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Abstract

We present FACESEC, a framework for fine-grained ro-
bustness evaluation of face recognition systems. FACESEC
evaluation is performed along four dimensions of adversar-
ial modeling: the nature of perturbation (e.g., pixel-level or
face accessories), the attacker’s system knowledge (about
training data and learning architecture), goals (dodging or
impersonation), and capability (tailored to individual in-
puts or across sets of these). We use FACESEC to study
five face recognition systems in both closed-set and open-set
settings, and to evaluate the state-of-the-art approach for
defending against physically realizable attacks on these. We
find that accurate knowledge of neural architecture is signifi-
cantly more important than knowledge of the training data in
black-box attacks. Moreover, we observe that open-set face
recognition systems are more vulnerable than closed-set sys-
tems under different types of attacks. The efficacy of attacks
for other threat model variations, however, appears highly
dependent on both the nature of perturbation and the neural
network architecture. For example, attacks that involve ad-
versarial face masks are usually more potent, even against
adversarially trained models, and the ArcFace architecture
tends to be more robust than the others.

1. Introduction
Face recognition has received much attention [12, 23, 25,

34, 15, 33] in recent years. Empowered by deep convolu-
tional neural networks (CNNs), it has become widely used in
various areas, including security-sensitive applications, such
as airport check-in, online financial transactions, and mobile
device login. The success of such deep face recognition
is particularly striking, with >99% prediction accuracy on
benchmark datasets [23, 16, 15, 6].

*Work done during an internship at NEC Laboratories America.
†Corresponding author.

Despite its widespread success in computer vision appli-
cations, recent studies have found that deep face recognition
models are vulnerable to adversarial examples in both dig-
ital space [18, 8, 36] and physical space [26]. The former
directly modifies an input face image by adding impercep-
tible perturbations to mislead face recognition (henceforth,
digital attacks). The latter is characterized by adding adver-
sarial perturbations that can be realized on physical objects
(e.g., wearing an adversarial eyeglass frame [26]), which are
subsequently captured by a camera and then fed into a face
recognition model to fool prediction (henceforth, physically
realizable attacks). As such, the aforementioned domains,
especially critical domains such as security and finance, are
subjected to risks of opening the backdoor for the attackers.
For example, in face recognition supported financial/banking
services, an illegal user may bypass biometric verification
and steal money from victims’ accounts. Therefore, there
exists a vital need for methods that can comprehensively and
systematically evaluate the robustness of face recognition
systems in adversarial settings, which in turn can shed light
on the design of robust models for downstream tasks.

The main challenges of comprehensive evaluation of the
robustness of face recognition lie in dealing with the diversity
of face recognition systems and adversarial environments.
First, different face recognition systems consist of various
key components (e.g., training data and neural architecture);
such diversity results in different performance and robust-
ness. To enable comprehensive and systematic evaluations,
it is crucial to assess the robustness of every individual or a
combination of face recognition components in adversarial
settings. Second, adversarial example attacks can vary by the
nature of perturbations (e.g., pixel-level or physical space),
an attacker’s goal, knowledge, and capability. For a given
face recognition system, its robustness against a specific type
of attack may not generalize to other kinds [35].

In spite of recent advances in adversarial attacks [26, 8,
36] that demonstrate the vulnerability of face recognition
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systems, most existing methods fail to address the aforemen-
tioned challenges due to the following reasons. First, current
efforts appeal to either white-box attacks or black-box at-
tacks to obtain a lower bound or upper bound of robustness.
These bounds indicate the vulnerability of face recognition
systems in adversarial settings but lack the understanding
of how each component of face recognition contributes to
such vulnerability. Second, while most existing approaches
focus on a specific type of attack (e.g., digital attacks that
incur imperceptible noise [8, 36]), they fail to explore the
different levels of robustness in response to various attacks
(e.g., physically realizable attacks).

To bridge this gap, we propose FACESEC, a fine-grained
robustness evaluation framework for face recognition sys-
tems. FACESEC incorporates four dimensions in evaluation:
the nature of adversarial perturbations (pixel-level or face
accessories), the attacker’s accurate knowledge about the
target face recognition system (training data and neural ar-
chitecture), goals (dodging or impersonation), and capability
(individual or universal attacks). Specifically, we implement
both digital and physically realizable attacks in FACESEC.
We leverage the PGD attack [18], the state-of-the-art digi-
tal attack paradigm, and the eyeglass frame attack [26] as
the representative of physically realizable attacks. Addi-
tionally, we propose two novel physically realizable attacks:
one involves pixel-level adversarial stickers on human faces,
and the other adds color grids on face masks. Moreover,
to facilitate universal attacks that produce image-agnostic
perturbations, we propose a systematic approach that works
on top of the attack paradigms described above.

In summary, this paper makes the following contributions:

(1) We propose FACESEC, the first robustness evaluation
framework that enables researchers to (i) identify the
vulnerability of each face recognition component to ad-
versarial examples, and (ii) assess different levels of
robustness under various adversarial circumstances.

(2) We propose two novel physically realizable attacks: the
pixel-level sticker attack and the grid-level face mask
attack. These allow us to explore adversarial robustness
against different types of physically realizable perturba-
tions. Particularly, the latter responds to the pressing
needs for security analysis of face recognition systems,
as face masks have become common face accessories
during the COVID-19 pandemic.

(3) We propose a general approach to produce universal
adversarial examples for a batch of face images. Com-
pared to previous works, our paradigm has a significant
speedup and is more efficient in evaluation.

(4) We perform a comprehensive evaluation on five publicly
available face recognition systems in various settings to
demonstrate the efficacy of FACESEC.
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Figure 1. Closed-set and open-set face recognition systems.

2. Background and Related Work
2.1. Face Recognition Systems

Generally, deep face recognition systems aim to solve the
following two tasks: 1) Face identification, which returns the
predicted identity of a test face image; 2) Face verification,
which indicates whether a test face image (also called probe
face image) and the face image stored in the gallery belong to
the same identity. Based on whether all testing identities are
predefined in the training set, face recognition systems can
be further categorized into closed-set systems and open-set
systems [15], as illustrated in Fig. 1.

In closed-set face recognition tasks, all the testing sam-
ples’ identities are enrolled in the training set. Specifically,
a face identification task is equivalent to a multi-class classi-
fication problem by using the standard softmax loss function
in the training phase [31, 28, 27]. And a face verification
task is a natural extension of face identification by first per-
forming the classification twice (one for the test image and
the other for the gallery) and then comparing the predicted
identities to see if they are identical.

