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Abstract

In recent years, binary coding techniques are becoming

increasingly popular because of their high efficiency in han-

dling large-scale computer vision applications. It has been

demonstrated that supervised binary coding techniques that

leverage supervised information can significantly enhance

the coding quality, and hence greatly benefit visual search

tasks. Typically, a modern binary coding method seeks

to learn a group of coding functions which compress data

samples into binary codes. However, few methods pursued

the coding functions such that the precision at the top of

a ranking list according to Hamming distances of the gen-

erated binary codes is optimized. In this paper, we pro-

pose a novel supervised binary coding approach, namely

Top Rank Supervised Binary Coding (Top-RSBC), which

explicitly focuses on optimizing the precision of top posi-

tions in a Hamming-distance ranking list towards preserv-

ing the supervision information. The core idea is to train

the disciplined coding functions, by which the mistakes at

the top of a Hamming-distance ranking list are penalized

more than those at the bottom. To solve such coding func-

tions, we relax the original discrete optimization objective

with a continuous surrogate, and derive a stochastic gra-

dient descent to optimize the surrogate objective. To fur-

ther reduce the training time cost, we also design an online

learning algorithm to optimize the surrogate objective more

efficiently. Empirical studies based upon three benchmark

image datasets demonstrate that the proposed binary cod-

ing approach achieves superior image search accuracy over

the state-of-the-arts.

∗ Wei Liu was with IBM Research when this work was conducted.

1. Introduction

With the rapid development of massive image collections

such as Facebook, Instagram, and Flickr, how to search for

visually relevant images effectively and efficiently has be-

come overwhelmingly important. Instead of exhaustively

searching for the most similar images with respect to a

query in one high-dimensional feature space, binary coding

techniques encode images with binary codes via proper cod-

ing functions and perform efficient searches in the generated

low-dimensional code space (i.e., Hamming space), there-

fore drastically accelerating search procedures and also sav-

ing storage. During the past few years, binary coding

(also known as hashing [26] in the literature) techniques

have been widely used in a variety of computer vision and

machine learning applications, including object recogni-

tion [23, 24, 21], scene classification [22], image retrieval

[9, 14, 8, 33, 34, 20], linear classifier training [10, 11], ac-

tive learning [15], multi-task learning [28], etc.

Conceptually, a typical binary coding method exploits

a group of coding functions
{

hk : R
d �→ H

}r

k=1
to map

data samples from a d-dimensional data space R
d to an r-

dimensional Hamming space H
r, such that original samples

are represented as binary codes of length r. Early explo-

rations in binary coding, such as Locality-Sensitive Hashing

(LSH) [2] and Min-wise Hashing (MinHash) [3], construct

coding functions with random permutations or projections.

These randomized binary coding methods, however, require

long code lengths (r ≥ 1, 000) to meet search requirements,

and usually incur inferior search accuracy for large-scale

image search [13].

Unlike the early randomized binary coding methods that

are independent of data, a great number of data-dependent

binary coding techniques have been proposed during the
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recent decade. Generally speaking, these techniques can

be categorized into two main types: unsupervised and su-

pervised (including semi-supervised) approaches. Unsuper-

vised approaches, such as Spectral Hashing (SH) [29], Iter-

ative Quantization (ITQ) [4], Isotropic Hashing (ISOH) [6],

Discrete Graph Hashing (DGH) [12] etc., seek to learn cod-

ing functions by taking into account underlying data struc-

tures, distributions, or topological information. Differently,

supervised approaches aim to learn coding functions by in-

corporating supervised information, e.g., instance-level la-

bels, pair-level labels, or triplet-level ranks. The representa-

tive techniques include Binary Reconstructive Embedding

(BRE) [7], Minimal Loss Hashing (MLH) [16], Kernel-

based Supervised Hashing (KSH) [13], Hamming Distance

Metric Learning (HDML) [17], Ranking-based Supervised

Hashing (RSH) [27], Column Generation Hashing (CGH)

[11], and Rank Preserving Hashing (RPH) [20].

In particular, pointwise supervised methods (e.g.,

BRE [7]) and pairwise supervised methods (e.g., MLH [16]

and KSH [13]) respectively leverage labels of instances and

pairwise labels of instance-pairs to train the coding func-

tions such that the label information can be preserved in the

produced Hamming space. Their objectives, however, may

be suboptimal for visual search task because the ranking in-

formation was not fully exploited. To tackle this issue, rank

supervised approaches (e.g., HDML [17], RSH [27], CGH

[11], and RPH [20]) which employ triplet-level ranks are

developed.

