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Abstract-Signed directed social networks, in which the 
relationships between users can be either positive (indicating 
relations such as trust) or negative (indicating relations such 
as distrust), are increasingly common. Thus the interplay be
tween positive and negative relationships in such networks has 
become an important research topic. Most recent investigations 
focus upon edge sign inference using structural balance theory 
or social status theory. Neither of these two theories, however, 
can explain an observed edge sign well when the two nodes 
connected by this edge do not share a common neighbor (e.g., 
common friend). In this paper we develop a novel approach to 
handle this situation by applying a new model for node types. 
Initially, we analyze the local node structure in a fully observed 
signed directed network, inferring underlying node types. The 
sign of an edge between two nodes must be consistent with 
their types; this explains edge signs well even when there are 
no common neighbors. We show, moreover, that our approach 
can be extended to incorporate directed triads, when they exist, 
just as in models based upon structural balance or social status 
theory. We compute Bayesian node types within empirical 
studies based upon partially observed Wikipedia, Slashdot, and 
Epinions networks in which the largest network (Epinions) 
has 119K nodes and 841K edges. Our approach yields better 
performance than state-of-the-art approaches for these three 
signed directed networks. 

Keywords-signed directed social networks; node types; 
Bayesian node features; edge sign prediction. 

I. INTRODUCTION 

With the rapid emergence of social networking websites, 
e.g., Facebook, Twitter, LinkedIn, Epinions, etc., a con
siderable amount of attention has been devoted to inves
tigating the underlying social mechanisms in order to en
hance users' experiences [17][12][20][l3]. Traditional social 
network analysis concerns itself primarily with unsigned 
social networks such as Facebook or Myspace which can 
be modeled as graphs, with nodes representing entities, 
and positively weighted edges representing the existence 
of relationships between pairs of entities. Recently, signed 
directed social networks, in which the relationships between 
users can be either positive (indicating relations such as 
trust) or negative (indicating relations such as distrust), are 
increasingly COlmnon. For instance, in Epinions [8], which 
is a product review website with an active user cOlmnunity, 
users can indicate whether they trust or distrust other users 
based upon their reviews; in Slashdot [16][2], which is a 
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technology-related news website, users can tag each other as 
"friend" or "foe" based upon their comments. Such a signed 
directed network can be modeled as a graph expressed as 
an asymmetric adjacency matrix in which an entry is 1 (or 

- 1) if the relationship is positive (or negative) and 0 if the 
relationship is absent. 

One of the fundamental problems in signed social network 
analysis is edge sign inference [8][18], i.e., inferring the un
known trust or distrust relationship given the existence of a 
particular edge. To address this issue, many approaches have 
been developed based upon two main social-psychological 
theories, i.e., structural balance theory [ll][4] and social 
status theory [19]. Structural balance theory is more well
known and it states that people in signed networks tend to 
follow the rules that "the friend of my friend is my friend", 
"the enemy of my friend is my enemy", etc. Social status 
theory, which is implicit in Guha et al. [8], further exploited 
by Leskovec et al. [19], and based upon a foundation in 
social psychology [13], considers a positive directed edge to 
indicate that the initiator of the edge views the recipient as 
having higher status and a negative directed edge to indicate 
that the recipient is viewed as having lower status. The 
relative levels of status determine the allowed sign-direction 
pairs for an edge assuming that this edge exists. 

Although both structural balance theory and social status 
theory have proved useful for explaining the signs of edges 
in signed networks, neither is suitable for explaining an 
observed edge when the two nodes connected by this edge 
share no common neighbor (e.g., COlmnon friend), and in 
fact, structural balance theory simply does not apply to this 
situation. Since many real world social networking graphs 
tend to be very sparse, this is the case for a large fraction 
of their edges. To better explain the observed edge signs 
in general, in this paper we develop a novel approach to 
address this issue by applying a new model for node types. 

To summarize the contributions of this paper: 

• We explore the underlying local node structures in fully 
observed signed directed networks, recognizing that 
there are 16 different types of node and each type of 
node constrains both its incoming node types and its 
outgoing node types, i.e., the signs of their edges must 
be consistent with their types. 
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• We show that node type features can be extended to 
incorporate structural balance theory or social status 
theory, to help make predictions for those edges whose 
endpoints have common neighbors. 

• For the purpose of practical applications, we derive 
Bayesian node features (including Bayesian node type 
and Bayesian node properties) based upon partially 
observed signed directed networks. 

• We conduct empirical studies based upon three real 
world datasets and show that our proposed approach 
can outperform state-of-the-art algorithms. 

