
Interpreting Convolutional Sequence Model by Learning Local
Prototypes with Adaptation Regularization

Jingchao Ni,1 Zhengzhang Chen,1 Wei Cheng,1 Bo Zong,2 Dongjin Song,3
Yanchi Liu,1 Xuchao Zhang,1 Haifeng Chen1

1NEC Laboratories America, 2Salesforce, 3University of Connecticut
1{jni, zchen, weicheng, yanchi, xuczhang, haifeng}@nec-labs.com, 2lerry.z@gmail.com, 3dongjin.song@uconn.edu

ABSTRACT

In many high-stakes applications of machine learning models, out-
putting only predictions or providing statistical confidence is usu-
ally insufficient to gain trust from end users, who often prefer a
transparent reasoning paradigm. Despite the recent encouraging
developments on deep networks for sequential data modeling, due
to the highly recursive functions, the underlying rationales of their
predictions are difficult to explain. Thus, in this paper, we aim to
develop a sequence modeling approach that explains its own predic-
tions by breaking input sequences down into evidencing segments
(i.e., sub-sequences) in its reasoning. To this end, we build our model
upon convolutional neural networks, which, in their vanilla forms,
associates local receptive fields with outputs in an obscure manner.
To unveil it, we resort to case-based reasoning, and design prototype
modules whose units (i.e., prototypes) resemble exemplar segments
in the problem domain. Each prediction is obtained by combin-
ing the comparisons between the prototypes and the segments of
an input. To enhance interpretability, we propose a training ob-
jective that delicately adapts the distribution of prototypes to the
data distribution in latent spaces, and design an algorithm to map
prototypes to human-understandable segments. Through exten-
sive experiments in a variety of domains, we demonstrate that our
model can achieve high interpretability generally, together with a
competitive accuracy to the state-of-the-art approaches.

CCS CONCEPTS

• Computing methodologies→ Neural networks.

KEYWORDS

Deep learning; Sequence modeling; Interpretation

ACM Reference Format:

Jingchao Ni,1 Zhengzhang Chen,1 Wei Cheng,1 Bo Zong,2 Dongjin Song,3,
Yanchi Liu,1 Xuchao Zhang,1 Haifeng Chen1. 2021. Interpreting Convo-
lutional Sequence Model by Learning Local Prototypes with Adaptation
Regularization. In Proceedings of the 30th ACM International Conference
on Information and Knowledge Management (CIKM ’21), November 1–5,
2021, Virtual Event, QLD, Australia. ACM, New York, NY, USA, 10 pages.
https://doi.org/10.1145/3459637.3482355

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
CIKM ’21, November 1–5, 2021, Virtual Event, QLD, Australia
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8446-9/21/11. . . $15.00
https://doi.org/10.1145/3459637.3482355

1 INTRODUCTION

Sequential data are prevalent in a variety of real-life applications, in-
cluding protein sequences [12], electronic health records (EHR) [11],
and event logs of marketing campaigns [50]. Recent rapid develop-
ments on deep learning have produced many complicated models
that achieve encouragingly precise predictions on sequences, such
as LSTM [25], WaveNet [41], BERT [13], XLNet [51], and GPT-3 [7].
As these models penetrate critical domains, e.g., medicine, crimi-
nal justice systems, and financial markets, the inability of humans
to comprehend these models is becoming a concern [8]. In many
scenarios, outputting only predictions or statistical confidence is
insufficient for one to assess trust, and decide whether to take any
actions or not. As such, there have been immense interests in de-
signing transparent and intelligible machine learning systems on
sequence modeling [4, 11, 29].

Recently, the growing demands for interpretability have spurred
on an explosion of work on explainable sequence modeling, where
a second (post-hoc) model is often created to explain the first black-
box model [9, 29, 38, 44, 47]. For example, Karpathy et al. [29]
proposed an approach to visualize the cell activation for illuminat-
ing the long-range dependencies learned by LSTMs. Ribeiro et al.
[44] enforced if-then rules that anchor several segments of the input
to justify its predicted output. In contrast, self-explaining models
with built-in interpretability have received less attention [35]. As
discussed in [45], since the reasoning process of a model is indepen-
dent to the post-hoc explanations, the inferred explanations may
not faithfully reflect the reasoning processes. Thus, one desired way
forward is to design models with intrinsic interpretability during
learning for further understanding of the complicated models.

In this work, we are interested in deep models on sequences
that can interpret their own reasoning processes. In particular, we
seek to define a form of interpretability in sequence processing that
relies on local segments (or sub-sequences1). This is because not
all information in a sequence are useful, and short segments can fa-
cilitate presenting explanation in a succinct form. Such a reasoning
mechanism also imitates the way that human process sequences:
given a long sequence to be classified, it is intuitive to locate a few
interesting areas and compare them with exemplar segments in
different classes. For example, physicians may compare irregular
shapes of suspected segments in electrocardiography (ECG) signals
with their past observations for diagnosing Arrhythmia [27].

For a long time, sequence modeling is synonymous with recur-
rent networks [19]. Whereas recent results indicate that convo-
lutional architectures can outperform recurrent networks across
wide tasks, while demonstrating longer effective memory [3]. One

1In this work, we use segments and sub-sequences interchangeably.

https://doi.org/10.1145/3459637.3482355
https://doi.org/10.1145/3459637.3482355

uniqueness of convolution based sequence models lies in their ca-
pability in using filters to locate receptive fields of different sizes,
and temporally associating important local patterns with outputs.
Such a paradigm aligns closely with our desired interpretability via
discovering explainable segments, but the underlying rationale of
its reasoning procedure is obscure up till now. It is still challenging
to uncover this black-box model and transform its inner-workings
into a human-understandable manner.

To address this problem, we resort to case-based reasoning [31],
and draw conclusions for a new sample by comparing it with a
few prototypes (i.e., typical cases) in the problem domain. Recently,
prototype learning has been successfully leveraged for interpret-
ing image classification [10, 22, 32], yet it is underdeveloped for
interpreting the predictions on sequential data. Until very recently,
there is one method incorporating prototype learning into LSTM
for explaining sequence classification [36]. However, the recurrent
structure restricts its interpretation to be based on prototypes that
represent entire sequences, rather than local segments. Although a
beam search based algorithm was proposed to remove irrelevant
tokens, the method does not guarantee to generate short segments
since it tends to preserve as much information as in the entire
sequences. Hence, a more flexible method that ensures succinct,
meaningful, and resolution-controllable segments, is in demand.

In this work, we combine sequence convolutional network with
prototype learning, and propose a new model SCNpro, on sequen-
tial data. Building upon convolutional architectures, SCNpro exerts
filters to learn from the set of training sequences a limited number
of prototypical segments, whose resolution (i.e., size) is fully con-
trollable by tuning the filter sizes. The controllable resolution does
not only ensure short segments, but also enable learning prototypes
that reflect experts’ intuition and knowledge in a domain. SCNpro
learns prototypical segments purely by stochastic gradient descent,
without trying out lots of combinations of pre-defined candidates.
It learns an internal notion of similarity, which is aware of the
lengths of segments for fair comparisons. Prediction on a new se-
quence is made based on a weighted combination of the similarities
between its segments and the inferred prototypes. To ensure mean-
ingful prototypes, we design a new learning objective from the
perspective of minimizing distribution discrepancy. It incorporates
a regularization derived from maximum mean discrepancy (MMD)
statistic [21] for adapting the distribution of prototypes to best fit
the distribution of the training data. The main contributions of this
work are summarized as follows.

• We propose a novel convolutional model on sequences, SC-
Npro, with inherent interpretability, which learns local and
resolution-controllable prototypes for explaining its own
reasoning processes.
• We design an effective learning objective from the perspec-
tive of distribution adaptation and a corresponding algo-
rithm for learning prototypes that are both meaningful and
understandable. The entire model is end-to-end trainable.
• We conduct comprehensive experiments on datasets across
various domains, including customer reviews in e-commerce,
ECG signals in healthcare, and protein sequences in biology.
The results demonstrate that the predictions of SCNpro are
both accurate and intuitively interpretable.

The rest of the paper is organized as follows. Sec. 2 reviews re-
lated work, Sec. 3 introduces SCNpro architecture, the optimization
problem, and our training strategy. Sec. 4 discusses the experimental
results, and Sec. 5 concludes the paper.