Although the aforementioned rank supervised binary

coding approaches have shown their efficacy for large-scale

image search tasks, we would argue that few of them ex-

plored optimizing the precision at the top positions of a

ranking list according to Hamming distances of the gener-

ated binary codes since most of them treat triplet-level vio-

lations equally (independent of their positions in the Ham-

ming distance ranking list), which is indeed one of the most

practical concerns with high-performance image search. To

this end, in this paper we propose a novel Top Rank Super-

vised Binary Coding (Top-RSBC) technique specially de-

signed for optimizing the precision of top positions in a

Hamming distance ranking list. The core idea is to train

the disciplined coding functions by which the mistakes at

the top of a Hamming-distance ranking list are penalized

more than those at the bottom. Since our introduced rank-

preserving objective is discrete in nature and its associated

optimization problem is combinatorially difficult, we re-

lax the original discrete objective to a continuous and dif-

ferentiable surrogate, and accordingly derive a stochastic

gradient descent method to optimize the surrogate objec-

tive. To further reduce the training time cost, we also de-

sign an online learning algorithm to optimize the surrogate

objective efficiently. We compare the proposed approach,

i.e., Top-RSBC, against various state-of-the-art binary cod-

ing methods through extensive experiments conducted on

three benchmark image datasets, i.e., SUN397 [32], Ima-

geNet100 [19], and YouTube Faces [31], among which the

largest dataset contains more than 600K images. The ex-

perimental results demonstrate that Top-RSBC outperforms

the state-of-the-arts in executing rapid image search with

binary codes.

The rest of this paper is organized as follows. In Section

2, we describe the learning model of Top-RSBC. In Sec-

tion 3, we study a surrogate optimization objective of Top-

RSBC, accordingly introduce a stochastic gradient descent

method to optimize this objective, and further design an on-

line learning algorithm to tackle this objective efficiently.

We present the experimental results in Section 4, and finally

conclude this work in Section 5.

2. Top Rank Supervised Binary Coding

In this section, we first introduce some main notations

used in the paper. Let X ∈ R
d×n be a data matrix of n

data samples with d dimensions, xi ∈ R
d be the i-th col-

umn of X, and Xij be the entry in i-th row and j-th col-

umn of X, respectively. Moreover, we use ‖ · ‖F to denote

the Frobenius norm of matrices, and ‖x‖H to represent the

Hamming norm of a vector x, which is defined as the num-

ber of nonzero entries in x, i.e., ℓ0 norm. We use ‖x‖1 to

represent the ℓ1 norm of vector x, which is defined as the

sum of absolute values of the entries in x.

Given a data matrix X ∈ R
d×n, the purpose of our

proposed supervised binary coding model Top-RSBC is to

learn a group of mapping functions
{

hc(x)
}r

c=1
such that a

d-dimensional floating-point input x ∈ R
d is compressed

into an r-bit binary code b =
[

h1(x), · · · , hr(x)
]⊤

∈
H

r ≡ {1,−1}r. This mapping, known as coding or hash

function in the literature, is formulated by

hc(x) = sgn
(

fc(x)
)

, c = 1, · · · , r, (1)

where sgn(x) is the sign function that returns 1 if input

variable x > 0 and -1 otherwise, and fc : R
d �→ R is

a proper prediction function. A variety of mathematical

forms for fc (e.g., linear or nonlinear) can be utilized to

serve to specific data domains and practical applications. In

this work, we focus on using a linear prediction function,

that is, fc(x) = w
⊤
c x + tc (where wc ∈ R

d and tc ∈ R)

for simplicity. Following the previous work [4, 6, 13, 27],

we set the bias term tc = −w
⊤
c u by using the mean vector

u =
∑n

i=1 xi/n, which will make each generated binary

bit
{

hc(xi)
}r

c=1
for c ∈ [1 : r] be nearly balanced and

hence exhibit maximum entropy. For brevity, we further

define the whole coding function h : R
d �→ H

r to comprise

the functionality of r individual coding functions {hc}
r
c=1,

that is,

h(x,W) = sgn
(

W
⊤(x − u)

)

, (2)
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Figure 1. Loss function L(R), the gradient of L(R), i.e., L′(R),

and L′′(R).

which is parameterized by a matrix W = [w1, · · · ,wr] ∈
R

d×r. Note that Eq. (2) applies the sign function sgn(·) in

the element-wise way. For simplicity, we will abbreviate

W and use h(x) = h(x,W) in the following description.

