
Deep Federated Anomaly Detection for Multivariate
Time Series Data

Wei Zhu1, Dongjin Song2, Yuncong Chen3, Wei Cheng3, Bo Zong3,
Takehiko Mizoguchi3, Cristian Lumezanu3, Haifeng Chen3, and Jiebo Luo1

1University of Rochester
2University of Connecticut

3NEC Labs America

Abstract—Although many anomaly detection approaches have
been developed for multivariate time series data, limited effort
has been made in federated settings in which multivariate time
series data are heterogeneously distributed among different edge
devices while data sharing is prohibited. In this paper, we inves-
tigate the problem of federated unsupervised anomaly detection
and present a Federated Exemplar-based Deep Neural Network
(Fed-ExDNN) to conduct anomaly detection for multivariate time
series data on different edge devices. Specifically, we first design
an Exemplar-based Deep Neural network (ExDNN) for learning
local time series representations based on their compatibility
with an exemplar module which consists of hidden parameters
learned to capture varieties of normal patterns on each edge
device. Next, a constrained clustering mechanism (FedCC) is
employed on the centralized server to align and aggregate the
parameters of different local exemplar modules to obtain a
unified global exemplar module. Finally, the global exemplar
module is deployed together with a shared feature encoder
to each edge device, and anomaly detection is conducted by
examining the compatibility of testing data to the exemplar
module. Fed-ExDNN captures local normal time series patterns
with ExDNN and aggregates these patterns by FedCC, and thus
can handle the heterogeneous data distributed over different
edge devices simultaneously. Thoroughly empirical studies on
six public datasets show that ExDNN and Fed-ExDNN can
outperform state-of-the-art anomaly detection algorithms and
federated learning techniques, respectively.

Index Terms—Federated Learning, Unsupervised Anomaly
Detection, Representation Learning

Anomaly detection in multivariate time series refers to
identifying abnormal status in certain time steps of the time
series data [1] [2]. Building an effective unsupervised anomaly
detection algorithm, however, is challenging since it requires
collecting and profiling as much as (normal) multivariate time
series data so as to reduce potential false positives [3]–[7].
With the rapid development of 5G networks, multivariate
time series data are increasingly collected in various types of
Internet of Things (IoT) edge devices, e.g., mobile phones,
healthcare, wearable devices, etc. However, due to privacy
concerns [8], regulations [9], and transmission load [10],
directly transferring data from edge devices to a centralized
server to train a unified anomaly detection model is usually
infeasible or prohibited [9] [11]. Consequently, there is a
huge demand to develop an anomaly detection algorithm that
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can collaboratively handle the multivariate time series data
distributed on different edge devices while preserving privacy.

For this purpose, we resort to federated learning and aim
to conduct privacy-preserving anomaly detection. Specifically,
assuming the normal status of multivariate time series data
consists of K different modes which are heterogeneously
distributed over L different edge devices, we aim to learn
a unified model that can not only preserve data privacy on
each edge device but also identify all anomalous situations
accurately. A notable challenge is that due to the environmen-
tal conditions or other external factors, the time series data
collected on each edge device may only partially (i.e., less than
K modes) cover all different modes of normal status. In this
case, simply training an anomaly detection model may involve
many false positives. Taking wearable devices as an example,
a mode can be “walking”, “sitting”, “running”, “bicycling”,
or “standing”, while an anomaly can represent “falling down”
which is unusual to happen. A notable issue with this setting is
that due to environmental conditions or other external factors,
the time series data collected on each edge device may only
partially cover the entire normal space. In other words, they
are often heterogeneously distributed among different edge
devices. For instance, an elder person tends to have activities
of “walking”, “sitting”, and “standing”, while a young person
may prefer activities of “walking”, “running”, and “bicycling”.
In this case, if we only train an anomaly detection model based
on the data collected from the elder person’s edge device,
we may falsely detect “running” and “bicycling” as anomalies
(i.e., “falling down”) since they are not considered in training.

Directly applying existing federated learning approaches
to perform unsupervised anomaly detection in multivariate
time series data often leads to inferior performance. This is
because most existing anomaly detection methods assume that
the entire normal space is covered by the training data [12],
which may not be true with the current setting; another
reason is that existing federated learning algorithms, e.g.,
Federated Averaging (FedAvg) [11], are originally designed
for supervised learning and may not be able to properly handle
the unsupervised tasks with heterogeneous data distributed
on edge devices. Simply combining federated learning and
unsupervised anomaly detection algorithms could lead to a
series of problems. One issue is that each locally trained model



may only partially cover the entire normal space; the feder-
ated learning algorithms, e.g., federated averaging operation,
could produce a global model which may collapse to certain
normal modes and even cover a certain part of the abnormal
space [13]. As a result, many anomalies could be mistreated
as normal status and vice versa. Another issue is that existing
unsupervised anomaly detection methods often rely on the
encoder-decoder framework [4] [5] and Generative Adversarial
Network (GAN) [14] [15] to extract semantic representation,
and the extra parameters brought by the decoder and generator
may result in a heavy communication cost.