In contrast, there are usually no overlaps between identi-
ties in the training and testing set for open-set tasks. In this
setting, a face verification task is essentially a metric learn-
ing problem, which aims to maximize intra-class distance
and minimize inter-class distance under a chosen metric
space by two steps [25, 23, 34, 16, 15, 6]. First, we train a
feature extractor that maps a face image into a discriminative
feature space by using a carefully designed loss function;
Then, we measure the distance between feature vectors of
the test and gallery face images to see if it is above a verifica-
tion threshold. As an extension of face verification, the face
identification task requires additional steps to compare the
distances between the feature vectors of the test image and
each gallery image, and then choose the gallery’s identity
corresponding to the shortest distance.

This paper focuses on face identification for closed-set
systems, as face verification is just an extension of identifica-
tion in this setting. Likewise, we focus on face verification
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Figure 2. Sticker attack: an example of physically realizable attacks
on face recognition systems. Left: original input image. Middle:
adversarial sticker on the face. Right: predicted identity. In practice,
the adversarial stickers can be printed and put on human faces.

for open-set systems.

2.2. Digital and Physical Adversarial Attacks

Recent studies have shown that deep neural networks are
vulnerable to adversarial attacks. These attacks produce im-
perceptible perturbations on images in the digital space to
mislead classification [30, 9, 4] (henceforth, digital attacks).
While a number of attacks on face recognition fall into this
category (e.g., by adding small `p bounded noise over the
entire input [8] or perceptible but semantically meaningful
perturbation on a restricted area of the input [24]), of partic-
ular interest in face recognition, are attacks in the physical
world (henceforth, physical attacks).

Generally, physical attacks have three characteristics [35].
First, the attackers directly modify the actual entity rather
than digital features. Second, the attacks can mislead state-
of-the-art face recognition systems. Third, the attacks have
low suspiciousness (i.e., by adding objects similar to com-
mon “noise” on a small part of human faces). For example,
an attacker can fool a face recognition system by wearing an
adversarial eyeglass frame [26], a standard face accessory in
the real world.

In this paper, we focus on both digital attacks and the
digital representation of physical attacks (henceforth, physi-
cally realizable attacks). Specifically, physically realizable
attacks are digital attacks that can produce adversarial per-
turbations with low suspiciousness, and these perturbations
can be realized in the physical world by using techniques
such as 3-D printing (e.g., Fig. 2 illustrates one example
of such attacks on face recognition systems). Compared
to physical attacks, physically realizable attacks can evalu-
ate robustness of face recognition systems more efficiently:
on the one hand, realizable attacks allow us to iteratively
modify digital images directly so the evaluation can signif-
icantly speedup compared to modifying real-world objects
and then photographing them; on the other hand, robustness
to physically realizable attacks provides the lower bound
of robustness to physical attacks, as the former has fewer
constraints and larger solution space.

Formally, both digital and physically realizable attacks
can be performed by solving the following general form of
an optimization problem (e.g., for closed-set identification
task):

arg max
δ

`(S(x+Mδ), y) s.t. δ ∈ ∆, (1)

where S is the target face recognition model, ` is the adver-
sary’s utility function (e.g., the loss function used to train S),
x is the original input face image, y is the associated identity,
δ is the adversarial perturbation, and ∆ is the feasible space
of the perturbation. Here, M denotes the mask matrix that
constrains the area of perturbation; it has the same dimension
as δ and contains 1s where perturbation is allowed, and 0s
where there is no perturbation.

2.3. Adversarial Defense for Face Recognition

While there have been numerous defense approaches to
make face recognition robust to adversarial attacks, many
of them focus on digital attacks and have been proved to be
broken under adaptive attacks [4, 32]. Here, we describe one
representative defense approach, adversarial training [18],
that is scalable, not defeated by adaptive attacks, and has
been leveraged to defend against physically realizable attacks
on face recognition systems.

The main idea of adversarial training is to minimize pre-
diction loss of the training data, where an attacker tries to
maximize the loss. In practice, this can be done by iteratively
using the following two steps: 1) Use an attack method to
produce adversarial examples of the training data; 2) Use
any optimizer to minimize the loss of predictions on these
adversarial examples. Wu et al. [35] propose to use DOA—
adversarial training with the rectangular occlusion attacks—
to defend against physically realizable attacks on closed-set
face recognition systems. Specifically, the rectangular oc-
clusion attack included in DOA first heuristically locates a
rectangular area among a collection of possible regions in an
input face image, then fixes the position and adds adversarial
occlusion inside the rectangle. It has been shown that DOA
can significantly improve the robustness against the eyeglass
frame attack [26] for closed-set VGG-based face recognition
system [23] by 80%. However, as we will show in Section 4,
DOA would fail to defend against other types of attacks,
such as the face mask attack proposed in Section 3.1.

3. Methodology
In this section, we introduce FACESEC for fine-grained

robustness evaluation of face recognition systems. Our goal
is twofold: 1) identify vulnerability/robustness of each es-
sential component that comprises a face recognition system,
and 2) assess robustness in a variety of adversarial settings.
Fig. 3 illustrates an overview of FACESEC. Let S = f(h;D)
be a face recognition system with a neural architecture h that
is trained on a training setD by an algorithm f (e.g., stochas-
tic gradient descent), FACESEC evaluates the robustness of
S via a quadruplet:

Robustness = Evaluate(S,< P ,K ,G ,C >), (2)

where < P,K,G,C > represents an attacker who tries to
produce adversarial examples to fool S. P is the pertur-
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S: target system 
to be evaluated

K: attacker’s knowledge about S
§ Zero knowledge
§ Training set
§ Neural architecture
§ Full knowledge

C: attacker’s capability
§ Individual attack for each image
§ Batch-based universal attack

P: perturbation type
§ Digital 
§ Pixel-level physically realizable
§ Grid-level physically realizable 

G: attacker’s goal
§ Dodging
§ Impersonation

Robustness = Evaluate(S, <P, K, G, C>)

Figure 3. An overview of FACESEC.
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Figure 4. Perturbation types in FACESEC.

bation type, such as perturbations produced by pixel-level
digital attacks and physically realizable attacks. K denotes
the attacker’s knowledge on the target system S, i.e., the
information about which sub-components of S are leaked
to the attacker. G is the goal of the attacker, such as the cir-
cumvention of detection and the misrecognition as a target
identity. C represents the attacker’s capability. For example,
an attacker can either individually perturb each input face
image, or produce universal perturbations for images batch-
wise. Next, we will describe each element of FACESEC in
details.

3.1. Perturbation Type (P)

In FACESEC, we consider three categories of attacks with
different perturbation types: digital attack, pixel-level physi-
cally realizable attack, and grid-level physically realizable
attack, as shown in Fig. 4.
Digital Attack. Digital attack produces small perturbations
on the entire input face image. We use the `∞-norm version
of the PGD attack [18] as the representative of this category1.
Pixel-level Physically Realizable Attack. This category
of attack features pixel-level perturbations that can be real-
ized in the physical world (e.g., by printing them on glossy
photo papers). In this case, the attacker adds large pixel-
level perturbations on a small area of the input image (e.g.,
face accessories). In FACESEC, we use two attacks of this
category: eyeglass frame attack [26] and sticker attack. The

1We also tried other digital attacks (e.g., CW [4] and JSMA [22]), but
these were either less effective than PGD or unable to be extended to
universal attacks (see Section 3.4).