II. RELATED WORK 

In the past few years, many approaches have been devel
oped to explore different aspects of signed networks, ranging 
from edge sign prediction [8][18][5][10] to community 
detection [15][1]. Most of these approaches are based upon 
structural balance theory or social status theory. 

A. Structural balance theory 

The investigation of signed networks [11][4][7][6] can 
be traced back to the 1920s. Heider [11] first formulated 
structural balance theory within social psychology. After 
that, Cartwright and Harary [4] formally provided the notion 
of structural balance with undirected triads (as shown in 
Figure 1) and proved its necessity and sufficiency by uti
lizing the mathematical theory of graphs. Intuitively, their 
theory can be explained as: "the friend of my friend is 
my friend" (T 1), "the enemy of my friend is my enemy" 
(T 2), "the friend of my enemy is my enemy" (T 2), and 
"the enemy of my enemy is my friend" (T2)' Conceptually, 
their theory claims that T 1 and T 2 are balanced while T 3 

and T4 are unbalanced. Davis [6] further generalized this 
theory to weak structural balance theory by allowing all 
the edges of triads to be negative, i.e., "the enemy of my 
enemy is my enemy" (T4 is also balanced). Note that these 
two balance theories were initially intended for modeling 
undirected networks, although they have been commonly 
applied to directed networks by disregarding the direction 
of edges [19]. 

B. Social status theory 

Guha et al. [8] first considered the edge sign prediction 
problem by developing a trust propagation framework to 
predict the trust (or distrust) between pairs of nodes. In their 
framework, they calculate a combined matrix which is a 
linear combination of four different one-step propagations, 

T, T, 

Figure 1. Undirected signed triads. Structural balance theory states that 
Tl and T2 are balanced, while T3 and T4 are unbalanced. Weak structural 
balance theory states that T1, T2, and T4 are balanced, while only T3 is 
unbalanced. 
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Figure 2. All contexts of (x, y; zJ. The red edge's sign is not available; 
it can be determined based upon x's and y's interactions with z. Take tl 
for example: since y gives z a positive evaluation and z gives x a positive 
evaluation, x tends to give y a negative evaluation because x has higher 
status. 

i.e., direct propagation, co-citation, transpose trust, and 
trust coupling. Then the trust and distrust propagations are 
achieved by calculating a linear combination of powers of 
this combined matrix. A shortcoming of this approach is that 
it cannot be explained by structural balance theory [4][ll]. 

Motivated by this trust propagation idea [8] and informed 
by social psychology [l3], Leskovec et al. [19] developed 
social status theory to explain signed directed networks. In 
this theory, they assume that if there is a positive edge from 

x to y,  it represents the fact that x regards y as having higher 
status than himself (or herself), and if there is a negative edge 
from x to y,  it represents the fact that x regards y as having 
lower status than himself (or herself). Assumjng everyone in 
the system agrees on the same status ordering, we can infer 
signs easily as long as the existence and direction of edges 
are available. When prior status information for x and y is 
not available, we can still perform sign inference using the 
context provided by the rest of the network. For instance, in 
Figure 2, the sign of x to y can be inferred by referring to 
the status of z, and is unambiguous in half the cases. 

C. Approaches to edge sign prediction 

Based upon structural balance theory and social status 
theory, Leskovec et al. [18] selected degree features and 
directed triad features for edges in signed directed networks. 
Specifically, for the edge from node x to node y,  they 
consider seven degree features, i.e., d� (y) and dj� (y) , the 
number of incoming positive and negative edges to y,  respec
tively; d;tJt(x) and d;;-ut(x) , the number of outgoing positive 
and negative edges from x,  respectively; C(x, y) , the number 
of common neighbors (i.e., embeddedness) of node x and 
node y; dtut(x) +d;;-ut(x) and d�(y) +dj�(Y)' the total out
degree of x and the total in-degree of y,  respectively. Since 
each of the 16 triad types in Figure 2 provides different 
evidence for the sign of the edge from node x to node y,  
directed triad features of this edge are encoded in a 16-
dimensional vector counting the number of triads of each 
type in which this edge is involved. After computing the 
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Table I 

DATASET STATISTICS. 

Datasets Wikipedia I S1ashdot Epinions 

Nodes 7,118 82,144 119,217 
Edges 103,747 549,202 841,372 
+edges 78.78% 77.4% 85.0% 
-edges 2l.21% 22.6% 15.0% 

degree or directed triad features for the edge from x to y, a 
logistic regression classifier is used to combine the evidence 
from these individual features into an edge sign prediction. 