To address the aforementioned issues, in this paper, we
present a Federated Exemplar-based Deep Neural Network
(Fed-ExDNN) to perform federated anomaly detection with
multivariate time series data. On the edge device side, we
specifically designed an Exemplar-based Deep Neural Net-
work (ExDNN) to perform anomaly detection. ExDNN can
simultaneously learn local time series representations based on
their compatibility with an exemplar module which consists
of hidden parameters learned to capture varieties of normal
patterns in the hidden feature space. On the server side, to
cope with the heterogeneity of time series data on different
edge devices, Fed-ExDNN employs a Federated Constrained
Clustering (FedCC) technique to align and aggregate param-
eters of different local exemplar modules. Eventually, the up-
dated global exemplar module, together with a shared feature
encoder, will be sent back to edge devices, and the anomaly
detection is conducted by measuring the compatibility of test
data (with extracted features) to the global exemplar module.

The main contributions of this paper are summarized as
follows:

• We formally investigate the problem of federated unsu-
pervised anomaly detection (FedUAD) for multivariate
time series data and develop Fed-ExDNN, which consists
of ExDNN for local anomaly detection and FedCC for
model aggregation to handle FedUAD.

• On the edge device side, we present an Exemplar-based
Deep Neural Network (ExDNN), which can simultane-
ously learn local time series representations based on
their compatibility with an exemplar module developed
to capture potential normal patterns in the hidden feature
space. On the server side, we develop FedCC to align
and aggregate different local exemplar modules. ExDNN
and FedCC work jointly to address the heterogeneous
distribution among edge devices.

• Our empirical studies on six public multivariate time
series datasets demonstrate the effectiveness of the pro-
posed ExDNN and Fed-ExDNN.

I. RELATED WORK

A. Unsupervised Anomaly Detection

Recently, deep learning-based anomaly detection methods
have shown fruitful progress compared with traditional meth-
ods, including one class SVM [16], Isolated Forest [17], etc.
In general, they can be categorized into four different types,

i.e., One-class classification-based methods, reconstruction-
based approaches, contrastive learning-based techniques, and
clustering-based methods.

For one-class classification-based methods, Deep Support
Vector Data Descriptor (SVDD) replaces the kernel used
in OCSVM [16] with a deep neural network [3]. Context
Vector Data Description (CVDD) generates multi-semantic
contexts by multi-head attention mechanism [18]. Temporal
Hierarchical One-Class (THOC) conducts multi-scale one
class learning in a hierarchical manner [19]. Reconstruction-
based approaches mainly rely on autoencoder framework to
reconstruct the input and employ the reconstruction error to
detect anomalies. For instance, LSTM Autoencoder (AE) [4]
adopts LSTM to encode and decode multivariate time series
(MTS) data. To better model inter-correlation between differ-
ent time series, Multiscale Convolutional Recurrent Encoder-
Decoder (MSCRED) is proposed to reconstruct system signa-
ture matrices by an attention-based convLSTM [5]. Memory
Augmented Autoencoder (MemAE) augments autoencoder
with an external memory [20]. BeatGAN [21] regularizes the
reconstructed data by a generative adversarial network [14].
OmniAnomaly learns robust representation with stochastic
variable connection and planar normalizing flow [22]. Un-
supervised Anomaly Detection (USAD) imposes additional
constraints on reconstruction by an additional decoder [23]. Li
et al. conduct anomaly detection with hierarchical VAE and
low dimensional embedding for anomaly detection [24]. More
recently, contrastive learning-based techniques are becoming
popular for time series anomaly detection. For instance, self-
supervised contrastive predictive coding is proposed to handle
anomaly points [25]. Cho et al. propose a masked contrastive
method by using class-wise scale factor [26]. A unified con-
trastive anomaly detection framework is proposed by [27].
Carmona et al. perform time series anomaly detection by
generating abnormal series with expertise knowledge [28].
Qiu et al. propose deterministic contrastive loss to enable
the anomaly score to be consistent with training loss [29].
Clustering-based deep neural networks are also applied to
anomaly detection. For instance, Zong et al. proposes Data
Encoder Gaussian Mixture Model (DAGMM) for anomaly de-
tection, and they conduct GMM on the feature space composed
of reconstruction score and encoding of the autoencoder.

In this paper, we formally introduce the task - Federated
Unsupervised Anomaly Detection (FedUAD). The heteroge-
neous data distribution on edge devices and data-free server-
side model aggregation brings additional challenges to existing
anomaly detection methods. We specially design Fed-ExDNN
to overcome these problems.

B. Federated Learning

Federated learning has received increasing attention re-
cently [9] [8] [30] [31]. One of the major concerns of federated
learning is the heterogeneity problem [32]–[37]. Federated
Averaging (FedAvg) is the most widely used algorithm for
federated tasks [33]. Federated Proximal (FedProx) is pro-
posed to alleviate the heterogeneity challenge [32]. Sattler et



al. [38] propose to hierarchically cluster the locally learned
models. Xie et al. [39] propose to maintain multi-global
models and assign user’s gradient to different global models.
Liang et al. [40] propose to learn local representations on each
device and an overall global model across devices. Federated
Matching Average (FedMA) learns to cluster the local models
before averaging the weights [13]. Yu et al. ( [41]) propose
FedAwS where there is only one class on each device. Fedfast
is proposed to handle a federated recommendation system [42].
FedDF conducts data-free knowledge distillation on the server
side to aggregate local models [43]. Fallah et. al. [44] applies
meta-learning [45] on client updates. However, these methods
are all proposed to handle supervised federated learning tasks.
The unsupervised setting of UAD makes the heterogeneity
problem much more challenging, and we find that the proposed
Fed-ExDNN has clear advantages over conventional federated
learning methods for FedUAD.