1

3

3 5

2 4 6

1’ 3’ 5’

2’
4’ 6’

Interpolation

Perspective Transformation

Transformation

Figure 5. Transformations for the grid-level face mask attack.

former allows large perturbations within an eyeglass frame,
and it can successfully mislead VGG-based face recognition
systems [23]. We propose the latter to produce pixel-level
perturbations that are added on less important face areas
than the eyeglass frame, i.e., the two cheeks and forehead
of human faces, as illustrated in Fig. 2 and 4. Typically, the
stickers are rectangular occlusions, which cover a total of
about 20% area of an input face image.

Grid-level Physically Realizable Attack. In practice,
pixel-level perturbations are not printable on face accessories
made of coarse materials, such as face masks using cloths
and non-woven fabrics. To address this issue, we propose the
grid-level physically realizable face mask attack, which adds
a color grid on face masks, as shown in Fig. 4. Formally,
the face mask attack on closed-set systems is formulated as
the following optimization problem as a variation of Eq. (1)
(formulations for other settings are presented in Appendix
A):

arg max
δ

`(S(x+M · T (δ)), y), (3)

where δ ∈ Ra×b is a a× b color matrix; each element of δ
represents an RGB color. M is the matrix that constrains
the area of perturbations. T is a sequence of transformations
that convert δ to a face mask with a color grid in digital
space by the following steps, as shown in Fig. 8. First, we
use the interpolation transform to scale up the color matrix δ
into a color grid in a background image, which has the same
dimension as x and all pixel values set to be 0. Then, we
split the color grid into the left and right parts, each of which
has four corner points. Afterward, we use a perspective
transformation on each part of the grid for a 2-D alignment,
which is based on the position of its source and destination
corner points. Finally, we add the aligned color grid onto the
input face image x. Details of the perspective transformation
and the algorithm for solving the optimization problem in
Eq. (3) can be found in Appendix A.

3.2. Attacker’s System Knowledge (K)

The key components of a face recognition system S are
the training set D and neural architecture h. It is natural to
ask how do these two components contribute to the robust-
ness against adversarial attacks. From the attackers’ perspec-
tive, we propose several evaluation scenarios in FACESEC,
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which represent adversarial attacks performed under differ-
ent knowledge levels on D and h.

Zero Knowledge. BothD and h are invisible to the attacker,
i.e., K = ∅. This is the weakest adversarial setting, as no
critical information of S is leaked. Thus, it provides an
upper bound for robustness evaluation on S. In this scenario,
the attacks are referred to as black-box attacks, where the
attacker needs no internal details of S to compromise it.

There are two general ways towards black-box attacks,
query-based attack [5, 20] and transfer-based attack [21].
We employ the latter because the former attack requires a
large number of online probes to repeatedly estimate the
loss gradients of S on adversarial examples, which is less
practical than fully offline attacks when access to prediction
decisions is unavailable. The latter method is built upon the
transferability of adversarial examples [21, 7]. Specifically,
an attacker first collects a sufficient of training samples and
builds a surrogate training set D′. Then, a surrogate system
S′ is constructed by training a surrogate neural architecture
h′ on D′ for the same task as S, i.e., S′ = f(h′;D′). Af-
terward, the attacker obtains a set of adversarial examples
by performing white-box attacks on the surrogate system S′,
which constitutes the transferable adversarial examples for
evaluating the robustness of S.

Training Set. This scenario enables the assessment of the
robustness of the training set of S in adversarial settings.
Here, only the training set D is visible to the attacker, i.e.,
K = {D}. Without knowing h, an attacker constructs a sur-
rogate system S′ by training a surrogate neural architecture
h′ on D, i.e., S′ = f(h′;D). Then, the attacker performs
the transfer-based attack aforementioned on S′ and evaluates
S by using the transferred adversarial examples.

Neural Architecture. Similarly, the attacker may only know
the neural architecture h of S but has no access to the training
set D, i.e., K = {h}. This enables us to evaluate the robust-
ness of the neural architecture h of S. Without knowing D,
the attacker can build its surrogate system S′ = f(h;D′)
and conduct the transfer-based attack to evaluate S.

Full Knowledge. In the worst case, the attacker can have
an accurate knowledge of both the training set D and neural
architecture h (i.e., K = {D,h}). Thus, it provides a lower
bound for robustness evaluation on S. In this scenario, the
attacker can fully reproduce S in an offline setting and then
performs white-box attacks on S.

The evaluation method described above is based on the
assumption that the adversarial examples in response to a
surrogate system S′ can always mislead the target system
S. However, there is no theoretical guarantee, and recent
studies show that some transferred adversarial examples can
only fool the target system S with a low success rate [17].

To boost the transferability of adversarial examples pro-
duced on the surrogate system, we leverage two tech-

niques: momentum-based attack [7] and ensemble-based
attack [17, 7]. First, inspired by the momentum-based attack,
we integrate the momentum term into the iterative process of
the white-box attacks on the surrogate system S′ to stabilize
the update directions and avoid the local optima. Thus, the
resulting adversarial examples are more transferable. Sec-
ond, when the neural architecture h of the target system S is
unavailable, we construct the surrogate system S′ using an
ensemble of models with different neural architectures rather
than a single model, i.e., h′ = {h′i}ki=1, where {h′i}ki=1 is an
ensemble of k models. Specifically, we aggregate the output
logits of hi(i ≤ k) in a similar way to [7]. The rationale
behind this is that if an adversarial example can fool multiple
models, it is more likely to mislead other models.

3.3. Attacker’s Goal (G)

In addition to the attacker’s system knowledge about S,
adversarial attacks can differ in specific goals. In FACESEC,
we are interested in the following two types of attacks with
different goals:
Dodging/Non-targeted. In a dodging attack, an attacker
aims to have his/her face misidentified as another arbitrary
face. e.g., the attacker can be a terrorist who wants to bypass
a face recognition system for biometric security checking.
As the dodging attack has no specific identity as which it
aims to predict an input face image, it is also called the
non-targeted attack.
Impersonation/Targeted. In an impersonation/targeted at-
tack, an attacker seeks to produce an adversarial example
that is misrecognized as a target identity. For example, the
attacker may try to camouflage his/her face to be identified
as an authorized user of a laptop, which uses face recognition
for authentication.