Subsequently, Chiang et al. [5] extended this approach 
by considering longer cycles (e.g., quadrilaterals, pentagons) 
while ignoring the directions of edges to reduce the com
putational complexity. Hsieh et al. [10] formulated the 
sign inference problem as a low rank matrix completion 
(approximation) problem based upon weak balance theory. 
Note that this approach was originally developed to explain 
a signed undirected network which is associated with a 
sYlmnetric adjacency matrix and is different from our setting 
(signed directed networks) in this paper. 

We remark that structural balance theory is also popular 
for community detection in signed networks [15][1]. 

Although many approaches based upon structural balance 
theory or social status theory have been developed to per
form edge sign prediction in signed networks, they cannot 
work well when few topological features, i.e., undirected 
(or directed) triads and long-range cycles, are available in 
the network. Since many real world signed directed social 
networking graphs are very sparse, the efficacy of methods 
based upon these theories is limited. A more general ap
proach for such networks is necessary. 

III. DATASETS 

In this paper, we consider three well-known signed di
rected social networks: Wikipedia [3], Slashdot [14][16] and 
Epinions [8] I: 

• The Wikipedia data comprise a voting network for 
promoting candidates to the role of admin. The voters, 
half coming from existing admins and another half 
coming from ordinary Wikipedia users, can indicate a 
positive (for supporting) or negative (for opposing) vote 
with respect to the promotion of a candidate [18]. 

• Slashdot is a social website focusing on technology 
related news. In Slash dot Zoo, users can tag each other 
as friends (like) or foes (dislike) based upon comments 
on articles. 

• Epinions, which is a product review website, is a trust 
network in which users can indicate whether they trust 
or distrust each other based upon their reviews. 

1 These datasets are available online at 
http://snap.stanford.edu/data/. 
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Figure 3. The fraction of edges vs. edge embedded ness for three datasets. 

The detailed statlstlcs of these datasets are provided in 
Table I. Note that in all three datasets, the majority of the 
edges is positive. Due to this imbalance, simply predicting 
all edges to be positive would yield 78.78%, 77.4%, and 
85.0% accuracy across the three datasets. To show the 
effectiveness of any approach, it should achieve substantially 
better performance than this. 

Figure 3 shows the fraction of edges versus edge em
beddedness [9] (the number of common neighbors of the 
two nodes connected by the edge) for three datasets. We 
observe that the edges with zero embeddedness comprise 
about 8. 17%, 47.90%, 19.88% of the edges for Wikipedia, 
Slashdot, and Epinions, respectively. Note that a large frac
tion of zero embeddedness edges means that triad features 
[18] cannot work well for edge sign prediction. This is 
because the entries of triad feature vector will be zero and 
thus the triad features provide no evidence for edge sign 
prediction. 

IV. NODE TYPES IN FULLY OBSERVED NETWORKS 

In this paper, a fully observed signed directed network 
refers to a network in which there is no uncertainty about 
the existence of any directed edge and its associated sign. 

We consider a fully observed signed directed network as 
a graph G = (V, E, W), where V is the vertex set of size n, 

E is the edge set of size m, and W E lRnxn is the associated 
signed adjacency matrix. Because G is a directed network, 
W is an asymmetric matrix and can be represented as: {I, 

Wij = -I, 
0, 

if i trusts j 
if i distrusts j 
otherwise 

(1) 

Note that Wij = 0 represents no directed edge from node i 
to node j. 

In this section, we first investigate local node structures 
within fully observed signed directed networks, recognize 
a set of node types, show that these node types can be 
used to explain real world signed directed social networks, 
and show how to encode a specific node in such networks. 
Next, we explore how these node types interact with one 
another and how these interactions can explain the edge 
signs. Finally, we show our approach can be extended to 
incorporate structural balance theory or social status theory. 
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Figure 5. The fractions of different node types for the three datasets. 

A. Node types 

In our study, we focus on analyzing signed directed 
networks because they are more general and common than 
signed undirected networks in real world applications. For 
instance, each of the three datasets we consider in this paper 
is a signed directed network. Generally, signed directed net
works are sparse graphs in which nodes may be categorized 
into 4 groups based upon whether they have incoming edges 
and outgoing edges, i.e., nodes with neither incoming nor 
outgoing edges (e.g., N16 in Figure 4), nodes with only 
incoming edges (e.g., N4, N5, and N6 in Figure 4), nodes 
with only outgoing edges (e.g., N1, N2, and N3 in Figure 
4), and nodes having both incoming and outgoing edges 
(e.g., Ng, N14, N15, etc.). Moreover, both the incoming edges 
and the outgoing edges of a given node can be categorized 
into 3 classes, one class with only positive edges, another 
class with only negative edges, and the third class with a 
mixture of positive and negative edges. Combining these 
two principles, the nodes in signed directed networks can 
be categorized into 16 types, shown in Figure 4. Note that 
the edges in Figure 4 only indicate the types of the incoming 
or outgoing, i.e., they do not represent the actual nonzero 
number of incoming (outgoing) positive (negative) edges. 
The fractions of each node type for the three real world 
data sets are shown in Figure 5. 