2 RELATEDWORK

To our best knowledge, this is the first work to investigate the
reasoning processes of convolutional sequence models through an
inherent segment-based interpretability. Existing interpretable se-
quence models are mostly designed on recurrent networks [1, 11, 29,
38, 39]. However, recent studies indicate that convolutional models
can achieve state-of-the-art performance in numerous applications,
including audio synthesis [41], machine translation [16, 17], and
medical signal classification [27]. More recent empirical evaluations
even found wider tasks where convolutional models outperform
recurrent variants [3]. Despite the superior performance, the under-
lying mechanism of convolutional models remains more obscure
than recurrent networks due to fewer interpretable variants in
literature, and our work seeks to fill the gap.

Our work relates to many post-hoc explanation approaches on
sequences, which aim to fit explanations to a model’s predictions.
For instance, Karpathy et al. [29] visualized the cell activation for
illuminating the long-range dependencies learned by LSTMs. Stro-
belt et al. [47] developed a visual analysis tool for understanding
the hidden state dynamics of LSTMs. Some approaches decompose
the predictions of a sequence into measurable contributions based
on tokens [1, 39], segments [38], hierarchical clusters [46], and ac-
count for the interactions between these components [26]. Another
approach [44] enforces if-then rules that anchor several segments
of the input to justify its predicted output. Knowledge distillation
[24] has also been adapted for interpretation [9, 43]. The idea is to
approximate the predictions of a more complicated model by a sim-
pler yet interpretable model. As discussed before, these approaches
only fit explanations to observed predictions, but don’t unveil the
actual reasoning processes underlying the computation, thus may
not provide results that are as faithful as those from the built-in
interpretation approaches [45].

Attention mechanism is one option for building models with in-
trinsic interpretatbility [2], such as RETAIN (for EHR data) [11] and
some large pre-trained language models [7, 13, 51]. Although these
methods can highlight some pertinent parts to the models’ predic-
tions, attention cannot represent class-wise patterns that explicitly
link inputs to outputs, and its usefulness depends on the types
of explanations to seek [49]. In contrast, SCNpro has a transpar-
ent decision-making process via learning prototypes to summarize
different classes, and is a general model for any sequential data.

Prototype learning was firstly combined with image classifiers
for explainability [10, 22, 32]. Subsequently, it was used to explain
time series classification by autoencoders [15], and sequence clas-
sification by LSTMs [36], which may be the most relevant works.
However, as discussed in Sec. 1, using either the bottleneck features
of autoencoders or the last hidden states of LSTMs will confine the
internal comparison to be among entire sequences. This inevitably
results in prototypes that are learned to represent sequences, rather
than local segments. Although [36] introduced a beam search based
algorithm to shrink prototypical sequences, it tends to remove

!(#) !(%) …!(') !(() !())

…*(#) *(%) *()+%)

…*,(#) *′(%) *′()+')

.(/#,⋅)

.(/%,⋅)

.(/2,⋅)
…

.(/#, ,⋅)

….(/%
, ,⋅)

.(/2, ,⋅)

3#,# 3#,% 3#,)+%…
3%,# 3%,% 3%,)+%…
32,# 32,% 32,)+%…
3#,#, …

…
…

… … …

… … …

M
ax-pooling

M
ax-pooling

3#
3%

32

3#,%, 3#,)+',

3%,#, 3%,%, 3%,)+',

32,#, 32,%, 32,)+',

3#,

3%,

32,

Fully connected netw
ork

…

…

Softm
ax

45(6)

(a) (b)

!(#) !(%) !(') !(() !(7) !(8) !(9) !(:) !(;)

*(#) *(%) *(')

Convolutional layer Prototype layer Output layer

Segment feat.
(filter size 3)

Segment feat.
(filter size 4)

Pairwise comparison

Pairwise comparison

Sliding filter <%(=)

Sliding filter <#(=)

Hidden layer

Hidden layer

Segment feature

Figure 1: An illustration of (a) SCNpro architecture, with two filter sizes {3, 4} and two prototype modules, where 𝜅 (·, ·) is a
kernel function; (b) deep convolutionwith filter size 3, where the highlighted receptive field is the segment that z

(1)
represents.

marginal tokens as limited by its sequence-level comparisons, and
has no resolution-control. Due to its large searching space of sub-
sequences, this beam search algorithm also has a complexity infea-
sible for long sequences such as time series. In contrast, SCNpro
integrates fairly fine-grained comparison between segments, learns
concise prototypes, and is efficient by using filters for searching
segments.

3 OUR PROPOSED MODEL

In this section, we introduce the framework of SCNpro, including
its architecture, optimization problem, and training process.

Firstly, a word about some notations. LetD = {((x(𝑡)
𝑖
)𝑇
𝑡=1, 𝑦𝑖)}

𝑛
𝑖=1

be a labeled sequence dataset, where 𝑇 is the length of a sequence
(short sequences are zero-padded to length𝑇), 𝑛 is the total number
of samples, x(𝑡)

𝑖
∈ R𝑑×1 is the input vector at time step 𝑡 of the 𝑖-th

sequence, 𝑑 is its dimensionality, and 𝑦𝑖 ∈ {1, ..., 𝑐} indicates the
label of the 𝑖-th sequence.

Our goal is to learn a number of prototypes that represent some
segments in the training sequences, such that when a new sequence
is to be classified, its segments are compared with the learned
prototypes, and the resulted similarity scores are combined and
referred for determining its class. In the meantime, the prediction
is explained by highlighting the most similar prototypes.

3.1 Model Architecture

In this section, we present a layer-by-layer description of SCNpro.
Fig. 1(a) illustrates the overall architecture, which consists of a
convolutional layer, a prototype layer, and an output layer.

3.1.1 Convolutional Layer. Given an input sequence (x(𝑡))𝑇
𝑡=1 (the

subscript 𝑖 is omitted for simplicity), we use convolution as away for
sampling segments. The convolutional layer involves a filterW ∈
R𝑑×𝑤 , where𝑤 is the filter size. The filter operates on a window of
𝑤 time steps to sample a segment and produce a new feature. More
formally, let x(𝑡 :𝑡+𝑤−1) be a segment corresponding to a length-𝑤
window starting at 𝑡 and ending at 𝑡 +𝑤 −1, i.e., [x(𝑡) , ..., x(𝑡+𝑤−1)],
where [·, ·] represents the concatenation operator. A new feature
𝑧 (𝑡) is then generated from x

(𝑡 :𝑡+𝑤−1) ∈ R𝑑×𝑤 by

𝑧 (𝑡) = 𝑓 (W ∗ x(𝑡 :𝑡+𝑤−1) + 𝑏) (1)

where 𝑏 is a bias, 𝑓 (·) is a non-linear activation function, and the ∗
operator provides the sum of an element-wise multiplication.

Generalizing Eq. (1) from a single filter to ℎ (ℎ ≥ 1) length-𝑤
filters, a vectorial feature z(𝑡) ∈ Rℎ×1 can be obtained for repre-
senting the segment x(𝑡 :𝑡+𝑤−1) [23].

The sampling is performed by sliding the filter with stride 1 over
each length-𝑤 window of the input sequence, x(1:𝑤) , x(2:𝑤+1) , ...,
x
(𝑇−𝑤+1:𝑇) , to produce a feature map [z(1) , ..., z(𝑇−𝑤+1)].
The ordinary convolutional neural networks typically exert a

row-wise max-pooling,max ([z(1) , ..., z(𝑇−𝑤+1)]), to extract salient
features for downstream tasks [30]. Despite its widespread use,
this pooling has masked out the individual meaning of z(𝑡) , thus
hinders the use of segments for explanations. In light of this, we
design SCNpro to preserve the feature map without pooling, so
that segment feature z(𝑡) can be compared with prototypes in latent
spaces.

Furthermore, it is beneficial to use multiple filters with different
sizes of 𝑤 to take different resolutions of segments into account,
which means a more comprehensive cover of local information in
the input [30]. For instance, in Fig. 1(a), the leftmost part illustrates
two filter sizes with𝑤 = 3 and𝑤 = 4, respectively.

3.1.2 Prototype Layer. Suppose there are𝑔 different filter sizes (e.g.,
𝑔 = 2 in Fig. 1(a)), the prototype layer contains 𝑔 different modules.
Eachmodule associates with one filter size. The reason for designing
separate modules is to accommodate the non-comparable latent
spaces that may be generated by different filter sizes. For example,
different sizes may have different output channels (i.e., different ℎ),
which generate latent features z(𝑡) of different dimensionalities.

In the following, for clarity, we introduce our model architecture
using one filter size𝑤 . Extension to multiple filter sizes is similar
since they are parallel.