In FACESEC, we formulate the dodging attack and im-
personation attack as constrained optimization problems,
corresponding to different face recognition systems and the
attacker’s goals, as shown in Table 1. Here, ` denotes the
softmax cross-entropy loss used in closed-set systems, d
represents the distance metric for open-set systems (e.g., the
cosine distance obtained by subtracting cosine similarity
from one), (x, y) is the input face image and the associated
identity, δ is the adversarial perturbation, S represents a face
recognition system which is built on either a single model or
an ensemble of models with different neural architectures,
M denotes the mask matrix that constrains the area of pertur-
bation (similar to Eq. (1)), ε is the `p-norm bound of δ. For
closed-set systems, we use yt to represent the target identity
of impersonation attacks. For open-set systems, we use x∗

to denote the gallery face image that belongs to the identity
as x, and x∗t as the gallery image for the target identity of
impersonation.

Note that the formulations listed in Table 1 work for both
digital attacks and physically realizable attacks: For the
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Table 1. Optimization formulations by the attacker’s goal.
Target System Attacker’s Goal Formulation

Closed-set Dodging maxδ `(S(x+Mδ), y), s.t. ||δ||p ≤ ε
Closed-set Impersonation minδ `(S(x+Mδ), yt), s.t. ||δ||p ≤ ε
Open-set Dodging maxδ d(S(x+Mδ), S(x∗)), s.t. ||δ||p ≤ ε
Open-set Impersonation minδ d(S(x+Mδ), S(x∗t )), s.t. ||δ||p ≤ ε

former, we use a small value of ε and let M be an all-one
matrix to ensure imperceptible perturbations on the entire
image. For the latter, we use a large ε and let M to constrain
δ in a small area of x.

3.4. Attacker’s Capability (C)

In practice, even when the attackers share the same sys-
tem knowledge and goal, their capabilities can still be dif-
ferent due to the time and/or budget constraints, such as the
budget for printing adversarial eyeglass frames [26]. Thus,
in FACESEC, we consider two types of attacks correspond-
ing to different attacker’s capabilities: individual attack and
universal attack.

Individual Attack. The attacker has a strong capability with
enough time and budget to produce a specific perturbation
for each input face image. In this case, the optimization
formulations are the same as those shown in Table 1.

Universal Attack. The attacker has a time/budget constraint
such that he/she is only able to generate a face-agnostic
perturbation that fools a face recognition system on a batch
of face images instead of every input.

One common way to compute a universal perturbation is
to sequentially find the minimum perturbation of each data
point in the batch and then aggregate these perturbations [19].
However, this method requires orders of magnitude running
time: it processes only one image at each iteration, so a
large number of iterations are needed to obtain a satisfactory
universal perturbation. Moreover, it only focuses on digital
attacks and cannot be generalized to physically realizable
attacks, which seek large perturbations in a restricted area
rather than the minimum perturbations.

To address these issues, we formulate the universal attack
as a maxmin optimization as follows (using the dodging
attack on closed-set systems as an example):

max
δ

min{`(S(xi +Mδ), yi)}Ni=1, s.t. ||δ||p ≤ ε, (4)

where {xi, yi}Ni=1 is a batch of input images that share the
universal perturbation δ. Compared to [19], our approach
has several advantages: First, we can significantly improve
the efficiency by processing images batchwise. Second, our
formulation can explicitly control the universality of the per-
turbation by setting different values of N . Third, our method
can be generalized to both digital attacks and physically re-
alizable attacks. Details of our algorithm for solving the
optimization problem in Eq. (4) and the formulations for
other settings can be found in Appendix B.

Table 2. Open-set face recognition systems in our experiments.
Target Model Training Set Neural Architecture Loss
VGGFace [23] VGGFace [23] VGGFace [23] Triplet [23]

FaceNet [1] CASIA-WebFace [37] InceptionResNet [29] Triplet [25]
ArcFace18 [2] MS-Celeb-1M [10] IResNet18 [14] ArcFace [6]
ArcFace50 [2] MS-Celeb-1M [10] IResNet50 [14] ArcFace [6]

ArcFace101 [2] MS-Celeb-1M [10] IResNet101 [14] ArcFace [6]

4. Experiments

In this section, we evaluate a variety of face recognition
systems using FACESEC on both closed-set and open-set
tasks under different adversarial settings.

4.1. Experimental Setup

Datasets. For closed-set systems, we use a subset of the
VGGFace2 dataset [3]. Specifically, we select 100 classes,
each of which has 181 face images. For open-set systems,
we employ the VGGFace2, MS-Celeb-1M [10], CASIA-
WebFace [37] datasets for training surrogate models, and the
LFW dataset [11] for testing.

Neural Architectures. The face recognition systems
with five different neural networks are evaluated in our
experiments: VGGFace [23], InceptionResNet [29], IRes-
Net18 [14], IResNet50 [14], and IResNet101 [14].

Evaluation Metric. We use attack success rate = 1 -
accuracy as the evaluation metric. Specifically, a higher
attack success rate indicates that a face recognition system is
more fragile in adversarial settings, while a lower rate shows
higher robustness against adversarial attacks.

Implementation. For open-set face recognition, we di-
rectly applied five publicly available pre-trained face recogni-
tion models as the target models for attacks, as summarized
in Table 2. At prediction stage, we used 100 photos ran-
domly selected from frontal images in the LFW dataset [11],
each of which is aligned by using MTCNN [38] and cor-
responds to one identity. And we used another 100 photos
of the same identities as the test gallery. We computed the
cosine similarity between the feature vectors of the test and
gallery photos. If the score is above a threshold correspond-
ing to a False Acceptance Rate of 0.001, then the test photo
is predicted to have the same identity as the gallery photo.

For closed-set face recognition, we randomly split each
class of the VGGFace2 subset into three parts: 150 for train-
ing, 30 for validation, and 1 for testing. To train closed-set
models, we used standard transfer learning with the open-set
models listed in Table 2. Specifically, we initialized each
closed-set model with the corresponding open-set model,
and then added a final fully connected layer, which contains
100 neurons. Unless otherwise specified, each model was
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Face MaskEyeglass Frame Sticker

Figure 6. Mask matrices for physically realizable attacks in
FACESEC.

trained for 60 epochs with a training batch size of 64. We
used the Adam optimizer [13] with an initial learning rate of
0.0001, then dropped the learning rate by 0.1 at the 20th and
35th epochs.

For each physically realizable attack in FACESEC, we
used 255/255 as the `∞ norm bound for perturbations al-
lowed, and ran each attack for 200 iterations. For the PGD
attack [18], we used an `∞ bound 8/255 and 40 iterations.
The dimension of the color grid for face mask attacks is set
to 16 × 8. The mask matrices that constrain the areas of
perturbations for physically realizable attacks are visualized
in Fig. 6.