To pursue such a coding function h(·), rather than con-

sidering pairwise data similarities (i.e., pair-level labels) as

in [16, 13], we leverage relative data similarities in the form

of triplets D =
{

(xi, xj , xs)
}

, in which the pair (xi, xj)

is more similar than the pair (xi, xs) (e.g., xi and xj be-

long to the same class while xi and xs belong to differ-

ent classes). Intuitively, we would expect that these rela-

tive similar relationships revealed by D can be preserved

within the Hamming space by virtue of a good coding func-

tion h(·), which makes the Hamming distance between the

codes h(xi) and h(xj) smaller than that between the codes

h(xi) and h(xs). Suppose that xi is a query, xj is its simi-

lar sample, and xs is its dissimilar sample. Then the “rank”

of xj with respect to the query xi can be defined as the

number of dissimilar samples xs (when s varies) which are

more closer to the query xi than xj within Hamming space.

Specifically, the “rank” can be written as:

R(xi,xj) =
∑

s

I
(

∥

∥h(xi) − h(xs)
∥

∥

H
≤

∥

∥h(xi) − h(xj)
∥

∥

H

)

,

(3)

where I(·) is an indicator function which returns 1 if the

condition in the parenthesis is satisfied and returns 0 oth-

erwise. Intuitively, the function R(xi,xj) explicitly mea-

sures the number of the incorrectly ranked dissimilar sam-

ples xs’s which are closer to the query xi than the similar

sample xj in terms of Hamming distance and therefore in-

dicates the position of xj in a Hamming distance ranking

list with respect to the query xi. In order to explicitly opti-

mize the search precision at top positions of a ranking list,

we introduce a ranking loss as:

L
(

R(xi,xj)
)

= log
(

1 + R(xi,xj)
)

(4)

which penalizes the samples (i.e., xs’s) that are incorrectly

ranked at the top of a Hamming-distance ranking list more
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Figure 2. Relaxation of the objective function. (a) tanh(x) is a

relaxation of sgn(x); (b) sigmoid loss G(x) = 1
1+exp(−x)

is a

good approximation for indicator function I(x > 0).

than those at the bottom. This is because the increment of

L
(

R) gradually decays as R increases linearly. The detailed

properties of the ranking loss are shown in Figure 1. As

we can notice, L(R) is a one to one monotonic increasing

function with first order derivative L′(R) large than zero

and second order derivative L′′(R) smaller than zero. Since

L(R) can be seen as an integral of its gradient, intuitively,

L′(R) > 0 preserves the rank by penalizing the “rank” (i.e.,

R) we defined more severe at the top (i.e., when R is small)

than at the bottom (i.e., when R is large).

Our model Top-RSBC makes use of the above ranking

loss and the learning objective is formulated as follows:

O(X,W) =
∑

i

∑

j

log
(

1 + R(xi,xj)
)

+
λ

2
‖W‖2

F,

(5)

where the first term is the proposed ranking loss, the second

term enforces regularization, and λ > 0 is a positive pa-

rameter controlling the trade-off between the ranking loss

and the regularization term. By optimizing this objective

with respect to W, we expect to optimize the visual search

precision at top positions of a Hamming distance ranking

list.

We are aware that similar idea of our ranking loss in Eq.

(4) was previously used for information retrieval [25] and

image annotation [30]. Our work differs from the them be-

cause (a) the relative similarity of the triplets are measured

with Hamming distance which is discrete and discontinu-

ous; and (b) our ranking loss is continuous differentiable

while the previous ones are discrete and difficult to opti-

mize.

3. Optimization

Although the ranking loss in Eq. (4) is continuous and

differentiable, our objective in Eq. (5) is still difficult to

optimize. This is because: (a) the coding function is a dis-

crete mapping; and (b) the Hamming norm lies in a discrete

space. Therefore, our introduced Top-RSBC objective is

discrete in nature and the associated optimization problem

is combinatorially difficult.
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Algorithm 1 SGD learning for Top-RSBC.