For a particular filter size, its associated module stores a set of
𝑘 prototype vectors P = {p𝑗 }𝑘𝑗=1, which are model parameters to
be learned. Each prototype p𝑗 has the same dimensionality as the
segment feature z(𝑡) . We allocate a pre-determined number of pro-
totypes for each class. This ensures every class will be represented
by some prototypes, and no class will be left out. Let P𝑟 ⊆ P be
the subset of prototypes that are allocated to class 𝑟 (1 ≤ 𝑟 ≤ 𝑐), its
prototypes are supposed to represent the most pertinent segments
for distinguishing the sequences of class 𝑟 from others.

This layer computes a Gaussian kernel between each prototype
p𝑗 (1 ≤ 𝑗 ≤ 𝑘) and each segment feature z(𝑡) (1 ≤ 𝑡 ≤ 𝑇 −𝑤 + 1)
to evaluate their proximity

𝑠 𝑗,𝑡 = 𝜅 (p𝑗 , z
(𝑡)) = 𝑒

−∥p𝑗−z(𝑡) ∥22 (2)

where 𝑠 𝑗,𝑡 represents a similarity score that measures the proximity,
which ranges from 0 to 1. In Eq. (2), we empirically set bandwidth
as 1 for its effectiveness and simplicity.

For each prototype p𝑗 , after calculating 𝑠 𝑗,1, ..., 𝑠 𝑗,(𝑇−𝑤+1) for all
segment feature z(𝑡) ’s, we perform a max-pooling

𝑠 𝑗 = max ({𝑠 𝑗,1, ..., 𝑠 𝑗,(𝑇−𝑤+1) }) (3)

to obtain a score 𝑠 𝑗 . The purpose of using max-pooling is to capture
the occurrence of p𝑗 in any segment of the input sequence. If
𝑠 𝑗 is large, then there exists a segment feature z(𝑡) very close to
prototype p𝑗 in the latent space. This in turn means a segment in
the input sequence resembles the structure that p𝑗 represents.

With the computed similarity scores 𝑠 𝑗 (1 ≤ 𝑗 ≤ 𝑘) for all 𝑘
prototypes, we concatenate them to form a similarity vector s ∈
R𝑘×1, which is then fed to the output layer for target prediction. It
is noteworthy that each entry of s represents how likely a particular
prototype appears in the input sequence. Hence, using s facilitates
revealing relevant prototypes that interprets predictions.
Remark. Our architecture is different from other prototype learn-
ing based methods on sequences [15, 36] in essence by characteriz-
ing different prototype modules for accommodating different filter
sizes, and integrating the max pooling operation for capturing the
occurrence of prototypical segments in sequences.

3.1.3 Output Layer. The output layer contains a fully connected
network that computes the logits a = Ws, whereW ∈ R𝑐×𝑘 is the
weight matrix, and 𝑐 is the number of unique labels.

To improve interpretability, we omit the bias in this layer, and
add a constraint that W is non-negative. As such,𝑊𝑟 𝑗 explains the
contribution of similarity score 𝑠 𝑗 to class 𝑟 . To account for the
allocated prototypes in different classes, we initialize W such that
𝑊𝑟 𝑗 = 1 if p𝑗 is assigned to class 𝑟 , and𝑊𝑟 𝑗 = 0 otherwise. This
initialization substantially speeds up convergence in practice.

Additionally, for classification task, a softmax layer is added to
compute the predicted probability

𝑃𝑟 (𝑦 |x(1) , ..., x(𝑇)) = softmax(a) (4)

Then, for every input sequence, we can draw its label from the
categorical distribution Categorical(𝑃𝑟 (𝑦 |x(1) , ..., x(𝑇))).

Similarly, for multi-class classification, we can model the prob-
ability in Eq. (4) by sigmoid(a), and draw labels from a Bernoulli
distribution for every class independently.

3.1.4 Discussion on Receptive Fields. It is straightforward to stack
multiple convolutional layers per filter size in Fig. 1(a) to build a
deeper architecture. By doing so, each segment feature z

(𝑡) will
correspond to a lager receptive field, hence represent a longer seg-
ment.

For example, Fig. 1(b) illustrates a three-layer architecture with
filter size 𝑤 = 3. The size of the receptive field for z(𝑡) at the
third layer is 7, which can be calculated by 𝑙 (𝑤 − 1) + 1, where 𝑙 is
the number of layers. Therefore, each segment feature z(𝑡) maps

to a segment x(𝑡 :𝑡+𝑙 (𝑤−1)) , and correspondingly, SCNpro learns
prototypical segments of length 𝑙 (𝑤 − 1) + 1.

In applications where long segments are preferred (e.g., audio
analysis), dilated convolution can be employed [41]. Dilated con-
volution enables exponential receptive field growth with network
depth, thus generates very large receptive fields with a few layers
and a small filter size [3]. In this work, we focus on short segments,
and leave the evaluation of dilated convolution in the future work.

3.2 The Optimization Problem

The optimization problem of SCNpro should reflect the needs for
both accuracy and interpretability. For accuracy, we minimize the
negative log-likelihood estimation over the training dataset

ℓ𝑐 = −
𝑛∑
𝑖=1

log (𝑃𝑟𝜽 (𝑦𝑖 |x
(1)
𝑖

, ..., x
(𝑇)
𝑖
)) (5)

where 𝜽 represents the set of all trainable parameters, including
those of the neural networks, and the set of all prototypes P.

In particular, for the categorical distribution based on Eq. (4), the
above likelihood in Eq. (5) is equivalent to the cross-entropy loss
for penalizing misclassifications. For Bernoulli distribution, Eq. (5)
is equivalent to the binary cross-entropy loss over all classes.

To enhance interpretability, we propose to manipulate the distri-
bution of prototypes in the latent spaces such that they are trained
to adapt to the distribution of the segment samples in the data.
Suppose the distributions of the segment features and prototypes
are 𝑄𝑧 and 𝑄𝑝 , respectively. Similar to domain adaptation [33], we
are interested in evaluating the difference between 𝑄𝑧 and 𝑄𝑝 . In
this work, we investigate the feasibility of employing the empiri-
cal estimation of Maximum Mean Discrepancy (MMD) [21] as the
measurement of difference. Formally, MMD defines a discrepancy

𝐷H (𝑄𝑧 , 𝑄𝑝) ≜ sup
𝑓 ∈H

(
E𝑍∼𝑄𝑧

[𝑓 (𝑍)] − E𝑃∼𝑄𝑝
[𝑓 (𝑃)]

)
(6)

where H is a class of functions. When H is a reproducing ker-
nel Hilbert space (RKHS), Eq. (6) can be expressed as the distance
between the mean embeddings of the 𝑄𝑧 and 𝑄𝑝 : 𝐷H (𝑄𝑧 , 𝑄𝑝) =
| |𝜇𝑄𝑧

− 𝜇𝑄𝑝
| |2H . The main theoretical result is that 𝑄𝑧 is indistin-

guishable from 𝑄𝑝 if and only if 𝐷H (𝑄𝑧 , 𝑄𝑝) = 0 [21].
In practice, given all segment samples {z(1)

𝑖
, ...z

(𝑇−𝑤+1)
𝑖

}𝑛
𝑖=1 and

prototypes {p1, ..., p𝑘 }, we can estimate the difference between 𝑄𝑧

and 𝑄𝑝 using MMD by the square distance between the empirical
kernel mean embeddings as

�̂�H (𝑄𝑧 ,𝑄𝑝) =
1

𝑛2 (𝑇 − 𝑤 + 1)2
𝑛∑

𝑖,𝑖′=1

𝑇−𝑤+1∑
𝑡,𝑡′=1

𝜅 (z(𝑡)
𝑖

, z
(𝑡′)
𝑖′)

− 2
𝑛𝑘 (𝑇 − 𝑤 + 1)

𝑛∑
𝑖=1

𝑇−𝑤+1∑
𝑡=1

𝑘∑
𝑗=1

𝜅 (z(𝑡)
𝑖

, p𝑗) +
1
𝑘2

𝑘∑
𝑗,𝑗′=1

𝜅 (p𝑗 , p𝑗′)

(7)

where 𝜅 (·, ·) is the kernel function associated with the RKHS. It is
noteworthy that our goal is to use MMD to regularize the learn-
ing of prototypes, such that the learned prototypes can capture
the distribution of segments in the data. From the regularization
perspective, the first term in Eq. (7) is constant w.r.t. {p𝑖 }𝑘𝑖=1. Thus
in the next, we focus on the last two terms in Eq. (7), and derive
regularizers for improving the interpretability.