4.2. Robustness of Face Recognition Components

We begin by using FACESEC to assess the robustness of
face recognition components in various adversarial settings.
For a given target face recognition system S and a pertur-
bation type P , we evaluate the training set D and neural
architecture h of S with the four evaluation scenarios pre-
sented in Section 3.2. Specifically, when h is invisible to
the attacker, we construct the surrogate system S′ by ensem-
bling the models built on the other four neural architectures
shown in Table 2. In the scenarios where the attacker has
no access to D, we build the surrogate training set D′ with
another VGGFace2 subset that has the same classes as D in
closed-set settings, and use the other four training sets listed
in Table 2 for open-set tasks. We present the experimental
results for dodging attacks on closed-set face recognition
systems in Table 3, and the results for zero-knowledge dodg-
ing attacks on open-set VGGFace and FaceNet in Table 4.
The other results can be found in Appendix C. Additionally,
we evaluate the efficacy of using momentum and ensemble
methods to improve transferability of adversarial examples,
which is detailed in Appendix D.

It can be seen from Table 3 that: the neural architecture
is significantly more fragile than the training set in most
adversarial settings. For example, when only the neural
architecture is exposed to the attacker, the sticker attack has
a high success rate of 0.92 on FaceNet. In contrast, when
the attacker only knows the training set, the attack success
rate significantly drops to 0.01. In addition, by comparing
each row of Table 3 that corresponds to the same target sys-
tem, we observe that digital attacks (PGD) are considerably
more potent than their physically realizable counterparts on

Table 3. Attack success rate of dodging attacks on closed-set face
recognition systems by the attacker’s system knowledge. Z repre-
sents zero knowledge, T is training set, A is neural architecture,
and F represents full knowledge.

Target System Attack Type Attacker’s System Knowledge
Z T A F

VGGFace

PGD 0.40 0.51 0.93 0.94
Eyeglass Frame 0.23 0.28 0.70 0.99

Sticker 0.05 0.06 0.47 0.98
Face Mask 0.26 0.32 0.63 1.00

FaceNet

PGD 0.83 0.83 1.00 1.00
Eyeglass Frame 0.13 0.16 0.90 1.00

Sticker 0.01 0.01 0.92 1.00
Face Mask 0.30 0.42 0.83 1.00

ArcFace18

PGD 0.87 0.92 0.97 1.00
Eyeglass Frame 0.06 0.06 0.44 1.00

Sticker 0.01 0.01 0.37 1.00
Face Mask 0.27 0.33 0.71 1.00

ArcFace50

PGD 0.87 0.90 0.81 0.99
Eyeglass Frame 0.09 0.12 0.44 0.99

Sticker 0.00 0.01 0.14 0.94
Face Mask 0.29 0.36 0.67 0.99

ArcFace101

PGD 0.81 0.78 0.86 0.96
Eyeglass Frame 0.03 0.03 0.26 0.98

Sticker 0.04 0.04 0.08 0.95
Face Mask 0.26 0.36 0.54 0.99

Table 4. Attack success rate of dodging attacks on open-set face
recognition systems with zero knowledge.

Target Model Attack Type
PGD Sticker Eyeglass Frame Face Mask

VGGFace 0.26 0.56 0.79 0.67
FaceNet 0.55 0.13 0.54 0.62

closed-set systems, while grid-level perturbations on face
masks are noticeably more effective than pixel-level physi-
cally realizable perturbations (i.e., the eyeglass frame attack
and the sticker attack). Moreover, by comparing the zero
knowledge attacks in Table 3 and 4, we find that open-set
face recognition systems are more vulnerable than closed-
set systems such that nearly all perturbation types of attacks
(even the black-box sticker attack that often fails in closed-
set) tend to be more likely to successfully transfer across
different open-set systems (i.e., these are more susceptible to
black-box attacks), which should raise more concerns about
their security.

4.3. Robustness Under Universal Attacks

Next, we use FACESEC to evaluate the robustness of face
recognition systems with various extents of adversarial uni-
versality by setting the parameter N in Eq. (4) to different
values. For a given N , we split the testing set into mini-
batches of size N , and produce a specific perturbation for
each batch. Note that when N = 1, a universal attack is
reduced to an individual attack. Table 7 shows the experi-
mental results for universal dodging attacks on closed-set
systems. The other results are presented in Appendix E.

Our first observation is that face recognition systems are
significantly more vulnerable to the universal face masks
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Table 5. Attack success rate of dodging attacks on closed-set face
recognition systems by the universality of adversarial examples.
Here, N represents the batch size of face images that share a
universal perturbation.

Target System Attack Type Attacker’s Capability
N=1 N=5 N=10 N=20

VGGFace

PGD 0.94 0.86 0.31 0.15
Eyeglass Frame 0.99 0.91 0.52 0.23

Sticker 0.98 0.66 0.34 0.09
Face Mask 1.00 1.00 0.88 0.56

FaceNet

PGD 1.00 1.00 0.80 0.21
Eyeglass Frame 1.00 1.00 1.00 0.62

Sticker 1.00 1.00 0.98 0.61
Face Mask 1.00 1.00 1.00 0.91

ArcFace18

PGD 1.00 1.00 0.64 0.08
Eyeglass Frame 1.00 0.96 0.44 0.08

Sticker 1.00 0.56 0.09 0.00
Face Mask 0.99 0.92 0.90 0.67

ArcFace50

PGD 1.00 0.80 0.37 0.05
Eyeglass Frame 0.99 0.81 0.38 0.07

Sticker 0.91 0.28 0.06 0.00
Face Mask 0.99 0.98 0.81 0.72

ArcFace101

PGD 0.96 0.91 0.24 0.03
Eyeglass Frame 0.98 0.71 0.19 0.02

Sticker 0.93 0.15 0.03 0.00
Face Mask 0.99 0.92 0.90 0.67

than other types of universal perturbations. Under a large
extent of universality (e.g., whenN = 20), face mask attacks
remain > 0.5 success rates. Particularly noteworthy is the
universal face mask attacks on FaceNet, which can achieve
a rate as high as 0.91. In contrast, other universal attacks
can have relatively low success rates (e.g., 0.08 for eyeglass
frame attack on ArcFace18). The second observation is that
the robustness of a face recognition system against different
types of universal perturbations is highly dependent on its
neural architecture. For example, the ArcFace101 architec-
ture is more robust than the others in most settings, while
FaceNet tends to be the most fragile one.

4.4. Is “Robust” Face Recognition Really Robust?

While numerous approaches have been proposed for mak-
ing deep neural networks more robust to adversarial exam-
ples, only a few [35] focus on defending against physically
realizable attacks on face recognition systems. These de-
fense approaches have achieved good performance for cer-
tain types of realizable attacks and neural architectures, but
their effectiveness for other types of attacks and face recog-
nition systems remains unknown. In this section, we apply
FACESEC to evaluate the state-of-the-art defense paradigms.
Specifically, we first use DOA [35], a method that defends
closed-set VGGFace against eyeglass frame attacks [26] to
retrain each closed-set system. We then evaluate the re-
fined systems using the three physically realizable attacks
included in FACESEC. Fig. 7 shows the experimental results
for dodging attacks.