1: Input: data D =
{

(xi, xj , xs)
}

, α, W, and λ

2: Output: W ∈ R
d×r

3: repeat

4: Randomly pick up an query xi.

5: Fix xi and randomly select an similar example xj .

6: Fix xi and xj , and randomly draw p ≤ |N | dissimilar

xs’s when s varies to form {xi, xj , xs}
p
s=1.

7: Calculate the gradient in Eq. (13).

8: Make a gradient descent based upon Eq. (14).

9: until validation error does not improve or maximum iteration

number is achieved.

To tackle this issue, we need relax the original discrete

objective to a continuous and differentiable surrogate.

3.1. Relaxation

Specifically, the target coding function h(x) =
sgn

(

W
⊤(x − u)

)

can be relaxed as:

h(x) = tanh
(

W
⊤(x − u)

)

, (6)

which is continuous and differentiable as shown in Figure

2(a). tanh(·) is a good approximation for sgn(·) function

because it transforms the value in the parenthesis to be in

between of −1 and +1.

Next, the Hamming norm in Eq. (3) is relaxed to ℓ1 norm

which is convex.

Finally, we relax the indicator function in Eq. (3) with

sigmoid loss (as shown in Figure 2(b)). Accordingly, Eq.

(3) can be can be approximated with::

I
(

∥

∥h(xi) − h(xs)
∥

∥

1
≤

∥

∥h(xi) − h(xj)
∥

∥

1

)

≈G
(

∥

∥h(xi) − h(xj)
∥

∥

1
−

∥

∥h(xi) − h(xs)
∥

∥

1

) (7)

where G(z) = 1
1+exp(−z) is the sigmoid function as shown

in Figure 2(b).

Based upon these relaxations, the objective in Eq. (5)

can be approximated with:

O(X,W) =λ‖W‖2
F +

∑

i

∑

j

log(1 + R(xi,xj))· (8)

where R(xi,xj) is a soft-approximated rank of xj with re-

spect to the query xi which can be given by:

R(xi,xj) =
∑

s

G
(

Tij − Tis

)

, (9)

where Tij is written as

Tij =
∥

∥h(xi) − h(xj)
∥

∥

1
, (10)

and Tis is denoted as

Tis =
∥

∥h(xi) − h(xs)
∥

∥

1
. (11)

Although sub-gradient descent approach can be derived

to optimize Eq. (8), it may converge slowly or even will be

infeasible because of the expensive computational for the

full gradient at each iteration. Therefore, a stochastic gradi-

ent descent method is derived to resolve this issue.

3.2. Stochastic Gradient Descent (SGD)

To optimize Top-RSBC with stochastic gradient descent

algorithm, given a collection of triplets D, we first randomly

select a query xi and its similar example xj . Then we fix xi

and xj , and randomly draw p (p ≤ |N |) different xs’s when

s varies to form a set of triplets {xi,xj ,xs}
p
s=1. Note that

|N | is the total number of possible choices of s. Assuming

that the violated examples are uniformly distributed, then

R(xi,xj) can be approximated with ⌊ |N |
p
�·

∑p
s=1 G

(

Tij−

Tis

)

where ⌊·� is the floor function.

In this way, the objective of these chosen triplets can be

written as:

O(xi,xj ,W)

=
λ

2
‖W‖2

F + log
(

1 +
⌊ |N |

p

⌋

·

p
∑

s=1

G
(

Tij − Tis

))

,

(12)

and its associated gradient is given by:

∂O(xi, xj ,W)

∂W
=

λW +

⌊

|N|
p

⌋

∑p

s=1 G
(

Tij − Tis

)

G
(

− Tij + Tis

)

1 +
⌊

|N|
p

⌋

·
∑p

s=1 G
(

Tij − Tis

) ·

{

(xi − u)
[

sgn
(

h(xi) − h(xj)
)

⊙

(

1 − h
2
(xi)

)]�

−(xj − u)
[

sgn
(

h(xi) − h(xj)
)

⊙

(

1 − h
2
(xj)

)]�

−(xi − u)
[

sgn
(

h(xi) − h(xs)
)

⊙

(

1 − h
2
(xi)

)]�

+(xs − u)
[

sgn
(

h(xi) − h(xs)
)

⊙

(

1 − h
2
(xs)

)]�}

,

(13)

where the symbol
⊙

denotes Hadamard product (i.e., ele-

mentwise product).