3.2.1 Adaptation Regularized Prototype Learning. For the 𝑖-th se-
quence, the second term in Eq. (7) encourages a high proximity for
every segment-prototype pair via kernel embeddings. This regular-
ization is too strict to interpret, because practically not all segments
of a sequence are important for its prediction. Instead, it is suffi-
cient for a sequence to have at least one distinguishable segment
for determining its label. To reflect this fact, we relax this term by

𝑛∑
𝑖=1

𝑇−𝑤+1∑
𝑡=1

𝑘∑
𝑗=1

𝜅 (z(𝑡)
𝑖

, p𝑗) ⇒
𝑛∑
𝑖=1

max
1≤𝑡≤(𝑇−𝑤+1)

max
p𝑗 ∈P𝑦𝑖

𝜅 (z(𝑡)
𝑖

, p𝑗) (8)

where P𝑦𝑖 is the subset of prototypes that are allocated to class 𝑦𝑖 ,
i.e., the corresponding class of the 𝑖-th sample. Recall in Sec. 3.1.2,
every class has been allocated some prototypes.

Eq. (8) only evaluates the segment-prototype pair with the maxi-
mal kernel proximity, implying at least one explainable segment for
each sequence. In light of prototype learning, Eq. (8) encourages
every prototype to be trained to locate in a cluster of similar seg-
ments, such that it represents a segment pattern for distinguishing
its class from others. Note P𝑦𝑖 ensures a segment is only paired
with a prototype of its own class. This constraint circumvents the
dilemma of clustering prototypes and segments with mixed classes.

Moreover, to have a physical meaning, each prototype should
resemble a real segment. To this end, we decompose the second
term in Eq. (7) into two terms by dividing its coefficient 2. One
of the terms has been relaxed by Eq. (8). For another, let Z =

{z(1)
𝑖

, ...z
(𝑇−𝑤+1)
𝑖

}𝑛
𝑖=1 be the set of all segment features, we perform

the following relaxed transformation
𝑘∑
𝑗=1

𝑛∑
𝑖=1

𝑇−𝑤+1∑
𝑡=1

𝜅 (p𝑗 , z
(𝑡)
𝑖
) =

𝑘∑
𝑗=1

∑
z𝑖 ∈Z

𝜅 (p𝑗 , z
(𝑡)
𝑖
) ⇒

𝑘∑
𝑗=1

max
z
(𝑡)
𝑖
∈Z𝑗

𝜅 (p𝑗 , z
(𝑡)
𝑖
)

(9)
where Z𝑗 ⊆ Z is a subset that encompasses segment features
sampled from sequences belonging to the same class as p𝑗 .

For each prototype, Eq. (9) evaluates the maximal proximity to
nearby segments. Thus, optimizing Eq. (9) will push each prototype
toward its closest segment, whereby associating it with the meaning
of that real segment. Similar to Eq. (8), here only segments of the
prototype’s own class, i.e., Z𝑗 , are included. This is for avoiding
misclassified association.

Putting Eq. (8) and Eq. (9) together with the third term in Eq. (7),
we obtain a loss function for regularizing prototype learning

ℓ𝑑 = − 1
𝑛

𝑛∑
𝑖=1

max
1≤𝑡≤(𝑇−𝑤+1)

max
p𝑗 ∈P𝑦𝑖

𝜅 (z(𝑡)
𝑖

, p𝑗)

− 1
𝑘

𝑘∑
𝑗=1

max
z
(𝑡)
𝑖
∈Z𝑗

𝜅 (p𝑗 , z
(𝑡)
𝑖
) + 1

𝑘2

𝑘∑
𝑗,𝑗′=1

𝜅 (p𝑗 , p𝑗′)
(10)

where the third term penalizes the proximity between every pair of
prototypes, thus encourages diversity. This is useful for reducing
duplicate prototypes, facilitating efficient use of parameters, and
improving the generalization power of the model.

3.2.2 The Objective Function. Now, we can integrate the log likeli-
hood in Eq (5) and the relaxed MMD regularization in Eq. (10) into
a unified loss function

ℓ (D;𝜽) = ℓ𝑐 +
𝑔∑
𝑣=1

ℓ
(𝑣)
𝑑

(11)

where the adaptation regularization ℓ𝑑 is applied for all prototype
modules, corresponding to 𝑔 different filter sizes.

In terms of the kernel, there could be multiple choices, such as
Gaussian kernel, inverse multi-quadratics kernel, etc. In this work,
we use Gaussian kernel 𝜅 (x, x′) = 𝑒−𝜆 ∥x−x

′ ∥22 for its effectiveness,
and leave the comparison of different kernels in our future work.

In terms of optimization, using 𝜅 (·, ·) is equivalent to log𝜅 (·, ·).
Therefore, inserting logarithmic Gaussian kernel, Eq. (10) becomes

ℓ𝑑 = 𝜆1
1
𝑛

𝑛∑
𝑖=1

min
1≤𝑡≤(𝑇−𝑤+1)

min
p𝑗 ∈P𝑦𝑖

∥z(𝑡)
𝑖
− p𝑗 ∥22

+ 𝜆2
1
𝑘

𝑘∑
𝑗=1

min
z
(𝑡)
𝑖
∈Z𝑗

∥p𝑗 − z
(𝑡)
𝑖
∥22 + 𝜆3

1
𝑘2

𝑘∑
𝑗,𝑗′=1

−∥p𝑗 − p𝑗′ ∥22

(12)

where 𝜆1, 𝜆2, and 𝜆3 are derived from the bandwidth of Gaussian
kernels. In Eq. (12), they are trade-off hyperparameters of different
terms. The max (·) → min (·) transformation is due to extracting
negative signs. Empirically, it is also beneficial to add a hinge loss
on the last term, i.e., max (0, 𝑑min − ∥p𝑗 − p𝑗 ′ ∥22), with a threshold
𝑑min to control the relative distances between prototypes.
Remark. Our regularization from the perspective of distribution
adaptation is more general than the empirical regularizers used by
existing methods [10, 15, 32, 36]. Also, our derivation indicates a
connection between the MMD based adaptation and the empirical
regularization used in those methods by highlighting the effects on
segment clustering (Eq. (8)), segment-prototype association (Eq. (9))
and prototype diversity (the third term in Eq. (10)).

3.3 Model Training

The entire SCNpro model is end-to-end differentiable. The model
parameters 𝜽 include those in the neural networks and the set of
all prototypes P. In our experiments, all of the prototypes were
initialized randomly. To train SCNpro, stochastic gradient descent
(SGD) can be used to minimize the joint loss function ℓ in Eq. (11)
on mini-batches.

After SGD converges, every prototypep𝑗 has been pushed closely
to a segment z(𝑡)

𝑖
in the training domain, because of the segment-

prototype association property of Eq. (9). However, p𝑗 is a vectorial
representation in the latent space, thus is not readily interpretable.
To induce a physical meaning, similar to [10, 36], we employ the
projection approach to project each prototype onto the latent rep-
resentation of its closest segment. This operation fills the last gap
between a prototype and its neighboring segment in the latent
space remained by gradient descent:

p𝑗 ← argmin
z
(𝑡)
𝑖
∈Z𝑗

∥p𝑗 − z
(𝑡)
𝑖
∥22, ∀ p𝑗 ∈ P (13)

As can be seen, Eq. (13) only projects a prototype to the closest
segment of its own class, which is consistent with the second term
in Eq. (12) (or Eq. (9)) for segment-prototype association. After
this step, each prototype represents, and is interpreted by, a real
segment on which it has been projected.

In [32], a decoder was jointly trained with its image classifier
such that every prototype can be visualized by decoding its latent
representation. However, when training on discrete sequential data,

the decoder may not necessarily translate a prototype to a meaning-
ful segment, and the decoder will add overheads on model training.
Additionally, the reconstruction loss on the outputs of the decoder
may distort the classification results. In contrast, the projection step
in Eq. (13) facilitates better explanation, efficiency and accuracy.

4 EXPERIMENTS

In this section, we perform extensive experiments to evaluate SCN-
pro on a variety of real-life datasets. For classification, we quan-
titatively assess the performance. For interpretatbility, we follow
existing works [10, 32] to highlight qualitative case studies in dif-
ferent domains.