Our first observation is that the state-of-the-art defense
approach, DOA, fails to defend against the grid-level pertur-
bations on face masks for most neural architectures. Specifi-

VGGFace FaceNet ArcFace18 ArcFace50 Arcface101
Target System (DOA retraining)

0

0.2

0.4

0.6

0.8

1.0

At
ta

ck
 S

uc
ce

ss
 R

at
e

Eyeglass Frame Sticker Face Mask

Figure 7. Attack success rate of dodging physically realizable at-
tacks on closed-set systems with DOA retraining.

cally, face mask attacks can achieve > 0.7 success rates on
four out of the five face recognition systems refined by DOA.
Moreover, we observe that adversarial robustness against
one type of perturbation can not be generalized to other
types. For example, while VGGface-DOA exhibits a rela-
tively high level of robustness (more than a 70% accuracy)
against pixel-level perturbations (i.e., stickers and eyeglass
frames), it is very vulnerable to grid-level perturbations (i.e.,
face masks). In contrast, using DOA on FaceNet can success-
fully defend face mask perturbations with the attack success
rate significantly dropping from 1.0 to 0.24, but it’s consid-
erably less effective against eyeglass frames and stickers. In
summary, these results show that the effectiveness of defense
is highly dependent on the nature of perturbation and neural
architectures, which in turn, indicates that it is critical to con-
sider different types of attacks and neural architectures when
evaluating a defense method for face recognition systems.

5. Conclusion

We present FACESEC, a fine-grained robustness evalua-
tion framework for face recognition systems. FACESEC in-
corporates four evaluation dimensions and can work on both
face identification and verification of open-set and closed-
set systems. To our best knowledge, FACESEC is the first-
of-its-kind platform that supports to evaluate the risks of
different components of face recognition systems from mul-
tiple dimensions and under various adversarial settings. The
comprehensive and systematic evaluations on five state-of-
the-art face recognition systems demonstrate that FACESEC
can greatly help understand the robustness of the systems
against both digital and physically realizable attacks. We
envision that FACESEC can serve as a useful framework
to advance future research of adversarial learning on face
recognition.
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Figure 8. Transformations for the grid-level face mask attack.

A. Grid-level Face Mask Attack
A.1. Formulation

The optimization formulations of the proposed grid-level
face mask attacks under different settings are presented in
Table 6. Here, S is the target face recognition model, x is the
original input face image. δ ∈ Ra×b is a a× b color matrix;
each element of δ represents an RGB color. M denotes the
mask matrix that constrains the area of perturbation; it con-
tains 1s where perturbation is allowed, and 0s where there
is no perturbation. For closed-set systems, ` denotes the
softmax cross-entropy loss function, y is the identity of x,
and yt is the target identity for impersonation attacks. For
open-set settings, d is the cosine distance (obtained by sub-
tracting cosine similarity from one), x∗ is the gallery image
of x, and x∗t is the target gallery image for impersonation.
T represents a set of transformations that convert the color
matrix δ to a face mask with a color grid in digital space.
Specifically, T contains two transformations: interpolation
transformation and perspective transformation, which are
detailed below.

A.2. Interpolation Transformation

The interpolation transform starts from a a × b color
matrix δ and uses the following two steps to scale δ into a
face image, as illustrated in Fig. 8: First, it resizes the color
matrix from a× b to a rectangle δ′ with c×d pixels, so as to
reflect the size of a face mask in a face image in digital space
while preserving the layout of the color grids represented
by δ. Specifically, in FACESEC, each input face image has
224×224 pixels. Let (a, b) = (8, 16) and (c, d) = (80, 160).
Then, we put the face mask δ′ into a background image, such
that the pixels in the rectangular area have the same value
with δ′, and those outside the face mask area have values of
0s.

A.3. Perspective Transformation

Once the rectangle δ′ is embedded into a background
image, we use a 2-D alignment that relies on the perspec-
tive transformation by the following steps. First, we divide
δ′ into a left half part δ′L and a right half part δ′R; each is

Algorithm 1 Computing adversarial face mask.
Input: Target system S;

Input face image x and its identity y;
The number of iterations T ;
Step size α;
Momentum parameter µ.

Output: The color matrix of adversarial face mask δT .
1: Initialize the color matrix δ0 := 0, momentum g0 := 0;

2: Use interpolation and perspective transformations to
convert δ0: δ

′′

0 := T (δ0);
3: for each t ∈ [0, T − 1] do

4: gt+1 := µ · gt +
∇δt`(S(x+M ·δ

′′
t ),y)

||`(S(x+M ·δ′′t ),y)||1
;

5: δt+1 := δt + α · sign(gt+1);
6: δ

′′

t+1 := T (δt+1);
7: Clip δ

′′

t+1 such that pixel values of x+M · δ′′

t+1 are
in [0, 255/255];

8: end for
9: return δT .

rectangular with four corners. Then, we apply the perspec-
tive transformation to project each part to be with aligned
coordinates, such that the new coordinates align with the
position when a face mask is put on a human face, as shown
in Fig. 8. Let δ

′′

L and δ
′′

R be the left and right part of the
aligned face mask, the perspective transformation aims to
find a 3× 3 matrix Nk (k ∈ {L,R}) for each part such that
the coordinates satisfy:

δ
′′

k (x, y) = δ′k(u, v), k ∈ {L,R},

where

u =
Nk(1, 1)x+Nk(1, 2)y +Nk(1, 3)

Nk(3, 1)x+Nk(3, 2)y +Nk(3, 3)
,

and

v =
Nk(2, 1)x+Nk(2, 2)y +Nk(2, 3)

Nk(3, 1)x+Nk(3, 2)y +Nk(3, 3)
.

Finally, we merge δ
′′

L and δ
′′

R to obtain the aligned grid-level
face mask.

A.4. Computing Adversarial Face Masks

The algorithm for computing the color grid for adversarial
face mask attack is outlined in Algorithm 1. Here, we use
the dodging attack on closed-set systems as an example. The
algorithms for other settings are similar. Note that δT is
the resulting color matrix, and the corresponding adversarial
example is x+M · T (δT ).
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Table 6. Optimization formulations of grid-level face mask attacks.
Target System Attacker’s Goal Formulation

Closed-set Dodging maxδ `(S(x+M · T (δ)), y)
Closed-set Impersonation minδ `(S(x+M · T (δ)), yt)
Open-set Dodging maxδ d(S(x+M · T (δ)), S(x∗))
Open-set Impersonation minδ d(S(x+M · T (δ)), S(x∗t ))

Table 7. Optimization formulations of universal dodging attacks.
Target System Perturbation Type Formulation

Closed-set Pixel-level maxδ min{`(S(xi +Mδ), yi)}Ni=1, s.t. ||δ||p ≤ ε
Closed-set Grid-level maxδ min{`(S(xi +M · T (δ)), yi)}Ni=1

Open-set Pixel-level maxδ min{d(S(xi +Mδ), S(x∗i ))}Ni=1, s.t. ||δ||p ≤ ε
Open-set Grid-level maxδ min{d(S(xi +M · T (δ)), S(x∗i ))}Ni=1

Algorithm 2 Finding universal perturbations.
Input: Target system S;

Input face image batch {xi, yi}Ni=1;
The number of iterations T ;
Step size α;
Momentum parameter µ.