Based upon this gradient, we can perform the follow-

ing stochastic gradient update rule over the parameter W,

which is given as:

Wt+1 = Wt − α
∂O(xi,xj ,W)

∂Wt

, (14)

where α is the learning rate and t is the iteration index.

Although the ideal case is that within these p sampled

triplets {xi, xj ,xs}
p
s=1 at least one violation (i.e., the ℓ1
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Algorithm 2 Online learning for Top-RSBC.

1: Input: data D =
{

(xi, xj , xs)
}

, α, W, and λ

2: Output: W ∈ R
d×r

3: repeat

4: Randomly draw an query xi.

5: Fix xi and randomly draw an similar example xj .

6: Set q=0

7: repeat

8: Fix both xi and xj , and pick up a random triplets

(xi, xj , xs) when s varies.

9: q = q + 1
10: until

∥

∥h(xi) − h(xj)
∥

∥

1
≥

∥

∥h(xi) − h(xs)
∥

∥

1
or q ≥ |N |.

11: if
∥

∥h(xi) − h(xj)
∥

∥

1
≥

∥

∥h(xi) − h(xs)
∥

∥

1
. then

12: Calculate the gradient of Eq. (15).

13: Make a gradient descent based upon Eq. (16)

14: end if

15: until validation error does not improve or maximum itera-

tion number is achieved.

distance between h(xi) and h(xs) is smaller than that be-

tween h(xi) and h(xj)) exists, in practical applications we

find that stochastic gradient descent works well even when

none violation exists in these p triplets. This is because

R(xi,xj) is a soft-approximated rank of xj with respect to

the query xi and making a gradient update can still increase

the margin in R(·) which helps minimize the objective.

The detailed Stochastic Gradient Descent (SGD) learn-

ing for Top-RSBC is provided in Algorithm 1. The main

computation is the gradient updating and the associated

computational complexity is O(d2rp).

3.3. Online Learning

Since the time complexity of SGD is linearly propor-

tional to p, we develop an online learning algorithm to

further reduce the time cost for training. The main idea

is to find one violated triplets and make gradient descent

only based upon this particular violated triplets. Specifi-

cally, we first randomly draw an example xi as the query.

Then we fix xi and randomly select a similar example

xj . Finally, we fix both xi and xj , and then uniformly

draw dissimilar example xs, s = 1, ..., q (q ≤ |N |) until

we find a violation triplets {xi,xj ,xs=q} which satisfies
∥

∥h(xi) − h(xj)
∥

∥

1
≥

∥

∥h(xi) − h(xs)
∥

∥

1
. Note that |N | is

the total number of possible choices of s.

Therefore, the objective of the chosen triplets can be

written as:

O(xi,xj ,xs,W)

=
λ

2
‖W‖2

F + log
(

1 +
⌊ |N |

q

⌋

· G
(

Tij − Tis

))

,
(15)

and the associated gradient can be calculated similar to Eq.

(13) (without summation over s).

Table 1. The detailed statistics of three datasets.

Datasets SUN397 [32] ImageNet100 [19] YouTube Faces [31]

� Queries 1,800 10,000 6,500

� Database samples 106,953 201,054 614,626

� Classes 397 100 1,595

� Dimensions 1,600 4,096 1,770

Based upon its gradient, the online learning update is

given as:

Wt+1 = Wt − α
∂O(xi,xj ,xs,W)

∂Wt

, (16)

where α is the learning rate and t is the iteration index.

The detailed online learning procedure for Top-RSBC is

provided in Algorithm 2. The main computation is the gra-

dient updating and the searching for violation. The asso-

ciated computational complexity is O(d2r + drq) which is

less than SGD when q is relatively small. After getting W

with Algorithm 2, the compact binary codes for each sam-

ple can be generated via Eq. (2) with complexity of O(dr).
In practical applications of both Algorithm 1 and Algo-

rithm 2, W is randomly initialized with Gaussian distribu-

tion of mean 0, standard deviation 1, which is a common

choice. The learning rate α is set as 0.1 in all our ex-

periments and regularization hyper-parameter λ are chosen

from {1e− 6, 1e− 5, 1e− 4, 1e− 3, 1e− 2, 1e− 1, 1} ac-

cording to a validation set. The validation error (i.e., Mean

Average Precision (MAP) in our work) is only evaluated ev-

ery a few hundreds or thousands steps on the validation set

for computational efficiency.