More recently, federated anomaly detection has drawn in-
creasing attention [46]–[50]. Nguyen et al. propose to apply
federated anomaly detection for IoT devices [47]. Federated
anomaly detection is also used to address the IoT security
attacks [51]. Liu et al. propose an on-device method for
industrial IoT anomaly detection. Zhao et al. propose a multi-
task network for federated anomaly detection [48]. Compared
to existing works, our proposed Fed-ExDNN focuses on unsu-
pervised anomaly detection and employs an effective method
to address the heterogeneity problem.

II. FEDERATED EXEMPLAR-BASED DEEP NEURAL
NETWORK

In this section, we present a Federated Exemplar-based
Deep Neural Network (Fed-ExDNN) to perform federated
unsupervised anomaly detection. Fed-ExDNN consists of
ExDNN for local anomaly detection and Federated Con-
strained Clustering (FedCC) for model aggregation.

We find that combining existing federated learning and
anomaly detection approaches to handle the task often leads to
inferior performance. This should be attributed to the fact that
most existing anomaly detection methods are developed based
on the assumption that the entire normal space is covered by
the training data [12], and this assumption does not hold when
we conduct training on edge devices with heterogeneously
distributed data, i.e., not all normal patterns can be accessed
during the training stage on each edge device. On the other
hand, existing federated learning algorithms, e.g., Federated
Averaging (FedAvg) [11], are originally designed for super-
vised classification tasks, and they may not properly aggregate
the unsupervised anomaly detection models trained on edge
devices. To this end, we present Fed-ExDNN, which consists
of a clustering-based anomaly detection method ExDNN and
a federated aggregation method FedCC to align and aggregate
different local exemplar modules.

We brief the basic training procedure as follows: assuming
there are L edge devices, the l-th local device learns a device-
specific model, which includes an embedding network f l(·; θl)
for feature encoding and an exemplar module in which a set

of K local exemplars Cl = {cl1, · · · , clK} ∈ Rd×K is learned
to capture the potential normal patterns in the hidden feature
space. The local model is trained based on the time series data
collected on the l-th local device for unsupervised anomaly
detection. The central server aggregates local models from
different devices to construct a global model. The embedding
network (for feature encoding) of the global model g(·; θ̄) is
obtained by Federated Averaging, and the global exemplar
module with K learnable exemplars U = {u1, · · · ,uK} is
obtained by aggregating and align all local exemplar modules
with the proposed FedCC. Finally, the server sends the global
model to different edge devices to update their local models.
Fed-ExDNN jointly adopts FedCC and ExDNN to enable the
global model to capture entire normal patterns even when
the data are heterogeneously distributed among edge devices.
Please refer to Fig. 1 for a detailed illustration.

A. Local Device: ExDNN
Exemplar-based Deep Neural Network (ExDNN), as a

clustering-based anomaly detection method, is naturally suit-
able for handling heterogeneous data. Compared with existing
clustering-based methods [2], [52] that adopt Gaussian Mix-
ture Model (GMM) as the clustering objective, the ExDNN
is developed based on an advanced clustering algorithm [53],
[54]. Moreover, we propose Deep Relation Preserving (DRP)
to learn the representation of multivariate time series data in
an unsupervised manner. We’d like to emphasize that ExDNN
conducts clustering and representation learning simultaneously
to mutually boost their performance for better anomaly de-
tection. The details of ExDNN are shown in Fig. 2. In the
following, the algorithm described is for one particular local
device, so we omit the superscript l for brevity.

For a specific local device with n multivariate time series
segments {Xi}ni=1 ∈ Rm×t, where m denotes the number
of time series, and t is the length of a segment, our method
learns the optimal embedding network f(·; θ) and an exemplar
module with a learnable parameter C ∈ Rd×K . In this paper,
we use LSTMs to encode temporal dynamics in the multivari-
ate time series. The exemplar module C is implemented by a
fully connected layer and is jointly trained with the embedding
network parameter θ in an end-to-end manner.

Specifically, our proposed method is motivated by Deep
Embedding Clustering [54] with the following objective:

min
θ,C

1

n

n∑
i=1

KL(pi∥qi) (1)

where KL(·∥·) is the Kullback–Leibler divergence and Eq. (1)
encourages the exemplars to be close to the training samples
on the embedding space, and each learned exemplar could
then capture a specific pattern of the normal data just like a
clustering center in K-means. Specifically, qi ∈ RK is the
cluster indicator vector for the i-th segment where qij is the
probability of assigning the i-th data to the j-th exemplar. This
probability is computed as

qij =
exp(γ1s(f(X

i), cj))∑K
k=1 exp(γ1s(f(X

i), ck))
, (2)



Fig. 1: Block diagram of the proposed Fed-ExDNN, which contains five steps for each communication round.