Output: The universal perturbation δT for {xi, yi}Ni=1.
1: Initialize δ0 := 0, g0 := 0;
2: for each t ∈ [0, T − 1] do
3: for each i ∈ [1, N ] do
4: `i,t := `(S(xi +M · δt), yi);
5: end for
6: `t = min{`i,t}Ni=1;
7: gt+1 := µ · gt +

∇δt`t
||`t||1 ;

8: δt+1 := δt + α · sign(gt+1);
9: Clip δt+1 such that pixel values of x+M · δt+1 are

in [0, 255/255];
10: end for
11: return δT .

B. Universal Attack
B.1. Optimization Formulation

The formulations of universal perturbations are presented
in Table 7. In FACESEC, we mainly focus on universal
dodging attacks. Effective universal impersonation attack is
still an open problem, and we leave it for future work.

B.2. Computing Universal Perturbations

The algorithm for finding universal perturbations is pre-
sented in Algorithm 2. Here, we use the dodging attack
on closed-set systems as an example. The algorithms for
other settings are similar. Note that in practice, Line 3–6 in
Algorithm 2 can be executed in a paralleled manner by us-
ing GPUs. Therefore, compared to traditional methods that
iterate every data point to find a universal perturbation [19],
our approach can achieve a significant speedup.

C. Robustness of Face Recognition Compo-
nents

C.1. Open-set Systems Under Dodging Attacks

To study the robustness of open-set system components
under dodging attacks, we employ six different face recog-
nition systems and then evaluate the attack success rates of
dodging attacks corresponding to different target and surro-
gate face recognition models. Specifically, besides the five
systems (VGGFace, FaceNet, ArcFace18, ArcFace50, and
ArcFace101) presented in Table 2 of the main paper, we
build a face recognition model by training FaceNet [25] us-
ing the VGGFace2 dataset [3] (henceforth, FaceNet+). Here,
FaceNet and FaceNet+ are trained using the same neural
architecture but different training sets, while the ArcFace
variations share the same training data but with different
architectures. The results are presented in Fig. 9.

We have the following two observations, which are sim-
ilar to those observed from dodging attacks on closed-set
systems in the main paper. First, in most cases, an open-set
system’s neural architecture is more fragile than its training
set. For example, under the PGD attack, adversarial exam-
ples in response to FaceNet+ have a 94% success rate on
FaceNet (which is trained using the same architecture but
different training data), while the success rates among the Ar-
cFace systems (which are built with the same training set but
different neural architectures) are only around 50%. How-
ever, there are also some cases where the neural architecture
exhibits similar robustness to the training set. For example,
when black-box attacks are too weak (under sticker attack),
both neural architecture and training set are robust; when the
attacks are too strong (under face mask attack), these two
components exhibit similar levels of vulnerability. Second,
the grid-level face mask attack is considerably more effective
than the PGD attack, and significantly more potent than other
physically realizable attacks. Like dodging attacks in closed-
set settings, most black-box pixel-level physically realizable
attacks have relatively low transferability on open-set face
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Figure 9. Attack success rate of dodging attacks with different open-set targets and surrogate models. Upper left: PGD attack. Upper right:
Eyeglass frame attack. Lower left: Sticker attack. Lower right: Face mask attack.

recognition systems, with only about 20% success rate.

C.2. Closed-set Systems Under Impersonation At-
tacks

Here, we use impersonation attacks to evaluate the ro-
bustness of closed-set systems. In our experiments, all the
closed-set models are 100-class classifiers, as introduced in
Section 4.1 of the main paper. For any input face image x
and its identity y ∈ [0, 99], we let the target identity of the
impersonation attack to be yt = (y+ 1)%100. An imperson-
ation attack is successful only when the resulting adversarial
example is misclassified as the target identity yt. The results
are shown in Table 8.

We have two key findings. First, compared to Table 3
of the main paper, we observe that closed-set systems are
significantly more robust to impersonation attacks than dodg-
ing attacks. Especially when an attacker has no accurate
knowledge about the target system, the attack success rate of
physically realizable attacks can be as low as 0%. Second, it
can be seen that closed-set systems exhibit moderate robust-
ness against digital impersonation attacks. In such attacks,

the knowledge of neural architecture is significantly more
important than the training set. For example, by knowing the
neural architecture of ArcFace18, a PGD attack can achieve
a 69% success rate. In contrast, this rate drops to 25% when
only the training set is visible to the attacker.

C.3. Open-set Systems Under Impersonation At-
tacks

To evaluate impersonation attacks on open-set systems,
we randomly select 100 pairs from the LFW dataset [11]
in a way similar to Section 4.1 of the main paper. Each
pair contains two face images corresponding to different
identities. We let one image as the input x and the other
as the target gallery image x∗t . An impersonation attack is
successful only when the resulting adversarial example and
x∗t are verified as the same identity. The experimental results
are presented in Fig. 10.

Similar to the impersonation attacks on closed-set sys-
tems, we have the following observations that are consistent
with our previous summary. First, open-set systems are
very robust to black-box impersonation physically realiz-
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Figure 10. Attack success rate of impersonation attacks with different open-set targets and surrogate models. Upper left: PGD attack. Upper
right: Eyeglass frame attack. Lower left: Sticker attack. Lower right:Face mask attack.

able attacks. In most cases, these attacks can only achieve
a success rate of less than 10%. In contrast, the PGD at-
tack is significantly more potent. And under this attack, the
neural architecture is considerably more vulnerable than the
training set (e.g., comparing FaceNet variations to ArcFace
models).

D. Efficacy of Momentum and Ensemble Mod-
els in Transfer-based Attacks

Next, we evaluate the efficacy of using momentum and
ensemble-based surrogate models in transfer-based dodging
attacks. For a given closed-set target face recognition system,
we first train a surrogate model using the same training
data. Specifically, we use both a single surrogate trained
on a different architecture2, and an ensembled surrogate by
ensembling the other four systems in the way described in
Section 3.2 of the main paper. We then produce white-box
dodging attacks on the surrogate and evaluate the resulting

2For a given target model, we trained four single surrogates correspond-
ing to the other four architectures. Below, we only present the result of the
surrogate that has the highest attack success rate.

examples’ attack success rate on the target model. For each
attack, we compare the momentum method (i.e., w/ mmt) and
the conventional gradient-based approach (i.e., w/o mmt).
The results are shown in Table 9, 10, 11, and 12.