4. Experiments

In this section, we first describe three publicly available

datasets for empirical studies. Then, we introduce the com-

peting methods as well as the evaluation metrics used in

our experiments. Finally, we compare the proposed Top

Rank Supervised Binary Coding (Top-RSBC) technique

against several state-of-the-art binary coding and hashing

algorithms to demonstrate the effectiveness in large-scale

image search.

4.1. Datasets and Setup

In the experiments, we conduct image search over

three datasets, i.e., SUN397 [32], ImageNet100 [19], and

YouTube Faces [31]. SUN397 consists of around 108K

images from 397 scene categories. In SUN397, each im-

age is represented by a 1,600-dimensional feature vec-

tor extracted by principle component analysis (PCA) from

12,288-dimensional Deep Convolutional Activation Fea-

tures [5]. ImageNet100 consists of the 100 largest object

categories from the famous ImageNet data challenge [19].

In ImageNet100, each object category has at least 1,600 im-

ages and each image is represented as a 4,096-dimensional

Deep Convolutional Neural Network feature vector [18].
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Table 2. Image search performance (MAP and Precision@100) on SUN397 when r = 64, 128, and 256. All training and test times are

recorded in second. The best MAP or Precision@100 is displayed in bold-face type.

Algorithms SUN397

MAP Precision@100 Training Time Test Time

♯ Bits r =64 r =128 r =256 r = 64 r = 128 r = 256 r = 256 r = 256

LSH [2] 0.0174 0.0251 0.0310 0.0370 0.0715 0.1042 2.03 1.91×10−5

SH [29] 0.0845 0.0945 0.0968 0.2326 0.2710 0.2947 61.57 1.42×10−4

ITQ [4] 0.1321 0.1549 0.1581 0.2690 0.3125 0.3289 56.18 1.90×10−5

ISOH [6] 0.1104 0.1309 0.1385 0.2454 0.2887 0.3078 11.57 2.02×10−5

HDML [17] 0.2564 0.2662 0.2814 0.4200 0.4505 0.4748 5308.74 1.89×10−5

RSH [27] 0.1103 0.1132 0.1376 0.2458 0.2836 0.3049 1071.83 2.22×10−5

CGH [11] 0.2654 0.2875 0.2982 0.4189 0.4653 0.4868 4341.32 1.90×10−5

Top-RSBC+SGD 0.3230 0.3315 0.3441 0.4850 0.5132 0.5342 4663.71 1.86×10−5

Top-RSBC+Online 0.2898 0.3142 0.3280 0.4431 0.4886 0.5118 2002.46 1.91×10−5
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Figure 3. MAP vs. a varying number of binary bits (r = {32, 64, 96, 128, 160, 192, 224, 256}) for nine different binary coding and

hashing algorithms on SUN397, ImageNet100, and YouTube Faces.

The YouTube Faces dataset contains 614,626 face images of

1,595 different people. In YouTube Faces, each face image

is represented by a 1,770-dimensional LBP feature vector

[1]. The detailed statistics of these three datasets are shown

in Table 1.

In SUN397, 100 images are randomly selected from each

of the 18 largest scene categories to form a test set of 1,800

query images. For unsupervised binary coding and hashing

algorithms, all the database samples are used for training.

For supervised binary coding and hashing algorithms, we

randomly select 200 images from each of the 18 scene cate-

gories to form a training set of 3,600 images; we randomly

choose additional 50 images from each of the 18 scene cat-

egories to form a validation set of 900 query images. All

the rest images in the 397 categories are then treated as the

database samples.

Similarly, in ImageNet100, 100 images from each object

category are randomly chosen to form a separate test set of

10,000 query images. All the database samples are used for

training for unsupervised binary coding and hashing algo-

rithms. To conduct supervised learning, we randomly select

additional 500 images from each object category to form a

training set of 50,000 images, and 50 images from each ob-

ject category to form a validation set of 5,000 query images,

respectively. The rest images are treated as the database

samples for retrieval.