1) The representation of node features: To represent each 
node effectively, in addition to its node type N, we should 
consider its associated node properties, i.e., the relative level 
of the number of positive (negative) incoming edges din ( + ) 
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Figure 6. Two parts of the features for node types N3 , Nll, and N15. 
Notice that the first (last) two numbers in the second part need not sum to 
1. 

(din ( -)) , and the relative level of the number of positive 
(negative) outgoing edges dout (+) (dout ( -» . 

First, we can use a 16-dimensional binary vector, [l(N = 

N1) ,1 (N = N2) , ... , l(N = N16)], to indicate the node type. 
The indicator l(N = Ni) is 1 if N is the same as Ni. Next, 
we can use a vector [Pin(+),Pin(-)' Pout(+),Pout(-)] to 

denotes the ratio of positive (negative) incoming edges and 
that of positive (negative) outgoing edges. 

Intuitively, Pin (+), Pin (-), Pout (+), and Pout (- ) rep

resent the locally propagating properties of a node (node 
property) and they can be calculated with 

(2) 

(3) 

(4) 

(5) 

where we set c = 10-
10 to avoid zero denominators. Figure 

6 shows examples of these two parts of features for node 
type N3, Nu, and N15. Notice that Pin(+) +Pin(-) = 1 

if there is any input edge, but this sum is zero if there are 
none; so these features are not redundant. Also note that 
node property is essentially different from degree features 
because degree features aim to model a particular edge 
by considering the initiator's outgoing edges, recipient's 
incoming edges, and their common neighbors. 

Note that although the node properties, i.e., 
[Pin ( + ), Pin ( -) ,Pout ( + ) , Pout ( -)] implicitly indicate 
the node type information, it is still useful to consider type 
indication, i.e., [l(N = N1) ,1 (N = N2) , ... , l(N = N16)]. 
Since the latter is not a linear combination of the former, 
it can provide non-redundant information in the logistic 
regression classifier we will describe in the Section 6. 
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B. The interaction of node types 

We have shown there are 16 possible node types in any 
signed directed network. Hence, theoretically there are 16

2 

combinations of node types. Given a node of a certain type, 
however, it usually can only connect to (or be reached from) 
nodes in a subset of these types due to the compatibility 
of both directions and signs. In other words, there exists 
a logic to determine whether two nodes can be reached or 
not and whether the sign should be positive or negative. For 
instance, given a node of type N5, it can only be connected 
from a node of type N2,N3,N7,Ng,Nll,NI3,NI4, or N15 
and the edge sign can only be negative. Similarly, given a 
node of type Ng, it can only be connected from a node of 
type N1, N3, Ns, NlO, N12, N13, N14, or N15 and connected 
to a node of type N5,N6,N7,NlO,Nll,NI2,NI4, or N15. 
Moreover, the edge sign is determined as positive and 
negative, respectively. 

Given an edge from x to y, based upon the combinations 
of node type x and node type y, this edge can be categorized 
into three classes. "+" denotes the edge sign is determined 
to be positive, " - "  denotes the edge sign is determined to 
be negative, and "7" denotes the edge sign that cannot be 
determined by the interaction of current two node types, i.e., 
the edge sign can be either positive or negative. In our three 
datasets, there are 29945, 250487 and 500309 determined 
edges (i.e., "+"  and " - " ) for Wikipedia, Slashdot and 
Epinions, respectively, each a large fraction of the total 
edges. 

Although node types have shown their effectiveness for 
explaining the edge signs in fully observed signed social 
networks, there exists a fraction of the total edges for which 
signs cannot be explained simply by node types. In this case, 
we can incorporate structural balance or social status theory 
with node types to address this issue. 

C. Incorporating structural balance or social status theory 

As we described the node types and the interactions of 
these node types in the previous subsections, we did not need 
to consider whether there is any common neighbor for a pair 
of nodes. We should, however, be aware that when common 
neighbors exist for a pair of nodes, structural balance or 
social status theory may help to explain the sign of an edge 
between them. 