Fig. 2: The time series segment Xi is processed by a 4-
layer LSTM followed by a fully connected embedding layer.
The exemplars module is updated by gradient descent and is
implemented with a fully connected layer.

where s is the cosine similarity s(a,b) = aTb
∥a∥2∥b∥2

, γ1 is
a learnable scale factor, and C = {c1, · · · , cK} ∈ Rd×K

denote local exemplars. We should highlight that the local
exemplars are the same as the weights of a fully connected
layer and their privacy concern could be addressed by well-
studied approaches, e.g., differential privacy [8]. Following
[54], we raise qi to the second power and normalize it by
the size of clusters to obtain pi as

pij =
q2ij/

∑n
i′=1 qi′j∑

j′(q
2
ij′/

∑n
i′=1 qi′j′)

(3)

However, the exemplar learned by optimizing Eq. (1) may
converge to patterns with few samples and even noisy data,
and we then adopt the balanced loss to alleviate the problem

as

min
θ,C

−αT log

(
1

n

n∑
i=1

qi

)
(4)

α ∈ RK is a prior distribution over the exemplars, and this
term encourages the cluster sizes on edge devices to match
the prior [53]. We set α = 1

K 1, i.e., uniform distribution. The
effectiveness of the balancing term on handling contaminated
data is shown in our ablation studies.

Representation learning is critical for deep neural network
training, and DEC is often trained with auto-encoder ini-
tialization [54], which may lead to privacy concerns and
computational costs, especially in federated learning settings.
Furthermore, we propose Deep Relative Preserving (DRP) that
encourages the latent space to preserve the local similarity
induced by the original feature [55], [56]:

M(Xi) = min
θ

log

1 +
∑
p∈Pi

n/∈Pi

exp(γ2(sin − sip))

 (5)

where Pi is the set of nearest neighbors of the i-th ex-
ample. γ2 is a learnable scale factor. sij is shorthand for
s(f(Xi), f(Xj)). Eq. (5) encourages the similarity of positive
pairs to be larger than that of negative pairs [57]. Moreover,
to avoid the computation and storage cost of the KNN graph,
we approximate KNN by the samples within each minibatch.

We could perform anomaly detection by jointly optimizing
Eq. (1), Eq. (4), and Eq. (5) as

min
θ,C

1

n

n∑
i=1

(
KL(pi∥qi) +M(Xi)

)
−αT log

(
1

n

n∑
i=1

qi

)
,

(6)



and the anomaly score for sample X is calculated by the
negative cosine similarity between the samples and its nearest
exemplars as

Score(x) = −max
j

s(f(X), cj). (7)

However, Eq. (6) only forces the relative similarity between the
sample and its nearest exemplar to be larger than the similarity
between the sample and other exemplars [54]. After training,
we actually have a little guarantee on the numeric value of the
anomaly score. Therefore, although Eq. (6) may be effective
for clustering, it leads to sub-optimal performance for anomaly
detection in our experiments. To alleviate the problem, we
introduce an absolute term to directly optimize the numeric
value of the anomaly score, and our final objective for anomaly
detection on a local device becomes:

min
θ,C

1

n

n∑
i=1

(
KL(pi∥qi) +M(Xi)

)
−αT log

(
1

n

n∑
i=1

qi

)

+
1

n

n∑
i=1

log
(
1 + exp(−γ3(s(f(X

i), c̄i)−m)
)
.

(8)

The last term of Eq. (8) 1 is the proposed absolute score loss.
Since the max operation in Eq. (7) is non-differentiable, our
absolute score term maximizes the cosine similarity between
the i-th segment and a soft approximation of the nearest
exemplar c̄i =

∑K
j=1 qijcj , where qi is the soft indicator

vector for the i-th sample. γ3 is a learnable scale factor and
m > 0 is the margin.We adopt softplus operation to make the
proposed term have a similar scale as other terms. Since the
distribution of pairwise cosine similarity of two random high-
dimensional unit vectors approaches a zero mean Gaussian, it
is thus necessary to have s(f(Xi), c̄i) larger than a positive
margin m. We highlight that although the ExDNN in Eq.
(8) contains several hyper-parameters, most of them are fixed
during the empirical studies in this paper besides the number
of exemplars K.

After certain rounds of training on the l-th local device,
the parameters of the embedding network θl and the set of
exemplars {cl1, · · · , clK} are all uploaded to a central server.

B. Central Server: FedCC for Exemplars Aggregation

The central server aggregates the local models uploaded
from edge devices to obtain a global feature encoding network
g and a global exemplar module U = {u1, · · · ,uK} that
capture the heterogeneous data distribution on all edge devices.
The feature encoding network could be aggregated by existing
federated learning methods, e.g., federated averaging (FedAvg)
[11] and Federated Proximal (FedProx) [32]. However, due
to heterogeneous data on edge devices, the local exemplar
module, even with the same initialization, may significantly
deviate from each other to better fit the local data. Even

1Here we slightly abuse the symbol of cosine similarity and s(f(Xi), c̄i)
is calculated by the dot product between f(Xi)T and c̄ with normalized
f(Xi) and cj .

worse, due to the cost of transmission, the local training
is desired to be longer to reduce the communication load
between servers and clients. As a result, the alignment between
the updated local exemplar module and the previous global
exemplar module may not hold as the training on local devices
proceeds.

Most of the existing federated learning methods, e.g., Fe-
dAvg and FedProx, element-wisely average the local exem-
plars based on the assumption that all local exemplar modules
and the global exemplar module are still well-aligned during
the training. For supervised tasks, the alignment could be reg-
ularized by the ground truth label. For the proposed Federated
Unsupervised Anomaly Detection (FedUAD) task, however,
no label is available. Therefore, vanilla federated learning
methods will lead to suboptimal performance in practice.
Aggregating the exemplar modules by K-means seems to be
a reasonable choice [13]. However, K-means may also result
in misalignment since its objective and the representation are
decoupled, which makes it impossible to adjust the represen-
tation so as to mitigate the issue. In this paper, we propose an
innovative approach, namely Federated Constrained Clustering
(FedCC) to address the heterogeneity problem. The basic idea
is to first learn a projection function h that could align the local
exemplars to discover and enhance the alignment, and then
conduct clustering on the learned embedding space to obtain
the global exemplar module. The effectiveness of FedCC is
verified in the experiment section.