We have two key observations. First, both ensemble and
momentum contribute to stronger transferability, although in
most cases, ensemble contributes more. For example, the en-
semble method can boost the transferability of PGD attacks
on FaceNet by 31%, while the improvement by momen-
tum is only about 10%. Second, the efficacy of momentum
and ensemble models is highly dependent on the nature of
perturbation. For digital attacks, these methods combined
can significantly improve transferability by up to 55%. In
grid-level face mask attacks, the improvement is as con-
siderable as up to 16%. However, both methods can only
marginally boost the transferability of pixel-level realizable
attacks. Especially in the sticker attacks, the improvement
is nearly negligible. We leave effective transfer-based pixel-
level physically realizable attacks as an open problem for
future research.
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Table 8. Attack success rate of impersonation attacks on closed-set
face recognition systems by the attacker’s system knowledge. Z
represents zero knowledge, T is training set, A is neural architecture,
and F represents full knowledge.

Target System Attack Type Attacker’s System Knowledge
Z T A F

VGGFace

PGD 0.11 0.21 0.35 1.00
Eyeglass Frame 0.01 0.01 0.03 0.95

Sticker 0.00 0.00 0.00 1.00
Face Mask 0.00 0.01 0.02 1.00

FaceNet

PGD 0.23 0.32 1.00 1.00
Eyeglass Frame 0.00 0.00 0.28 0.99

Sticker 0.01 0.00 0.21 1.00
Face Mask 0.00 0.00 0.26 0.99

ArcFace18

PGD 0.18 0.25 0.69 1.00
Eyeglass Frame 0.01 0.01 0.05 0.89

Sticker 0.00 0.00 0.01 0.94
Face Mask 0.01 0.01 0.03 0.77

ArcFace50

PGD 0.13 0.15 0.45 0.87
Eyeglass Frame 0.02 0.02 0.03 0.67

Sticker 0.00 0.00 0.00 0.58
Face Mask 0.01 0.01 0.01 0.60

ArcFace101

PGD 0.14 0.16 0.42 0.96
Eyeglass Frame 0.00 0.00 0.03 0.58

Sticker 0.00 0.00 0.00 0.50
Face Mask 0.01 0.01 0.04 0.73

Table 9. Attack success rate of dodging PGD attacks on closed-set
face recognition systems. Here, only the target system’s training
data is visible to the attacker, and we use different surrogate models.

Target System
Surrogate System

Single Ensemble
w/o mmt w/ mmt w/o mmt w/ mmt

VGGFace 0.08 0.16 0.43 0.51
FaceNet 0.42 0.52 0.73 0.83

ArcFace18 0.42 0.51 0.87 0.92
ArcFace50 0.35 0.55 0.86 0.90

ArcFace101 0.32 0.39 0.71 0.78

Table 10. Attack success rate of dodging eyeglass frame attacks on
closed-set face recognition systems. Here, only the target system’s
training data is visible to the attacker, and we use different surrogate
models.

Target System
Surrogate System

Single Ensemble
w/o mmt w/ mmt w/o mmt w/ mmt

VGGFace 0.17 0.22 0.26 0.28
FaceNet 0.08 0.09 0.14 0.16

ArcFace18 0.02 0.03 0.05 0.06
ArcFace50 0.05 0.05 0.10 0.12

ArcFace101 0.02 0.03 0.02 0.03

E. Universal Attacks

Finally, we evaluate open-set systems under universal
dodging attacks. The results are shown in Table 13. Com-
pared to Table 5 of the main paper, we find that open-set
systems are significantly more fragile to universal pertur-
bations of all types than their closed-set counterparts. For
example, when N = 20, the open-set ArcFace101 is suscep-

Table 11. Attack success rate of dodging sticker attacks on closed-
set face recognition systems. Here, only the target system’s training
data is visible to the attacker, and we use different surrogate models.

Target System
Surrogate System

Single Ensemble
w/o mmt w/ mmt w/o mmt w/ mmt

VGGFace 0.02 0.02 0.06 0.06
FaceNet 0.00 0.00 0.01 0.01

ArcFace18 0.00 0.00 0.01 0.01
ArcFace50 0.00 0.00 0.00 0.01

ArcFace101 0.00 0.01 0.04 0.04

Table 12. Attack success rate of dodging face mask attacks on
closed-set face recognition systems. Here, only the target system’s
training data is visible to the attacker, and we use different surrogate
models.

Target System
Surrogate System

Single Ensemble
w/o mmt w/ mmt w/o mmt w/ mmt

VGGFace 0.18 0.26 0.20 0.32
FaceNet 0.26 0.38 0.42 0.42

ArcFace18 0.21 0.33 0.21 0.33
ArcFace50 0.28 0.34 0.36 0.36

ArcFace101 0.22 0.34 0.30 0.36

Table 13. Attack success rate of dodging attacks on open-set face
recognition systems by the universality of adversarial examples.
Here, N represents the batch size of face images that share a
universal perturbation.

Target System Attack Type Attacker’s Capability
N=1 N=5 N=10 N=20

VGGFace

PGD 1.00 0.89 0.81 0.53
Eyeglass Frame 1.00 1.00 1.00 1.00

Sticker 1.00 1.00 1.00 1.00
Face Mask 1.00 1.00 1.00 1.00

FaceNet

PGD 1.00 0.02 0.02 0.02
Eyeglass Frame 1.00 1.00 1.00 1.00

Sticker 1.00 1.00 0.99 0.90
Face Mask 1.00 1.00 0.99 0.98

ArcFace18

PGD 1.00 0.96 0.79 0.46
Eyeglass Frame 0.99 0.86 0.70 0.67

Sticker 1.00 1.00 1.00 0.99
Face Mask 0.98 0.98 0.93 0.92

ArcFace50

PGD 1.00 0.91 0.75 0.47
Eyeglass Frame 0.99 0.78 0.67 0.62

Sticker 1.00 1.00 1.00 0.00
Face Mask 0.99 0.99 0.99 0.94

ArcFace101

PGD 1.00 0.68 0.68 0.41
Eyeglass Frame 1.00 0.85 0.73 0.65

Sticker 0.99 0.98 0.97 0.97
Face Mask 1.00 1.00 1.00 1.00

tible to all the four types of universal attacks, while in the
closed-set setting it is only vulnerable to the universal face
mask attack. Moreover, we again observe that the universal
grid-level face mask attack is more effective than the other
perturbation types. Here, we also find that the sticker attack
is as potent as the face mask attack in open-set settings.
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