In Figure 7, for instance, since N13 has both positive 
and negative outgoing edges and N 15 has both positive and 
negative incoming edges, the sign of the edge between them 
cannot be determined by the interaction of these two types. 
Since N 13 and N 15 have two common neighbors, however, 
the sign of the edge between them may be explained by ei
ther structural balance theory or social status theory. Within 
structural balance theory, we can disregard the directions of 
these two triads. From the red (dotted) triad, we can infer the 
sign of the edge between N13 and N15 to be positive based 
upon the rule that "my friend's friend is my friend". From the 
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Figure 7. Examples for incorporation of structural balance theory or social 
status theory Into the node types interaction. 

blue (dashed) triad, on the contrary, we can infer the sign of 
this edge to be negative based upon the rule that "my friend's 
enemy is my enemy". Within social status theory, since both 
the red (dotted) triad and the blue (dashed) triad indicate that 
N13 has higher status than N15, they consistently imply that 
the sign of the edge from N 13 to N 15 is negative. 

To incorporate these directed triads as features, we use the 
same approach as Leskovec et al. [18][19]. Given an edge 
from x to y, and a common neighbor z of x and y, the edge 
between x and z can have four possible configurations, i.e., 

+ - + -
x ----+ z, x ----+ Z, X f-- z, and x f-- z. Similarly, there 
are four possible signed edges between z and y. Hence we 
can obtain 16 types of triads each of which may provide 
different evidence about the sign of the edge from x to y. 

V. BAYESIAN NODE FEATURES IN PARTIALLY 

OBSERVED NETWORKS 

In real world applications, signed directed networks are 
often partially observed, i.e., several edges' signs are un
known or hidden. For example, in the Wikipedia dataset, 
we probably know that someone has voted on a candidate 
but we may not know this voter's opinion. In this case: 
we would like to infer this voter's opinion by learning 
some patterns based upon observed edges in the network. 
However, when these unobserved edges take different signs, 
both the node types and node properties may change. In this 
case, simple node features (including node types and node 
properties) may not be capable of capturing the range of 
possible unobserved signs and thus will be not reliable. 

To address this issue, we extend node features to Bayesian 
node features by considering prior knowledge about unob
served signs in partially observed signed directed networks. 

Similarly to a fully observed signed directed network, 
a partially observed signed directed network can also be 
represented as a graph G = (V, E, W), where V is the 
vertex set of size n, E is the edge set of size m, and 
W E jRnxn is the associated signed adjacency matrix. Since 
G is a directed network, W is an asymmetric matrix and can 
be represented as: 

Wij = { � 1, 
. ,  
0, 

if i trusts j 
if i distrusts j 
an edge from i to j exists, but sign is unknown 
otherwise 

(6) 
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Figure 8. The possible node of type I with different u and v. 

Wij = 0 represents no directed edge from node i to node j. 
In this section, we first introduce Bayesian node type, 

show how to calculate it based upon both observed (training) 
edges and unobserved (test) edges, and present two ways 
to encode the interaction of Bayesian node types. Next, 
we show how to calculate and represent Bayesian node 
properties. 

A. Bayesian node type 

Given any node in a partially observed network, assum
ing u denotes the number of unobserved incoming edges 
and v denotes the number of unobserved outgoing edges, 
let Pu ( +) (or Pu ( - )) represent the prior probability of 
incoming edges being positive (negative) and Pv( +) (or 

Pv ( -» represent the prior probability of outgoing edges 
being positive (negative). From these probabilities, we can 
calculate its probability distribution over node types. 

Take a node of type Nl for example (as shown in Figure 
8), if u = 0 and v = 0, its node type does not change; if 
u = 0 and v > 0, it has (Pv(+))V probability to be Nl and 

1 - (Pv(+))V probability to be N3; if u > 0 and v = 0, 
it has (Pu(+))U probability to be Ns, (Pu(-))U probability 
to be NlO, and 1 - (Pu(+))U - (Pu(-))U probability to 
be N12; if u > 0 and v > 0, it has (Pu(+))U(Pv(+))V 
probability to be Ns, (Pu(-))U(Pv(+))V probability to 
be NlO, (1 - (Pu(+))U - (Pu(-))U)(Pv(+))V probability 
to be N12, (Pu(+))u(1 - (Pv(+)V)) probability to be 
N13, (Pu(-))U(l- (Pv(+)V)) probability to be N14, and 
(1 - (Pu(+))U - (Pu(-))U) (1 - (Pv(+n) probability to 
be N15. This calculation determines a 16 dimensional vector 
which encodes the distribution of possible node types. Note 
that similar vectors can be calculated for other types of 
nodes. We do not specify the calculation for each node type 
due to the the space limit. 

To initialize Pu (+) and Pv( +) , we can also use the 
Bayesian node properties Fln( +) and Pout ( +) , i.e., Pu (+) = 

Fln( +) and Pv( +) = Pout ( +) , to claim that each unobserved 
edge obeys Bayesian node properties (i.e., local priors). 