4.1 Experimental Setup

We compare SCNpro with sequence models that have state-of-
the-art performance, including LSTM [25], BiLSTM [42], CNN [28],
ResNet [23], LSTM-AT [2], RETAIN [11], and ProSeNet [36]. Among
them, LSTM-AT and RETAIN provide interpretation by using atten-
tion for aggregating time steps. The difference is RETAIN reverses
the order of input sequence of its LSTMs, and incorporates feature-
level attentions. ProSeNet is an interpretable model as introduced
in Sec. 2. It combines LSTMs and prototype learning, but learns
sequence-level prototypes, rather than local segments.

Unless otherwise noted, we configure the compared models as
following (which may be adjusted by validation sets in different
applications later). LSTM, BiLSTM, LSTM-AT, RETAIN and ProS-
eNet have 2 layers, with 50 units per layer. For CNN and SCNpro,
we make use of the well-known CNN-non-static architecture pro-
posed by [30], and set 50 output channels per filter size. The filter
size depends on applications, and will be described later. We built
ResNet with 7 residual blocks as similar to [23], and set 50 output
channels. For ProSeNet, its hyperparameters were set by 𝜆𝑐 = 0.1,
𝜆𝑒 = 0.1, 𝜆𝑑 = 0.01, 𝜆𝑙1 = 0.001, and its beam search mode is set on.
For SCNpro, we set 𝜆1 = 0.1, 𝜆2 = 0.1, 𝜆3 = 0.01, and initialized
prototypes randomly. All neural network architectures were imple-
mented using PyTorch framework, and trained by Adam optimizer
with mini-batch sizes within {1000, 2000}.

4.2 Sentiment Analysis in E-Commerce

First, we evaluate SCNpro on a sentiment classification task. We
use the customer reviews from Yelp [48] and Amazon [40]. For both
datasets, each review is tokenized into a sequence using NLTK [5].
We select reviews with lengths in [30, 50] to avoid too long/short
sequences. Two cases are considered in this experiment: we use the
ratings (one to five) that are associated with each review as labels
and perform evaluations on (1) binary (positive: >3, negative: <3)
and (2) multiclass (five classes) classifications. In the binary case,
neutral reviews (rating=3) were filtered out. As such, Yelp dataset
has 1, 030, 678 and 1, 119, 002 reviews for binary and multiclass
cases, respectively. For Amazon dataset, the numbers are 1, 567, 575
and 1, 746, 694. In the experiment, each dataset was randomly split
into 60% training, 20% validation, and 20% testing sets.

For the compared methods, CNN and SCNpro used filter sizes
{3, 4, 5}. ResNet used filter size 5. ProSeNet used 150 and 200 proto-
types in the binary and multiclass cases, respectively. For SCNpro,
30 prototypes were allocated per class. The dimensionality of the

Table 1: Average accuracy of the compared methods on the

customer reviews in Yelp and Amazon datasets.

Method Yelp Amazon
Binary Multiclass Binary Multiclass

LSTM 0.9636 0.7040 0.9418 0.6995
BiLSTM 0.9625 0.7084 0.9415 0.7019
ProSeNet 0.9636 0.6894 0.9401 0.6741
LSTM-AT 0.9555 0.7018 0.9327 0.6853
RETAIN 0.9564 0.6948 0.9330 0.6777
CNN 0.9569 0.7037 0.9275 0.6811
ResNet 0.9529 0.6956 0.9230 0.6899
SCNpro 0.9517 0.7004 0.9205 0.6734

word embeddings was 300. The word embeddings were randomly
initialized and fine-tuned during model training.

Table 1 summarizes the averaged classification accuracy over
10 runs. In most cases, SCNpro achieves similar performance to
other models, especially to the convolutional models and the inter-
pretable models LSTM-AT, RETAIN, ProSeNet. In the binary cases,
we observe RNN based methods slightly outperform CNN based
methods, which may be a bias of the particular application.

Moreover, Table 2 showcases the reasoning process of SCNpro
on the positive and negative examples in the testing set.Within each
review, the highlighted segments (with lengths in {3, 4, 5}) were
automatically located by SCNpro, which are the most pertinent
evidences that SCNpro used to predict labels. For example, in the
review of Table 2(b), “is terrible .” and “very disappointed .” are
intuitively negative phrases that summarize the sentiment of this
review. SCNpro relates them to the prototypes “absolutely terrible”
and “is the worst” respectively with high similarities (0.99 and
0.98), which have high weights to the negative class (1.53 and 1.32).
Additionally, the third segment “was nice but the” represents a
transition of sentiment, which finally leads to a negative sentiment.
This is similar to the prototype “good. but the”, which also has a
high weight (0.90) to the negative class.

Furthermore, SCNpro is able to capture interesting patterns in
this task. It does not only learn sentimentally significant prototypes
(e.g., “was awesome !”) and transition of sentiments (e.g., “good. but
the”), but also infers aspect descriptions (e.g., “easy to put on”) and
phrases with concession (e.g., “only complaint is that”). All of them
have intuitive sentiments, which are faithfully reflected by their
class weights. As such, the prototypes provide a concise overview
of the patterns of different classes.

A summary of the learned prototypes of SCNpro are in Table 4
and 5. The prototypes are sorted by their weights to different classes.
As can be seen from the tables, the learned weights are succinct
and distinguishable. Most of the learned prototypes (which may not
necessarily be phrases) are meaningful and have clear sentiments
toward the class it is associated with, which is demonstrated by the
learned weights. We observe some duplicated prototypes, but this
has been alleviated a lot by the third term in Eq. (10). Therefore,
the prototypes learned by SCNpro provide a summary of distin-
guishable and succinct patterns of different classes, which cannot
be achieved by the other compared methods. These prototypes also

Table 2: Explanation of SCNpro on testing samples in the binary sentiment classification task. Three segments located by

SCNpro were highlighted for each review. (a)(b) are samples from Yelp dataset. (c)(d) are samples from Amazon dataset.

Input Review Segment→ Prototype (Similarity) Pos. Neg. Prediction

(a) absolutely fantastic ! great customer service and delicious food . they were willing to
modify my order exactly as i wanted and gave me just what i asked for . fabulous job !

absolutely fantastic !→ was awesome ! (0.98) 1.54 0.00
Positivedelicious food .→ are delicious . (0.97) 1.26 0.00

great customer service→ service was great (0.93) 0.76 0.27

(b) this place is terrible . they use no fruit and all ice and water . very disappointed . the
girl at the register was nice but the drinks is terrible .

is terrible .→ absolutely terrible . (0.99) 0.00 1.53

Negativevery disappointed .→ is the worst (0.98) 0.00 1.32

was nice but the→ good. but the (0.95) 0.10 0.90

(c) the mirror works great i received it a few days after purchase . easy to put on . the
only thing is the mirror does get scratched from objects in your pocket or purse .

easy to put on→ easy to put on (1.00) 0.97 0.17
Positiveonly thing is the→ only complaint is that (0.80) 1.36 0.00

mirror works great i→ it works great . (0.66) 1.26 0.00

(d) this item is terrible . it is too small for any earbuds iv ever seen . the zipper broke in a
day . save yourself do n’t buy this !

do n’t buy→ do n’t buy (1.00) 0.03 1.06

Negative. it is too small→ but it is too small (0.97) 0.00 1.32

this item is terrible→ stopped working at all (0.84) 0.02 1.03

Table 3: Explanation of the compared methods. For LSTM-

AT and RETAIN, darker colors indicate higher weights.

ProSeNet

(a) absolutely fantastic ! great customer service and delicious food . they were
willing to modify my order exactly as i wanted and gave me just what i asked for .
fabulous job ! (Prediction: Positive)
(0.99) the tacos were amazing ! with handmade tortillas ! so good ! if you ’re looking
for authentic tacos . this spot is the place to go . (Pos.: 0.41)
(0.96) this place is the greatest ! best family day ever ! our younger kids enjoyed
earning tickets in the arcade while the older kids raced the (Pos.: 0.36)
(0.95) good variety . large bowl . protein regular bowl . they have unagi pineapple
mango which not all have . fie happy hours which are from am till (Pos.: 0.40)
LSTM-AT

(a) absolutely fantastic ! great customer service and delicious food . they were
willing to modify my order exactly as i wanted and gave me just what i asked for .
fabulous job ! (Prediction: Positive)
RETAIN

(a) absolutely fantastic ! great customer service and delicious food . they were
willing to modify my order exactly as i wanted and gave me just what i asked for .
fabulous job ! (Prediction: Positive)

provide hints for users to evaluate and debug the decision-making
process of the proposed method.