In YouTube Faces, 100 face images from each of the 65

largest face classes are randomly selected to compose a test

set of 6,500 query images. To perform unsupervised learn-

ing, all the database images are used for training. For super-

vised binary coding and hashing algorithms, 1,000 images

from each of the 65 face classes are randomly draw to form

a training set of 65,000 face images. All the rest face images

in the 1,770 face classes are treated as the database samples

for retrieval.

4.2. Compared Algorithms and Evaluation Metrics

In the experiments, we aim to evaluate the effective-

ness of the proposed Top-RSBC for visual search over

the three image datasets. For this purpose, we compare

Top-RSBC against seven representative binary coding and

hashing algorithms. Among them, four are unsupervised

algorithms, including one randomized method Locality-

Sensitive Hashing (LSH) [2], one spectral method Spec-

tral Hashing (SH) [29], and two linear projection meth-

ods Iterative Quantization (ITQ) [4] and Isotropic Hash-

ing (ISOH) [6]. The other three are supervised algorithms

which use triplets to encode the rank information (similar to

the setting of our approach Top-RSBC). They are Hamming
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Table 3. Image search performance (MAP and Precision@100) on ImageNet100 when r = 64, 128, and 256. All training and test times

are recorded in second. The best MAP or Precision@100 is displayed in bold-face type.

Algorithms ImageNet100

MAP Precision@100 Training Time Test Time

♯ Bits r = 64 r = 128 r = 256 r = 64 r = 128 r = 256 r = 256 r = 256

LSH [2] 0.0148 0.0230 0.0243 0.0375 0.0892 0.0992 12.23 5.01×10−5

SH [29] 0.0543 0.0744 0.0765 0.2188 0.3146 0.3201 257.90 3.43×10−4

ITQ [4] 0.0954 0.1116 0.1206 0.3010 0.3531 0.3819 171.52 4.99×10−5

ISOH [6] 0.0735 0.0885 0.0988 0.2651 0.3215 0.3546 89.19 4.82×10−5

HDML [17] 0.0939 0.1030 0.1101 0.2982 0.3397 0.3710 20885.24 4.92×10−5

RSH [27] 0.0591 0.0792 0.0801 0.2204 0.3201 0.3241 7217.36 4.97×10−5

CGH [11] 0.0997 0.1053 0.1106 0.3032 0.3447 0.3760 26320.37 4.88×10−5

Top-RSBC+SGD 0.1212 0.1254 0.1246 0.3332 0.3659 0.3919 40929.83 4.89×10−5

Top-RSBC+Online 0.1103 0.1160 0.1165 0.3306 0.3569 0.3712 15192.24 4.86×10−5
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Figure 4. Precision@k with 256 binary bits on SUN397, ImageNet100, and YouTube Faces.
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Figure 5. Recall@k with 256 binary bits on SUN397, ImageNet100, and YouTube Faces.

Distance Metric Learning (HDML) [17], Column Genera-

tion Hashing (CGH) [11], and Ranking-based Supervised

Hashing (RSH) [27].

Note that although nonlinear binary coding or hash-

ing algorithms [8, 13] may be more effective for image

search, we limit the compared algorithms to be linear ap-

proaches for fair comparison (we notice that the SH algo-

rithm, though nonlinear, is based on and very similar to lin-

ear PCA hashing).

To measure the effectiveness of various binary cod-

ing and hashing techniques for visual search, we consider

three evaluation metrics, i.e., precision at top-k positions

(Precision@k), recall at top-k positions (Recall@k), and

Mean Average Precision (MAP).

4.3. Results

To demonstrate the effectiveness of the proposed bi-

nary coding technique in large-scale image search, we com-

pare Top-RSBC against seven competing binary coding and

hashing algorithms on the three image datasets, SUN397,

ImageNet100, and YouTube Faces. For all the compared

algorithms, the number of binary bits r varies from 32 to

256, as shown in Figure 3. We observe that Top-RSBC con-

sistently achieves superior MAP than the other algorithms

on the three datasets. This is because Top-RSBC is spe-

cially designed to optimize the precision at top positions of
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Table 4. Image search performance (MAP and Precision@100) on YouTube Faces when r = 64, 128, and 256. All training and test times

are recorded in second. The best MAP or Precision@100 is displayed in bold-face type.