Given an observed (training) edge connecting node x and 
node y, we can obtain two vectors Vx E ]R16 and Vy E ]R16 

by calculating their Bayesian node types. To encode the 
interaction of Bayesian node types, we can (1) simply 
concatenate these two vectors to form a 32 dimensional 
vector; or (2) calculate the Kronecker product of these two 
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Figure 9. Example of calculating the Bayesian node type interaction when 
two nodes are connected with an unobserved edge. Note that the Bayesian 
node types of NlO, Nll,and N14 should be calculated similar with Nl in 
Figure 8. 

vectors, i.e., Vx ® Vy, and form a 256 dimensional vector. 
We should be aware that the vector formed by the Kronecker 
product encodes the probability distribution of different node 
type interactions. 

Given an unobserved (test) edge connecting node x and 
node y, we should consider both possible signs as shown 
in Figure 9. Specifically, we first decompose this kind 
of interaction into two separate cases, i.e., the edge sign 
being positive and negative. Next, we calculate the Bayesian 
node types, represent their interactions (either concatenation 
vector or Kronecker product vector) of both cases. Finally, 
we calculate the linear combination of these two cases with 
respect to the prior probability of the signs (i.e., P( +) and 

P( -)) over observed edges. 

B. Bayesian node properties 

Given a node in a partially observed network, assuming 
u denotes the number of unobserved incoming edges and 
v denotes the number of unobserved outgoing edges, by 
assigning to these u + v edges different signs, the node 
properties also change. 

To capture the range of possible signs of unobserved 
edges, we should consider Bayesian node properties, i.e., 
incorporating prior information, namely the expected num
ber of incoming positive (negative) and outgoing positive 
(negative) edges, with the number of positive (negative) 
incoming edges din ( +) (din ( -)) or outgoing edges dout ( + ) 
(dout( -)) . 

Specifically, the Bayesian node properties are represented 
as following: 

Pin ( _ ) = 
din ( -) + P( -)u 

din ( +) + din ( -) + u + c 

P ( ) _ dout ( +) + P( + )v out + - () ( ) dout + + dout - + v + c 

P ( _ ) 
_ dout ( -) + P( -)v out - dout ( +) + dout ( -) + V + c

' 

(7) 

(8) 

(9) 

(10) 
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where P( +) is the prior probability of positive edges and 
P( -) is the prior probability of negative edges. 
To encode the interaction of Bayesian node properties, 

we simply concatenate two of the Bayesian node properties 
vectors to form an 8 dimensional vector. 

As in the previous section, when common neighbors exist 
for a pair of nodes, structural balance or social status theory 
may be incorporated with Bayesian node features to help 
explain the sign of an edge between them. 

VI. SUPERVISED LEARNING OF THE 

PROPOSED FEATURES 

Given a fully observed signed directed network, the node 
type interactions, extended to triads with structural balance 
or social status theory, are useful to explain the edge signs. 
Partially observed signed directed networks, however, are 
too complicated to fully conform to the rules of simple node 
type interactions. Also, as illustrated in Figure 7, if there are 
multiple common neighbors for N13 and N15, structural bal
ance theory (or social status theory) may conflict with itself. 
To address this issue, we can utilize a logistic regression to 
combine the evidence from the interaction of Bayesian node 
features and triad features. 

We now consider the features collected for the logistic 
regression. The features we utilize can be divided into three 
classes. One class comes from Bayesian node type interac
tion (32 or 256 dimensional vector); another class is based 
upon Bayesian node properties interaction (8 dimensional 
vector); the last class is triads (16 dimensional vector). 

Given a partially observed signed directed social network, 
we first use a logistic regression to fit the features of 
observed edges (training data) and then utilize the learned 
coefficients to linearly combine the evidence from each 
individual feature of unobserved edges (test data) so as to 
predict the sign. The logistic regression can be written in 
the following form 

I 
P(£ = llf) = I + exp[-(wTf + wo)] (11) 

where £ E {O, I} is the label, I represents positive edge 
while 0 represents negative edge. f E ]Rd is the feature 
vector, and [w; wo] E ]Rd+1 are the coefficients we estimate 
from the features of observed edges (training data). 

VII. EXPERIMENT 

In this section, we conduct empirical studies based upon 
Wikipedia [3], Slashdot [14][16] and Epinions [8]. We 
first construct three fully observed asymmetric adjacency 
matrices (as in Eq.(1)) based upon these three datasets. 
Next, for each adjacency matrix, we randomly remove 10% 
of edges' signs and form a partially observed network 
(as in Eq. (6)). Subsequently, we calculate Bayesian node 
features (including Bayesian node types and Bayesian node 
properties) and triad features for both observed (training) and 
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Table II 
S TEP BY STEP JUSTIFICATION RESULTS ON WIKIPEDIA, SLASHDOT, 

AND EPINIONS (ACCURACY: % AND STANDARD DEVIATION (STD): %). 