From L edge devices each with exemplar module con-
sisting of K learnable exemplars, the central server receives
a total of N = LK local exemplars which is denoted
as {c11, · · · , c1K , c21, · · · , c2K , · · · , cL1 · · · cLK}. The proposed
FedCC is formulated as:

min
ϕ,{v1,··· ,vK}

− 1

N

K∑
i=1

L∑
l=1

pT
il logqil

−1T log

(
1

N

K∑
i=1

L∑
l=1

pil

)
+

1

N

K∑
i=1

L∑
l=1

R(cli),

(9)

where ϕ denotes the parameters of the projection network h,
and {v1, · · · ,vK} are the latent cluster centers in the output
space of h. The first two terms in Eq. (9) are for clustering,
similar to the first and third terms in Eq. (8). qil are defined
similarly to Eq. (2):

qil,j =
exp(γ4 · s(h(cli),vj))∑K
k=1 exp(γ4 · s(h(cli),vk))

, (10)

and pil is defined based on qil in the same way as Eq. (3), and
γ4 is the scale factor. We further introduce the constraints R to
encourage the learned projection h to give similar embedding
for exemplars that have the same initialization (stars with same
color in Fig. 1).

R(cli) = log

1 +

L∑
m=1

K∑
j=1

exp(γ5eijs(h(c
l
i), h(c

m
j )))

 ,

(11)



TABLE I: The detailed statistics of six multivariate time series
datasets.

Dataset # train - val - test # dim (m) # Length (t)

2D Gesture 8171 - 876 - 2044 2 80
SWaT 47420 - 11198 - 33594 51 100
ECG5000 292 - 1125 - 3375 1 140
HAR Laying 4559 - 1676 - 2947 9 128
AerobicDigits 6600 - n/a - 2200 13 20
UWave 1600 - n/a - 2879 3 40

where eij = 1 if i = j and cli is K nearest neighbor of cmj , and
eij = −1 otherwise. γ5 is a learnable scale factor. Finally, the
global exemplar module {u1, · · · ,uK} can be obtained based
on the clustering indicator matrix:

uz =
1∑K

i=1

∑L
l=1 qil,z

K∑
i=1

L∑
l=1

qil,zc
l
i. (12)

After obtaining the global exemplar module and the averaged
embedding network (for feature encoding), they will be sent
back to each edge device for the next round of learning.

III. EXPERIMENTS

In this section, we verify the superiority of ExDNN and
Fed-ExDNN for anomaly detection.

A. Datasets and Evaluation Metrics

We conduct experiments on six publicly available mul-
tivariate time series datasets, including 2D Gesture [58],
ECG5000 [59], SWaT [60], HAR Laying [61], UWave [62],
and ArabicDigits [63]. The details of these datasets and
train/validation/test partitions are summarized in Table I.

For 2D Gesture and SWaT, we use a sliding window with
stride 1 to partition them. Moreover, since their training sets
only have normal data, we select a portion from the original
testing data to construct the validation set for hyperparameter
tuning. We downsample the time series of SWaT by 10
following [19]. The length of segments of AerobicDigit and
Uwave varies and we resize their segments to 20 and 40,
respectively. For 2D Gesture, ECG5000, SWaT, and HAR
Laying, we set hyperparameters based on grid search over the
validation set. We report the AUC, F1, Precision, and Recall
linked to the best F1 score on the validation set following [23].
For AerobicDigit and UWave, following the setting similar
to [3], we do not construct a validation set, and only report
average AUC by iteratively treating each class as the anomaly
case. All experiments are run three times.

B. ExDNN for Anomaly Detection

We first conduct experiments to show the effectiveness of
the proposed ExDNN for unsupervised anomaly detection with
multivariate time series (MTS) data.

1) Comparison Methods and Experimental Settings: We
compare the proposed ExDNN with seven deep learning meth-
ods, including LSTM-AutoEncoder (LSTM-AE) [4], Beat-
GAN [21], Memory Augmented AutoEncoder (MemAE) [4],
USAD [23], Deep SVDD [3], Contextual SVDD (CVDD)
[18], and Deep Autoencoding Gaussian Mixture Model
(DAGMM) [2]. Among them, LSTM AE, BeatGAN, MemAE,
and USAD are reconstruction-based methods, while Deep
SVDD and CVDD are one class-based method. DAGMM
jointly uses auto-encoder reconstruction and clustering for
anomaly detection.

All deep learning methods are implemented with the same
feature encoder shown in Fig. 2, which is composed of a 4-
layer LSTM with the hidden dimension set as 8. The decoder
for reconstruction-based methods is with the same structure
as the encoder. We fix the batch size as 128 and fixed the
learning rate set as 0.005 for all methods. We conduct an
exhaustive grid search for the deep learning methods to find
the optimal parameters for each dataset. For ExDNN, we
fix the hyperparameter as γ1 = 2, γ2 = 10, γ3 = 10,
m = 0.5, and the number of nearest neighbors in DRP as
10, unless otherwise stated. We search the number of clusters
from {8, 16, 32, 64, 128}. Since AerobicDigit and UWave do
not have a validation set, we set the number of exemplars as
32 and 64 respectively. All experiments are conducted on a
server with 4 Nvidia GTX 2080 Ti graphics cards.