For comparison, Table 3 presents the explanation of ProSeNet,
LSTM-AT and RETAIN. Although ProSeNet has a beam search
based simplification algorithm for removing irrelevant tokens in its
prototypical sequences, its internal similarity is defined between
entire sequences in its loss function. Thus its training always tend
to discover long sequences as prototypes, and users have no control
over the resolution. This is validated by Table 3, where the long
prototypes make the results too dense and less interpretable. Also,
since ProSeNet has no segment-level comparison, it cannot locate
the pertinent areas in the input sequence, which hinders interpre-
tation as well. In contrast, LSTM-AT and RETAIN can highlight
tokens relevant to their predictions, but they don’t provide class-
level evidences to interpret their reasoning processes. Thus there
are much uncertainty and obscurity in their explanations.

4.3 ECG Time Series Classification

Next, we evaluate SCNpro on real-valued time series using the MIT-
BIH Arrhythmia and the PTB Diagnostic ECG datasets [6, 18, 37]
Basically, time series are temporally ordered long sequences. ECG
is widely used to monitor cardiac health. The MIT-BIH dataset
has 109, 446 annotated ECG signals of heartbeats. The annotations

Table 4: The learned top prototypes on Yelp dataset.

Prototype (Positive) Score Prototype (Negative) Score
is by far the best 1.673 food poisoning from their 1.887
was awesome ! 1.537 was very rude and 1.813
delicious ! very friendly 1.446 worst customer service 1.687
amazing ! love this 1.442 absolutely terrible . 1.526
service was excellent they had 1.355 the service was terrible . 1.525
one of my favorite 1.326 was terrible . had 1.515
place is amazing ! my 1.325 is the worst i have 1.513
love this place ! 1.324 took over an hour 1.430
. a little pricey but 1.299 not good . food 1.405
were able to 1.293 the worst i ’ve 1.357
...

Table 5: The learned top prototypes on Amazon dataset.

Prototype (Positive) Score Prototype (Negative) Score
very pleased with 1.866 it stopped working at all 2.032
! she loves it and 1.757 your money . 1.787
i am very pleased with 1.750 a waste of money . 1.449
love it ! it 1.575 not recommend this case 1.371
love it ! it ’s 1.370 cheaply made and 1.370
only complaint is that 1.355 but it is too small 1.317
awesome product . very easy 1.293 this case is terrible 1.304
. easy to 1.290 is a piece of 1.300
the best case i have 1.281 not worth the 1.285
case . but i knew 1.280 it fell apart in my 1.257
...

are mapped into 5 groups as per the AAMI standard [14]: Normal
(N), Supraventricular Ectopic Beat (SVEB), Ventricular Ectopic Beat
(VEB), Fusion Beat (F), and Unknown Beat (Q). The PTB dataset has
14, 552 ECG signals, which belong to two categories: Normal (N) and
Myocardial Infarction (MI). The datasets were processed according
to the protocol proposed by [27]. Each signal was downsampled to
125Hz, short signals were filtered out (with a threshold 50), and in
each experiment, the datasets were randomly split into 60% training,
20% validation, and 20% testing sets.

In this experiment, CNN and SCNpro used filter sizes {30, 50}.
ResNet used filter size 35. SCNpro was allocated 20 prototypes
per class. For ProSeNet, the number of prototypes was 100 and 50
on the MIT-BIH and PTB datasets. LSTM, BiLSTM and ProSeNet
were adjusted to use 1 layer, which is better than >2 layers on these
datasets. Other configurations were kept the same as before.

Table 6 summarizes the classification performance of the com-
pared methods. We observe SCNpro performs comparably to other

Class: N

(1) True class: N, Prediction: N
(2) True class: S, Prediction: S
(3) True class: V, Prediction: V
(4) True class: F, Prediction: F
(5) True class: Q, Prediction: Q

(1)

(3)

(5)

(2)

(4)

Similarity: 0.98,
class N: 1.17

Similarity: 0.95,
class N: 2.10

Similarity: 0.95,
class N: 1.75(a) (b)Similarity: 0.97,

class S: 1.12
Similarity: 0.94,
class S: 0.99

Similarity: 0.96,
class S: 1.18

Similarity: 0.84,
class V: 2.71

Similarity: 0.99,
class V: 1.24

Similarity: 0.91,
class V: 2.93

Similarity: 0.88,
class F: 1.60

Similarity: 0.90,
class F: 1.07

Similarity: 0.87,
class F: 1.17

Similarity: 0.91,
class Q: 2.89

Similarity: 0.95,
class Q: 1.43

Similarity: 0.92,
class Q: 0.73

Class: N Class: N

Class: S Class: S Class: S

Class: V Class: V Class: V

Class: F Class: F Class: F

Class: Q Class: Q Class: Q

Figure 2: The explanation of SCNpro on MIT-BIH dataset. (a) The reasoning process. For each testing sample, its top 3 similar

prototypes are highlighted. (b) The closest neighbors of the learned prototypes (the leftmost column) in the testing set.

Table 6: Average accuracy of the compared methods on the

ECG time series in MIT-BIH and PTB datasets.

Method MIT-BIH PTB
LSTM 0.9755 0.9526
BiLSTM 0.9718 0.9523
ProSeNet 0.9594 0.9451
LSTM-AT 0.9450 0.9519
RETAIN 0.9732 0.9427
CNN 0.9750 0.9694
ResNet 0.9783 0.9519
SCNpro 0.9741 0.9643

methods on MIT-BIH dataset, and slightly outperforms them (ex-
cept for CNN) on PTB dataset. On PTB dataset, we also observe
CNN based methods generally outperform RNN based methods,
which is different from the binary cases in Table 1.

Fig. 2(a) presents the reasoning process of SCNpro on the testing
samples of different classes in MIT-BIH dataset (PTB’s results are
similar thus are omitted for brevity). In each sample, its top three
similar prototypes were highlighted at their corresponding loca-
tions of the signal. Each prototype is shown with its similarity score
to the segment, and its largest class weight. From the figure, we
can understand how does SCNpro make predictions. For example,
in Fig. 2(a)(1), the prototypes have similarity scores 0.98, 0.95, 0.95
to their corresponding areas. Thus, their high weights to class N
(1.17, 1.75, 2.10) link this sample to class N.

From each sample in Fig. 2(a), we also selected one prototype,
and investigated their neighbors in the testing set. Fig. 2(b) presents
the prototypes, which correspond to the orange, green, orange,
green, orange prototypes in Fig. 2(a)(1-5). Their closest neighbors
are shown afterwards (there are more neighbors than presented,
which are omitted for brevity). As can be seen, each prototype is rep-
resentative for its nearby time series. They are also discriminative,
and can capture the subtle difference between classes. For exam-
ple, the samples of classes N and S have similar global waveforms,
but are distinguishable at the head, which are effectively detected
by prototypes. In addition, the last three prototypes all represent
heartbeats, but their different shapes decide their different classes.

We also evaluated ProSeNet on these datasets, whose beam
search algorithm is runnable because the time series in these datasets

Table 7: A prototypical protein segment and its neighbor-

ing sequences. The highlighted areas are located by SCNpro.

Blue indicates match, and red indicates mismatch.

Prototype:FDVIIIGGGHAGTEAAMAAARMGQQTLLLT, Weight:MnmG family (4.26)
Neighbors Similarity

MFYPDPFDVIIIGGGHAGTEAAMAAARMGQQTLLLTHNIDTL . . . NQHQIFLEPE 1.000
MLYPVEFDVIVVGGGHAGTEAALAAARMGCQTLLLTHNIETL . . . KDSHQIFLEP 0.996
MQQFDIIVVGGGHAGVEAAAVAARMGARTALVSFDPQTIGAM . . . VFLEPEGLDD 0.994
MNFQENYDVVVIGGGHAGVEASLAAARMGSKTLLMTINLNMV . . . ADKPRHQLFL 0.991
MFDVIVIGGGHAGVEASAAAARMGKKTLLLTTLIEQIGAASC . . . IEPQTIDATE 0.990
MLKYDVIVIGGGHAGVEAAAASARLGVPTLLITLKPENLGEM . . . IFLEPEGLDD 0.989
MGRAMHDFDILVVGGGHAGVEAACAAARMGVRTALVSFDPAR . . . DGHQVFLEPE 0.985

are not very long. However, in many cases, ProSeNet learned proto-
types that had almost the same lengths as their original signals. On
average, each prototype accounted for 78.40% and 87.42% portion of
its original signal in MIT-BIH and PTB datasets, respectively. Simi-
lar to the results in Sec. 4.2, the method tend to remove marginal
signals, and the prototypes thus learned cannot provide a succinct
summary of the datasets. As for LSTM-AT and RETAIN, since their
attention weights are discrete, they cannot provide a continuous
meaning on these time series.