Wikipedia Slashdot Epinions 
BNTC 83.SS(±O.S6) 80.32(±O.lS) 89.6S(±O.04) 
BNTK 83.84(±O.12) 80.89(±O.O8) 88.34(±O.29) 
BNTC+BNP 87.03(±O.lS) 84.48(±O.O6) 92.96(±O.03) 
BNTK+BNP 86.98(±O.19) 84.90(±O.O9) 92.46(±O.03) 
BNTC+BNP+ Triad 87.28(±O.26) 8S.24(±O.1l) 93.61(±O.O2) 
BNTK +BNP+ Triad 87.37(±O.22) 8S.6S(±O.11) 93. 13(±O.04) 

unobserved (test) edges. Then, we estimate the parameters of 
logistic regression based upon the features of observed edges 
and make predictions based upon the features of unobserved 
edges. In our experiment, we repeat this procedure 5 times 
and report the average prediction accuracy and standard 
deviation for each approach. The baseline approaches are 
implemented with identical parameter settings as in the 
original works for fair comparisons. 

A. Step by step justification 

We examine the effectiveness of the proposed features 
by testing each component step by step. We use BNTC to 
represent encoding the interaction of Bayesian node types 
with concatenation, use BNTK to represent encoding the 
interaction of Bayesian node types with the Kronecker prod
uct, use BNP to represent the interaction of Bayesian node 
properties, and use Triad to denote triad features [18][19]. 

Table II shows the results of step by step justification 
for edge sign prediction on three datasets. We observe that 
the interaction of Bayesian node types (BNTC and BNTK) 
generally outperforms simply predicting all edges to be 
positive. This demonstrates that the interaction of Bayesian 
node types is useful to explain the edge signs in partially 
observed social networks. We also observe that encoding 
Bayesian node types with the Kronecker product achieves 
better performance than concatenation on Wikipedia and 
Slashdot, while concatenation perform slightly better on 
Epinions. 

By concatenating BNTC and BNTK with Bayesian node 
properties (BNP) features, we observe that BNTC+BNP and 
BNTK+BNP consistently outperforms BNTC and BNTK. 
This is because Bayesian node properties (BNP) provide 
more specific information about the incoming positive (neg
ative) and outgoing positive (negative) edges of nodes. 

Finally, we show that, by concatenating BNTC+BNP and 
BNTK+BNP with triad features to form BNTC+BNP+Triad 
and BNTK + BNP+ Triad, the performances are consistently 
slightly improved. This is because triad features are useful 
to explain the edge signs when common neighbors are 
available. 

The step by step justification not only examines the 
effectiveness of each component of the proposed Bayesian 
node features, but also shows that the Bayesian node features 
can incorporate structural balance or social status theory in 
the form of triad features. 
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Figure 10. The edge sign prediction accuracies of different approaches vs. minimum embeddedness. 

Table III 
EDGE SIGN PREDICTION ACCURACIES (ACCURACY: % STANDARD 

DEVIATION (STD)' %) 
Datasets Wikipedia Slashdot Epinions 

Degree features [18] 83.58(±0.60) 83.76(±0.13) 90.39(±0.2S) 
Triad features [19] 82,,46(±0.S2) 80,,42(±0.21) 90,,42(±0.13) 
Degree+triad features [18], [19] 84.87(±0.08) 84.91 (±0.02) 92.25(±0.IS) 
Longer cycles features [5] 84.04(±0.39) 83.83(±0.34) 90.64(±0.28) 
Low rank modeJi ng [to] 84.93(±0.54) 84.57(±0.46) 92.48(±0.32) 
BNTC+BNP+ Triad 87.28(±0.26) 85.24(±0.1 J) 93.61(±O.O2) 
BNTK+BNP+ Triad 87.37(±O.22) 85.65(±O.1l) 93.13(±0.04) 

B. Edge sign prediction 

In this subsection, we compare Bayesian node features 
(including Bayesian node types and Bayesian node prop
erties) plus triad features with state-of-the-art approaches, 
i.e., degree features [18], triad features [18], degree+triad 
features [18], longer cycles features [5], and low rank 
modeling [10]. Note that in our experiment we extract longer 
cycles features based upon the partially observed asymmetric 
adjacency matrix and report the best performance over order 
3, 4, and 5 for comparison. Also notice that low rank 
modeling [10] can only theoretically analyze the undirected 
signed networks; in our experiment, we adapt it and apply 
it to partially observed signed directed networks. 