2) Effectiveness of ExDNN: The anomaly detection results
on MTS datasets are shown in Table II. According to the
results, several interesting points are summarized as follows.
First, either reconstruction or one-class-based methods cannot
handle all different scenarios. By imposing additional restric-
tions on the latent space learned by auto-encoder, BeatGAN,
MemAE, and USAD could potentially boost the performance
of LSTM AE on homogeneous datasets, especially on HAR
Laying, but are of little use and even also degrade the
performance on more heterogeneous datasets, e.g., SWaT
and AerobicDigits. By contrast, Deep SVDD works much
better for homogeneous datasets, e.g. HAR Laying, but also
suffers from the under-fitting problem with a lower recall
score. CVDD could largely alleviate the under-fitting prob-
lem of SVDD through multi-context learning. Second, the
proposed ExDNN, although designed for anomaly detection
with heterogeneous normal samples, could handle the over-
fitting and under-fitting problem by tuning the number of
exemplars and generally achieves superior performance on all
datasets. ExDNN outperforms compared methods, especially
on datasets with heterogeneous normal cases. For example,
ExDNN achieves 4.58% improvements (regarding averaged
AUC) on AerobicDigit compared with the second-best method
CVDD. This is because ExDNN not only extracts superior
representations by DRP but also conducts effective deep
clustering to generate representative exemplars for anomaly
detection.

3) Ablation Studies: In this section, we conduct ablation
studies on 2D Gesture and AerobicDigit. For AerobicDigit,
only averaged AUC is reported. We first study the effectiveness



TABLE II: Anomaly detection performance on six MTS datasets. The best methods are highlighted in bold.

Dataset Metric LSTM AE BeatGAN MemAE USAD Deep SVDD CVDD DAGMM ExDNN(Ours)

2D Gesture

AUC 80.19±4.32 81.87±3.84 80.88±0.40 80.15±3.99 73.58±2.73 82.64±0.05 74.74±8.51 88.37±0.82
F1 58.57±3.59 60.81±4.05 62.77±1.14 61.58±3.36 54.42±3.83 62.54±2.47 56.06±9.12 71.13±2.31
Prec 50.28±2.05 58.10±8.94 57.84±3.85 55.84±0.73 49.98±8.83 62.88±5.16 47.54±8.69 66.96±5.74
Rec 70.66±8.15 65.83±7.05 69.05±2.86 68.79±7.37 63.38±9.15 62.48±1.25 71.82±1.47 76.40±2.39

SWaT

AUC 91.87±0.85 91.39±0.30 91.29±0.47 90.69±0.33 89.51±8.02 94.70±0.94 90.02±0.99 91.61±0.78
F1 81.89±1.99 80.65±1.70 81.52±0.52 80.25±0.48 79.86±5.55 83.34±1.63 80.07±3.50 87.34±0.61
Prec 72.56±4.63 70.15±4.25 71.35±1.42 69.35±1.28 69.19±4.78 71.71±2.39 70.15±5.71 85.10±0.72
Rec 94.44±3.00 95.31±3.16 95.19±2.40 95.26±1.05 94.46±6.95 99.51±0.15 93.28±1.64 89.71±0.60

ECG5000

AUC 95.04±0.63 94.85±0.61 94.88±1.24 93.73±0.82 90.35±5.40 97.38±0.25 89.14±0.99 98.45±1.05
F1 92.09±1.57 92.31±0.16 92.16±0.99 91.69±1.48 85.91±7.74 91.20±0.26 88.00±1.43 92.86±2.64
Prec 88.36±3.32 87.95±0.51 88.05±2.28 86.53±2.66 89.58±6.12 90.69±0.92 79.55±2.20 91.29±3.64
Rec 96.24±0.85 97.12±0.88 96.74±0.85 97.57±1.07 82.57±5.43 91.76±1.31 98.45±0.50 94.55±1.80

HAR Laying

AUC 59.73±4.76 95.30±2.97 95.20±2.38 69.98±1.94 100±0 94.60±5.90 62.82±1.92 99.99±0
F1 42.89±0.24 81.00±0.13 83.73±2.95 50.19±3.31 99.14±1.15 72.06±4.54 33.69±3.31 99.35±0.20
Prec 27.30±0.19 73.97±0.10 77.39±5.84 34.70±1.62 100±0 64.51±6.73 25.47±1.62 98.71±0.39
Rec 100±0 91.56±0.10 91.81±5.16 97.95±6.96 98.32±2.24 84.67±5.92 53.32±6.96 100±0

Aerobic Digit Avg AUC 79.70 77.27 77.67 77.80 74.21 83.12 81.52 87.70

UWave Avg AUC 84.33 86.95 85.35 86.61 70.32 81.11 73.20 88.72

TABLE III: Performance of ExDNN variants. The number of
exemplars is set as 32. The best results are highlighted in bold.