It is noteworthy that the prototypes learned by SCNpro resemble
shaplets in conventional times series analysis [20, 52]. However,
these methods either rely on a large pool of predefined shapelets
[52], or is ad-hoc to shapelet discovery [20]. In contrast, our method
is a general sequence model, and provides a new deep learning
perspective for learning shapelets in this particular domain.

4.4 Protein Sequence Classification

In this section, we evaluate SCNpro in biological domain using
protein sequences in the UniProtKB database [12]. The database
updates regularly, and there were 561, 568 manually annotated pro-
tein sequences when we collected the data. The protein sequences
are composed of 20 standard amino acids, and can be grouped into
families. We selected sequences with minimal length 50 from the
100 largest families, and clipped them with a maximal length of 300.
The resulted dataset has 112, 446 sequences, and we split them into
60% training, 20% validation and 20% testing sets.

In this domain, two filters {10, 30}were set for CNN and SCNpro.
ResNet used filter size 15. SCNpro was allocated 5 prototypes per
class. ProSeNet used 100 prototypes, and its 𝜆𝑑 was adjusted to 0.
Other configurations were kept the same as before.

(a) Latent space when ℓ" is on (b) Latent space when ℓ" is off

Figure 3: The tSNE visualization on PTB dataset. Circles are

segment features. “+”markers are prototypes. Red and black

indicate MI class. Blue and orange indicate N class.

(a) MIT-BIH (b) UniProtKB

Ac
cu

ra
cy

Number of prototypes per class Number of prototypes per class

Ac
cu

ra
cy

Figure 4: The impacts of the number of prototypes per class.

In 10 different runs, SCNpro achieved an average accuracy of
0.9709, which is slightly lower than the best performed baselines,
CNN (0.9791) and BiLSTM (0.9726), similar to ResNet (0.9719), and
is slightly better than LSTM (0.9637), LSTM-AT (0.9685), RETAIN
(0.9559), and ProSeNet (0.9596).

Table 7 presents a prototype of SCNpro, and its closest neigh-
bors in the testing set. The highlighted areas are the most similar
segments to the prototype. Although there are a few mismatches,
the overall similarities of these segments to the prototype are rea-
sonably high. All of these neighbors belong to the MnmG family,
on which the prototype has the largest weight (4.26). Thus, the
prototype may represent a relevant structure of the MnmG family.

4.5 More Details on Effectiveness

4.5.1 Prototype distribution. As discussed in Sec. 3.2.1, SCNpro
manipulates prototypes to fit the distribution of segment features.
To understand how does it work, we uniformly sampled a batch
of training data for visualization (the full set is too large to be
visualized). Then, in each sequence, we extracted the segment that
is closest to some prototype. The representations of all extracted
segments and all prototypes were visualized using tSNE [34] in a
2D space.

Fig. 3 shows the latent space for one prototypemodule (with filter
size 50) on PTB dataset. We investigated the difference between
when the adaptation regularizer ℓ𝑑 is on and off in the objective
in Eq. (11). In the figure, circles represent segments, “+” markers
represent prototypes. The colors indicate classes. From Fig. 3(a),
we observe our method fits prototypes to data well and encourages
a clustering structure of different dense areas. From Fig. 3(b), it is
interesting to see fitted areas even when ℓ𝑑 is off. This phenomenon
attributes to the similarity based classification, which inherently
associates segments with prototypes. However, the data distribution
is not well encoded by prototypes, especially in the central area,
where many segments are far from any prototypes thus are hard

Table 8: Ablation analysis.

Model MIT-BIH PTB UniProtKB
SCNpro 0.9741 0.9643 0.9709
(a) Set 𝜆1 = 0 0.9758 0.9646 0.9590
(b) Set 𝜆2 = 0 0.7328 0.8462 0.7599
(c) Set 𝜆3 = 0 0.9749 0.9626 0.9406

to be interpreted. In contrast, every segment in Fig. 3(a) is tightly
associatedwith a few prototypes, which enhances the interpretation
of their corresponding input sequences.

4.5.2 Impacts of the number of prototypes. Next, we evaluate how
would the number of prototypes per class, 𝑘 , influence the perfor-
mance of SCNpro using MIT-BIH and UniProt datasets. Keeping
other configurations the same as in Sec. 4.3 and 4.4, we varied 𝑘

and evaluated SCNpro on the testing set. As shown in Fig. 4, the
accuracy improves quickly as 𝑘 increases and becomes stable after 𝑘
exceeds 10 and 5 for MIT-BIH and UniProtKB. When 𝑘 is small (e.g.,
𝑘 = 1), the prototypes cannot adapt to the distribution well, which
results in vague boundaries between classes. As 𝑘 increases, proto-
types fit clusters tightly, which helps separate classes. The results
also suggest that usually 𝑘 can be selected with a few grid-searches
using validation sets, since often a small 𝑘 is sufficient.

4.5.3 Ablation analysis. Table 8 summarizes the testing results of
our ablation analysis using three datasets. In (a)-(c), we alternately
removed the regularizers in Eq. (12) by setting 𝜆1, 𝜆2, 𝜆3 to 0, respec-
tively, to investigate their impacts. First, in (a) and (c), we observe
removing clustering (𝜆1 = 0) or diversity (𝜆3 = 0) regularizers
has small impact on the accuracy on MIT-BIH and PTB datasets,
while degrades the performance on UniProtKB. Thus both of them
can be safely integrated into the objective ℓ in Eq. (11) as they are
essential to enhance the interpretability (as demonstrated by Fig.
3). Removing the second loss, however, causes sharp degradations
on all datasets. This is because, as discussed in Sec. 3.3, the last
projection step in Eq. (13) may be confused when the prototypes
are not optimized to be associated with any segment features by
SGD. Incorrect projections, in turn, results in disordered classifica-
tion and significant performance drop. Thus, the results justify the
design of our learning objective.

5 CONCLUSION

Interpretability is important in modern machine learning systems.
In this paper, We propose a neural sequence modeling approach SC-
Npro, which has a transparent reasoning process onwhat it predicts.
SCNpro builds upon convolutional architectures, incorporates pro-
totype modules, and exerts filters to learn prototypes that represent
local patterns for reasoning its predictions. The learning objec-
tive reflects the goal on both accuracy and interpretability, which
delicately adapts prototypes to the distribution of data in latent
spaces. The extensive experiments on datasets in various domains
demonstrate SCNpro’s general ability on modeling sequences, its
state-of-the-art performance, and its succinct interpretations.

REFERENCES

[1] Dimitrios Alikaniotis, Helen Yannakoudakis, and Marek Rei. 2016. Automatic
Text Scoring Using Neural Networks. In ACL. 715–725.

[2] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. 2015. Neural machine
translation by jointly learning to align and translate. (2015).

[3] Shaojie Bai, J Zico Kolter, and Vladlen Koltun. 2018. An empirical evaluation
of generic convolutional and recurrent networks for sequence modeling. arXiv
preprint arXiv:1803.01271 (2018).

[4] Joost Bastings, Wilker Aziz, and Ivan Titov. 2019. Interpretable neural predictions
with differentiable binary variables. arXiv preprint arXiv:1905.08160 (2019).

[5] Steven Bird, Edward Loper, and Ewan Klein. 2009. Natural Language Processing
with Python. O’Reilly Media Inc.

[6] R Bousseljot, D Kreiseler, and A Schnabel. 1995. Nutzung der EKG-
Signaldatenbank CARDIODAT der PTB über das Internet. Biomedizinische Tech-
nik/Biomedical Engineering 40, s1 (1995), 317–318.

[7] Tom B Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan,
Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot learners. arXiv preprint
arXiv:2005.14165 (2020).

[8] Rich Caruana, Yin Lou, Johannes Gehrke, Paul Koch, Marc Sturm, and Noemie
Elhadad. 2015. Intelligible models for healthcare: Predicting pneumonia risk and
hospital 30-day readmission. In KDD. 1721–1730.

[9] Zhengping Che, Sanjay Purushotham, Robinder Khemani, and Yan Liu. 2016. In-
terpretable deep models for ICU outcome prediction. In AMIA Annual Symposium,
Vol. 2016. American Medical Informatics Association, 371.