Algorithms YouTube Faces

MAP Precision@100 Training Time Test Time

♯ Bits r = 64 r = 128 r = 256 r = 64 r = 128 r = 256 r = 256 r = 256

LSH [2] 0.0148 0.0837 0.0845 0.0496 0.3097 0.3097 381.90 2.30×10−5

SH [29] 0.2786 0.3424 0.3422 0.5823 0.6403 0.6461 951.67 1.61×10−4

ITQ [4] 0.0777 0.2441 0.2976 0.1206 0.4227 0.5504 660.43 2.11×10−5

ISOH [6] 0.1685 0.2664 0.3387 0.3496 0.4967 0.6510 240.78 2.18×10−5

HDML [17] 0.3903 0.4494 0.4755 0.6066 0.6762 0.6999 5159.28 2.63×10−5

RSH [27] 0.3042 0.3587 0.3604 0.5823 0.6536 0.6611 1217.33 2.37×10−5

CGH [11] 0.4205 0.4743 0.5012 0.6276 0.6903 0.7090 5946.98 2.33×10−5

Top-RSBC+SGD 0.4914 0.5038 0.5224 0.6960 0.7272 0.7285 6958.91 2.47×10−5

Top-RSBC+Online 0.4498 0.4965 0.5140 0.6459 0.6875 0.7120 4892.36 2.29×10−5

a Hamming distance ranking list by penalizing the mistakes

at the top of the ranking list more than those at the bottom.

The three supervised algorithms including HDML, RSH

and CGH, however, treat such mistakes equally. Among the

compared algorithms, we notice that supervised algorithms

(e.g., HDML and CGH) generally outperform unsupervised

algorithms since the former leverage supervised label in-

formation to learn discriminative hash/coding functions for

binary code generation. For those unsupervised algorithms,

we observe that SH, ITQ and ISOH consistently and sig-

nificantly outperform LSH. This implies that exploring and

exploiting underlying data structures, distributions, or topo-

logical information can yield more effective codes for vi-

sual search tasks. The detailed image search performance

in terms of MAP and Precision@100 over the three datasets

is shown in Tables 2, 3, and 4.

We further investigate the effectiveness of the proposed

Top-RSBC by comparing its Precision@k and Recall@k
(when k varies) to those of the competing algorithms in Fig-

ures 4 and 5, respectively. When the position k increases,

we find that both Top-RSBC+SGD and Top-RSBC+Online

generally outperform the other algorithms over these three

datasets when the number of bits is fixed to r = 256. This

indicates that penalizing the mistakes at the top of a ranking

list more than those at the bottom can significantly improve

the top-k visual search accuracy. This also suggests that

both stochastic gradient descent (SGD) and online learning

(Online) are effective for optimizing the proposed objective

of Top-RSBC.

Note that both the training time and test time of the pro-

posed Top-RSBC and compared algorithms over the three

different datasets are provided in Tables 2, 3, and 4, re-

spectively. We observe that the offline training time of Top-

RSBC+SGD is comparable with those of HDML and CGH

and longer than the other algorithms, because they all use

label information in the form of triplet-level ranks. Since in

Top-RSBC+online the gradient update is based upon triplet

streaming, it consumes less time than the other algorithms,

but its performance is inferior to Top-RSBC+SGD. In con-

trast to the training time, the online code generation time is

more crucial for visual search applications. In term of bi-

nary code generation, the main computational cost of Top-

RSBC depends on the linear projection and binarization op-

erations. Hence, the test time of Top-RSBC is as efficient

as typical linear binary coding or hashing algorithms.

5. Conclusion

In this paper, we proposed a novel supervised binary cod-

ing technique, dubbed Top Rank Supervised Binary Coding

(Top-RSBC), to conduct large-scale visual search. Unlike

the previous supervised binary coding methods, the pro-

posed Top-RSBC aims to learn the disciplined coding func-

tions through explicitly optimizing the precision at the top

positions of a Hamming-distance ranking list, thereby pre-

serving the supervised rank information. Since the objec-

tive of Top-RSBC is discrete and its associated optimization

problem is combinatorially difficult, we relaxed the origi-

nal discrete objective to a continuous surrogate, and then

derived a stochastic gradient descent method to optimize

the surrogate objective. To make the optimization more

efficient, we also developed an online learning algorithm

whose update is based upon triplet streaming. Our experi-

ments on three benchmark image datasets demonstrated the

superiority of Top-RSBC over the state-of-the-arts in image

search.
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