Methods 2D Gesture AerobicDigit

AUC F1 Avg AUC
ExDNN w/ AE 68.83±3.17 61.35±4.36 83.57
ExDNN w/o clus 85.96±1.69 67.11±2.04 68.57
ExDNN w/o bal 85.01±1.02 64.46±1.05 83.67
ExDNN w/o abs 83.26±1.34 63.93±2.43 85.94
ExDNN 86.31±1.47 67.34±1.98 87.70

of different components of the proposed ExDNN. The results
are shown in Table III. We denote ExDNN without the cluster
term in Eq. (8) as ExDNN w/o clus, ExDNN without the bal-
anced term in Eq. (8) as ExDNN w/o bal, and ExDNN without
the absolute term in Eq. (8) as ExDNN w/o abs. Moreover,
to validate the effectiveness of the proposed DRP for repre-
sentation, we replace DRP with a pretrained network by auto-
encoder as ExDNN w/ AE. The experiments are conducted
with 32 exemplars for 2D Gesture and AerobicDigit. Based on
the results, we could conclude that the cluster term brought
from DEC [54] is essential for the success of our method
for AerobicDigit whose normal cases are heterogeneous. The
proposed absolute term in Eq. (8) could consistently boost
the anomaly detection performance on different datasets. The
balanced term could also improve performance and stabilize
the training process. Comparing ExDNN with ExDNN w/ AE,
DRP is a better choice than the autoencoder for ExDNN.

4) Influence of the number of exemplars: We study the
influence of the number of exemplars, and we detail the results
in Table IV. The results indicate that increasing the number
of exemplars could improve the performance of ExDNN for
heterogeneous normal cases in general.

5) Contamincation Study: ExDNN is developed based on
the assumption that the training set only contains normal
data. To study the performance of ExDNN on contaminated

TABLE IV: Performance of ExDNN with different numbers
of exemplars. Best results are highlighted in bold.

K 2D Gesture AerobicDigit

AUC F1 Avg AUC
8 82.34±1.60 62.30±3.47 75.51
16 84.94±2.88 66.15±3.63 84.02
32 86.31±3.55 67.34±4.67 87.70
64 87.34±0.72 68.41±1.35 88.62
128 88.37±0.82 71.13±2.31 88.61

data, we inject different percentages of abnormal data into
the training set. We vary this percentage from 1% to 5%
and conduct experiments on HAR Laying. To validate the
effectiveness of the balanced term for handling noisy samples,
we vary the weight of the balanced term from {0, 1, 5}, and
these variants of ExDNN are denoted as ExDNN w/o bal,
ExDNN w/ bal 1, and ExDNN w/ bal 5 respectively. According
to the experiments shown in Fig. 3, the balanced term can
significantly boost the robustness of ExDNN. Although it is
better to set a large weight for the balanced term, the default
setting of ExDNN (ExDNN w/ bal 1) is already robust to
abnormal sample contamination, and is sufficient for most real-
life applications.

6) Training Time: We compare the training time of
reconstruction-based (LSTM AE), one class-based (Deep
SVDD), and clustering-based (ExDNN) deep anomaly detec-
tion methods. There is no need to conduct experiments with
other deep learning methods as they are developed based on
either LSTM AE or Deep SVDD. The results are shown in
Table VI. LSTM AE is more computational expensive than
ExDNN and Deep SVDD for the decoder process, and the
auto-encoder pertaining required by Deep SVDD will also
significantly slow down its training process. ExDNN replaces
the auto-encoder with DRP for representation learning which
is effective and brings negligible additional computation cost.



TABLE V: Federated anomaly detection performance on six MTS datasets. Best performance is highlighted in bold.

Dataset FedAvgAE FedProxAE FedAvgSVDD FedProxSVDD FedAvgEx FedProxEx FedKmsEx Fed-ExDNN

2D Gesture

AUC 80.64±0.89 81.29±1.14 70.22±4.61 77.64±4.45 82.81±1.37 82.79±0.27 83.57±2.70 85.24±1.20
F1 57.92±1.32 58.13±1.28 51.86±5.74 56.58±2.60 63.12±2.24 63.97±0.93 62.56±1.47 64.75±2.41
Prec 50.55±2.63 50.17±1.65 45.00±8.12 53.85±2.67 57.39±2.65 58.42±1.79 59.29±0.54 59.88±1.34
Rec 65.44±1.69 66.15±0.84 69.44±9.54 59.64±2.99 72.99±3.25 71.08±4.93 66.25±2.61 74.82±3.11

SWaT

AUC 90.19±0.17 90.31±0.46 91.57±2.49 90.53±5.25 86.20±2.96 88.47±1.37 84.41±1.23 89.27±1.91
F1 76.94±0.08 76.87±0.04 79.19±2.32 79.76±4.27 80.38±0.35 80.95±0.81 80.58±0.08 83.61±0.58
Prec 62.52±1.10 62.44±0.05 65.79±3.33 66.75±6.08 70.68±1.86 72.17±1.88 70.63±0.09 72.57±0.25
Rec 100±0 100±0 99.63±0.27 99.54±0.11 93.35±2.89 92.22±0.97 93.81±0.39 94.90±0.17

ECG5000

AUC 94.01±0.62 95.88±1.87 94.81±4.71 95.47±4.01 97.39±0.79 97.36±0.80 96.50±2.03 98.17±0.53
F1 89.30±0.20 90.66±2.24 91.83±4.95 92.67±4.47 92.61±1.49 92.61±1.60 91.08±4.35 93.86±0.48
Prec 82.34±0.62 84.15±4.27 87.47±9.55 88.33±9.02 93.83±2.39 93.94±2.39 92.31±2.99 93.49±0.78
Rec 97.83±1.02 98.43±0.50 97.68±2.11 98.14±1.21 91.45±1.48 91.36±1.69 89.93±5.64 94.00±0.46