In Table III, we compare BNTC+BNP+ Triad and 
BNTK+BNP+ Triad with the other five state-of-the-art 
approaches. We observe that BNTC+BNP+ Triad and 
BNTK+BNP+ Triad consistently outperform the other 
five algorithms. Note that these two variants achieve 
best accuracies of 87.37(±0.22) %, 85.65(±0. 11) %, and 
93.6 1(±0.02) %  over Wikipedia, Slashdot and Epinions, 
respectively. This is because these two variants not only can 
explain the edge signs well when common neighbors are 
not available but also can effectively explain the edge signs 
when common neighbors exist. 

In Figure 10, we compare BNTK+BNP+Triad with degree 
features, triad features, and degree+triad features at different 
levels of embeddedness (the number of common neighbors). 
In general, we observe that when the minimum embed
dedness increases, the performance of BNTK +BNP+ Triad 
increases. This is because structural balance theory and 
social status theory are incorporated into BNTK +BNP+ Triad 
in the form of triads (Triad) and are effective in explaining 
edge signs when common neighbors exist. Moreover, we 
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notice that BNTK+BNP+ Triad generally outperforms other 
methods with different levels of embeddedness. This is 
because BNTK+BNP+ Triad leverages the power of node 
type interactions as well as the power of structural balance 
or social status theory in the form of triad features (Triad). 

C. Cross-dataset evaluation 

We conduct cross-dataset evaluation with degree features, 
triad features, degree+triad features, and Bayesian node fea
tures plus triad features in the form of BNTK+BNP+Triad 
on these three datasets. The aim is to examine the gener
alization capability of each approach. In particular, given 
each type of features, we train them on one dataset (e.g., 
Wikipedia) and evaluate the edge sign prediction perfor
mance on another (e.g., Slashdot). For each pair of datasets, 
the test is conducted 5 times based upon the random selected 
test sets. We report the average accuracies of different 
approaches in Table IV. 

We observe that Bayesian node features plus triad features 
in the form of BNTK + BNP+ Triad can achieve the best per
formance on each pair of the cross-dataset evaluation. This 
illustrates that Bayesian node features plus triad features 
not only are useful on intra-dataset evaluation but also have 
good generalization capability. This is extremely helpful for 
edge sign prediction in signed networks with few training 
examples. 

VIII. CONCLUSIONS 

In this paper, we explored the underlying local node 
structures in signed networks, recognizing that there are 16 
different types of node and each type of node constrains both 
its incoming node types and its outgoing node types, i.e., 
the sign of an edge between two nodes must be consistent 
with their types. This is a highly structured alternative to 
the ordered scalar node types postulated by social status 
theory. We demonstrated that the interaction between these 
more complicated node types can explain edge signs well. 
We also showed that our approach can be extended to 
incorporate triad features whose inclusion is motivated by 
structural balance theory or social status theory. We derived 
Bayesian node features (including Bayesian node type and 
Bayesian node properties) based upon partially observed 
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Table IV 
CROSS-DATASET EVALUATION RESULTS. TRAINING IS CONDUCTED ON 

THE COLUMN DATASETS AND TESTING IS CONDUCTED ON THE ROW 

DATASETS. 

(a) Degree feature (accuracy: %) 
Wikipedia Slashdot Epinions 

Wikipedia 83.58 83.87 92.66 
Slashdot 80.34 83.76 90.79 
Epinions 79.59 81.69 90.39 

(b) Triad feature (accuracy: %) 
Wikipedia Slashdot Epinions 

Wikipedia 82.46 79.04 89.95 
Slashdot 83.18 80.42 91.05 
Epinions 81.66 79.19 90.42 

(c) Degree+Triad feature (accuracy: %) 
Wikipedia Slashdot Epinions 

Wikipedia 84.87 84.66 93.29 
Slashdot 82.93 84.91 92.90 
Epinions 81.96 83.07 92.25 

(d) BNTK+BNP+Triad (accuracy: %) 
Wikipedia Slashdot Epinions 

Wikipedia 87.37 85.21 93.53 
Slashdot 87.31 85.65 93.23 
Epinions 87.02 83.37 93.13 

signed directed network. Empirical studies based upon three 
large scale datasets, i.e., Wikipedia, Slashdot, and Epinions 
showed that the proposed Bayesian node features plus triad 
features outperform state-of-the-art algorithms on edge sign 
prediction. Moreover, we showed that Bayesian node fea
tures plus triad features are more effective than baseline 
approaches for cross-dataset edge sign predictions. 

In the future, it will be interesting to study the link rec
ommendation problem based upon Bayesian node features 
as well as other explicit topological features of signed social 
networks. 
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