[10] Chaofan Chen, Oscar Li, Daniel Tao, Alina Barnett, Cynthia Rudin, and Jonathan K
Su. 2019. This looks like that: deep learning for interpretable image recognition.
In NeurIPS. 8928–8939.

[11] Edward Choi, Mohammad Taha Bahadori, Jimeng Sun, Joshua Kulas, Andy
Schuetz, and Walter Stewart. 2016. Retain: An interpretable predictive model for
healthcare using reverse time attention mechanism. In NeurIPS. 3504–3512.

[12] UniProt Consortium. 2019. UniProt: a worldwide hub of protein knowledge.
Nucleic Acids Res. 47, D1 (2019), D506–D515.

[13] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. Bert:
Pre-training of deep bidirectional transformers for language understanding. arXiv
preprint arXiv:1810.04805 (2018).

[14] ANSI-AAMI EC57. 1998. Testing and reporting performance results of cardiac
rhythm and ST segment measurement algorithms. Association for the Advance-
ment of Medical Instrumentation (1998).

[15] Alan H Gee, Diego Garcia-Olano, Joydeep Ghosh, and David Paydarfar. 2019.
Explaining deep classification of time-series data with learned prototypes. arXiv
preprint arXiv:1904.08935 (2019).

[16] Jonas Gehring, Michael Auli, David Grangier, and Yann Dauphin. 2017. A Con-
volutional Encoder Model for Neural Machine Translation. In ACL. 123–135.

[17] Jonas Gehring, Michael Auli, David Grangier, Denis Yarats, and Yann N Dauphin.
2017. Convolutional sequence to sequence learning. In ICML. 1243–1252.

[18] Ary L Goldberger, Luis AN Amaral, Leon Glass, Jeffrey M Hausdorff, Plamen Ch
Ivanov, Roger G Mark, Joseph E Mietus, George B Moody, Chung-Kang Peng, and
H Eugene Stanley. 2000. PhysioBank, PhysioToolkit, and PhysioNet: components
of a new research resource for complex physiologic signals. Circulation 101, 23
(2000), e215–e220.

[19] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. 2016. Deep learning. MIT
press.

[20] Josif Grabocka, Nicolas Schilling, Martin Wistuba, and Lars Schmidt-Thieme.
2014. Learning time-series shapelets. In KDD. 392–401.

[21] Arthur Gretton, Karsten M Borgwardt, Malte J Rasch, Bernhard Schölkopf, and
Alexander Smola. 2012. A kernel two-sample test. J. Mach. Learn. Res. 13, 1 (2012),
723–773.

[22] Peter Hase, Chaofan Chen, Oscar Li, and Cynthia Rudin. 2019. Interpretable
Image Recognition with Hierarchical Prototypes. In HCOMP, Vol. 7. 32–40.

[23] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual
learning for image recognition. In CVPR. 770–778.

[24] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. 2015. Distilling the knowledge in
a neural network. arXiv preprint arXiv:1503.02531 (2015).

[25] Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long short-termmemory. Neural
Comput. 9, 8 (1997), 1735–1780.

[26] Xisen Jin, Junyi Du, ZhongyuWei, Xiangyang Xue, and Xiang Ren. 2019. Towards
Hierarchical Importance Attribution: Explaining Compositional Semantics for
Neural Sequence Models. arXiv preprint arXiv:1911.06194 (2019).

[27] Mohammad Kachuee, Shayan Fazeli, and Majid Sarrafzadeh. 2018. Ecg heartbeat
classification: A deep transferable representation. In ICHI. IEEE, 443–444.

[28] Nal Kalchbrenner, Edward Grefenstette, and Phil Blunsom. 2014. A Convolutional
Neural Network for Modelling Sentences. In ACL. 655–665.

[29] Andrej Karpathy, Justin Johnson, and Li Fei-Fei. 2015. Visualizing and under-
standing recurrent networks. arXiv preprint arXiv:1506.02078 (2015).

[30] Yoon Kim. 2014. Convolutional Neural Networks for Sentence Classification. In
EMNLP. 1746–1751.

[31] Janet L Kolodner. 1992. An introduction to case-based reasoning. Artif. Intell.
Rev. 6, 1 (1992), 3–34.

[32] Oscar Li, Hao Liu, Chaofan Chen, and Cynthia Rudin. 2018. Deep learning for
case-based reasoning through prototypes: A neural network that explains its
predictions. In AAAI.

[33] Mingsheng Long, Yue Cao, Jianmin Wang, and Michael Jordan. 2015. Learning
transferable features with deep adaptation networks. In ICML. 97–105.

[34] Laurens van der Maaten and Geoffrey Hinton. 2008. Visualizing data using t-SNE.
J. Mach. Learn. Res. 9, Nov (2008), 2579–2605.

[35] David Alvarez Melis and Tommi Jaakkola. 2018. Towards robust interpretability
with self-explaining neural networks. In NeurIPS. 7775–7784.

[36] Yao Ming, Panpan Xu, Huamin Qu, and Liu Ren. 2019. Interpretable and steerable
sequence learning via prototypes. In KDD. 903–913.

[37] George BMoody and Roger GMark. 2001. The impact of the MIT-BIH arrhythmia
database. IEEE Eng. Med. Biol. 20, 3 (2001), 45–50.

[38] W James Murdoch, Peter J Liu, and Bin Yu. 2018. Beyond word importance:
Contextual decomposition to extract interactions from LSTMs. arXiv preprint
arXiv:1801.05453 (2018).

[39] W James Murdoch and Arthur Szlam. 2017. Automatic rule extraction from long
short term memory networks. arXiv preprint arXiv:1702.02540 (2017).

[40] Jianmo Ni, Jiacheng Li, and Julian McAuley. 2019. Justifying recommendations
using distantly-labeled reviews and fine-grained aspects. In EMNLP-IJCNLP.
188–197.

[41] Aaron van den Oord, Sander Dieleman, Heiga Zen, Karen Simonyan, Oriol
Vinyals, Alex Graves, Nal Kalchbrenner, Andrew Senior, and Koray Kavukcuoglu.
2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499
(2016).

[42] Matthew Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher Clark,
Kenton Lee, and Luke Zettlemoyer. 2018. Deep Contextualized Word Representa-
tions. In NAACL-HLT. 2227–2237.

[43] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. 2016. " Why should i
trust you?" Explaining the predictions of any classifier. In KDD. 1135–1144.

[44] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. 2018. Anchors: High-
precision model-agnostic explanations. In AAAI.

[45] Cynthia Rudin. 2019. Stop explaining black box machine learning models for
high stakes decisions and use interpretable models instead. Nat. Mach. Intell. 1, 5
(2019), 206–215.

[46] Chandan Singh,W JamesMurdoch, and Bin Yu. 2018. Hierarchical interpretations
for neural network predictions. arXiv preprint arXiv:1806.05337 (2018).

[47] Hendrik Strobelt, Sebastian Gehrmann, Hanspeter Pfister, and Alexander M Rush.
2017. Lstmvis: A tool for visual analysis of hidden state dynamics in recurrent
neural networks. IEEE Trans. Vis. Comput. Graph. 24, 1 (2017), 667–676.

[48] Yi Tay, Anh Tuan Luu, and Siu Cheung Hui. 2018. Multi-pointer co-attention
networks for recommendation. In KDD. 2309–2318.

[49] Sarah Wiegreffe and Yuval Pinter. 2019. Attention is not not Explanation. In
EMNLP-IJCNLP. 11–20.

[50] Jingyuan Yang, Chuanren Liu, Mingfei Teng, Ji Chen, and Hui Xiong. 2017.
A unified view of social and temporal modeling for B2B marketing campaign
recommendation. IEEE Trans. Knowl. Data. Eng. 30, 5 (2017), 810–823.

[51] Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Carbonell, Russ R Salakhutdinov,
and Quoc V Le. 2019. Xlnet: Generalized autoregressive pretraining for language
understanding. In NeurIPS. 5753–5763.

[52] Lexiang Ye and Eamonn Keogh. 2009. Time series shapelets: a new primitive for
data mining. In KDD. 947–956.

	Abstract
	1 Introduction
	2 Related Work
	3 Our Proposed Model
	3.1 Model Architecture
	3.2 The Optimization Problem
	3.3 Model Training

	4 Experiments
	4.1 Experimental Setup
	4.2 Sentiment Analysis in E-Commerce
	4.3 ECG Time Series Classification
	4.4 Protein Sequence Classification
	4.5 More Details on Effectiveness

	5 Conclusion
	References