HAR Laying

AUC 89.74±1.31 88.74±0.21 99.66±0.09 99.55±0.06 99.43±0.56 99.71±0.22 99.99±0.01 99.99±0.01
F1 69.52±2.15 67.63±0.56 98.35±0.54 97.38±1.33 97.39±0.16 96.95±0.47 97.87±0.15 98.99±0.08
Prec 55.13±2.70 52.80±0.57 96.77±1.05 95.09±2.37 97.51±2.30 99.41±0.59 97.30±1.75 98.08±0.27
Rec 94.23±0.19 94.04±0.37 100±0 99.81±0.19 97.39±2.61 94.60±0.37 98.51±1.49 99.91±0.09

AerobicDigit Avg AUC 63.76 65.57 66.97 68.52 67.84 70.18 72.86 79.53

UWave Avg AUC 81.74 84.06 80.27 81.43 81.17 81.59 79.65 86.77

(a) AUC (b) F1

Fig. 3: Anomaly detection performance on the contaminated
HAR Laying dataset.

TABLE VI: Running time (second) per epoch of three different
types of anomaly detection methods. Deep SVDD requires
extra epochs for auto-encoder pretraining.

Methods 2D Gesture SWAT ECG5000 HAR Laying

ExDNN 3.61 10.87 0.12 2.05
Deep SVDD 3.41 10.11 0.10 1.87
LSTM AE 5.53 17.26 0.19 3.24

C. Fed-ExDNN for Federated Anomaly Detection

We conduct experiments to validate the superiority of Fed-
ExDNN for FedUAD.

1) Comparison Methods and Experimental Settings: The
experiments are conducted on all six MTS datasets. To simu-
late federated settings, for 2D Gesture, SWaT, and ECG5000,
we sequentially partition the data into L different parts and
assign them to L different edge devices. For HAR Laying, we
assign the samples from each subject to an edge device and
discard samples of two random activities for each subject. For
AerobicDigit and UWave, the training set on each edge device
is constructed by randomly selecting 900 and 300 samples
from 3 different classes.

We implement several federated anomaly detection base-

lines. We aggregate the local models trained by LSTM AE
(Deep SVDD) by Federated Average (FedAvg) and Federated
Proximal (FedProx) as FedAvgAE (FedAvgSVDD) and Fed-
ProxAE (FedProxSVDD), respectively. Moreover, to justify
the motivation of FedCC, we propose several variants of
ExDNN as follows: we apply FedAvg and FedProx on the
proposed ExDNN as FedAvgEx and FedProxEx, respectively;
we also adopt Kmeans to aggregate the exemplars as a direct
counterpart for FedCC termed as FedKmeans. For FedCC
and FedKmeans, we adopt FedAvg to aggregate the feature
encoder network. The hyperparameters of ExDNN for local
training are described in the previous section and we search
γ4 and γ5 from {1, 5, 10} for FedCC. For FedProx, we
search hyperparameters from {10−4, 10−3, 10−2, 10−1}. We
conduct federated learning for 5 communication rounds which
is sufficient for the performance of all federated anomaly
detection methods to converge. We implement the network for
FedCC with a three-layer multi-layer perceptron with ReLU
as an activation function. The batch size for FedCC is set as
256 and the learning rate is 0.005. We initialize the global
exemplars with kmeans++ and train FedCC for 500 steps. All
methods are implemented in Pysyft [64] and Pytorch [65]

2) Results: The results of FedUAD are shown in Table
V. According to the results, overall, the variants of Fed-
ExDNN outperform federated anomaly detection baselines.
This should be attributed to the fact that ExDNN explicitly
takes the heterogeneous data on edge devices into consid-
eration. Moreover, FedKmsEx and Fed-ExDNN outperform
FedAvgEx and FedProxEx, since FedKmsEx and Fed-ExDNN
could handle the deviation of exemplars. Finally, the proposed
Fed-ExDNN performs better than other variants of Federated
ExDNN since FedCC can simultaneously learn to align and
aggregate local exemplars. Fig. 4 shows the federated learning
results for each communication round, and we could conclude
that the proposed Fed-ExDNN consistently outperforms its
counterparts.



(a) AerobicDigit 3 (b) AerobicDigit 6

(c) Uwave 4 (d) Uwave 5

Fig. 4: We show the federated learning results on AerobicDigit
and Uwave datasets with different communication rounds.

IV. CONCLUSIONS

In this paper, we developed the Federated Exemplar-based
Deep Neural Network (Fed-ExDNN) to perform federated
anomaly detection with multivariate time series data. We first
investigated the problem of federated unsupervised anomaly
detection with multivariate time series data. Then, we devel-
oped an Exemplar-based Deep Neural Network (ExDNN) to
learn local time series representations based on their compat-
ibility with an exemplar module that can capture varieties of
normal patterns. Meanwhile, we also introduced a constrained
clustering mechanism to align and aggregate the parameters
of local exemplar modules to obtain a unified global exemplar
module. Finally, the updated embedding network (for feature
encoding) along with the global exemplar module is sent back
to edge devices and the anomaly detection is conducted by
comparing to those learned global exemplars.
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