcases some
of its societal impacts.

Moreover, the theoretical design and analysis of the dy-
namic Gaussian mixture distribution itself may have broader
impacts in applications other than MTS forecasting. Static
Gaussian mixture has been extensively used in many appli-
cations, while its dynamic counterpart is less developed. Our
proposed method provides a novel and general solution that
explicitly defines temporal dependency between Gaussian
mixture distributions at different time steps. It has a potential
to be used on different types of sequential data such as sen-
tences, dynamic graphs, and videos for modeling the flows
of clustering structures which can be topics, social commu-
nities, and concepts, thus generates values in the correspond-
ingly various areas.
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