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Abstract—Inferring potential links is a fundamental problem
in social networks. In the link recommendation problem, the
aim is to suggest a list of potential people to each user,
ordered by the preferences of the user. Although various
approaches have been developed to solve this problem, the
difficulty of producing a ranking list with high precision at
the top—the most important consideration for real world
applications—remains largely an open problem. In this work,
we propose two top-k link recommendation algorithms which
focus on optimizing the top ranked links. For this purpose,
we define a cost-sensitive ranking loss which penalizes the
mistakes at the top of a ranked list more than the mistakes
at the bottom. In particular, we propose a log loss, derive its
surrogate, and formulate a top-k link recommendation model
by optimizing this surrogate loss function based upon latent
features. Moreover, we extend this top-k link recommendation
model by incorporating both the latent features and explicit
features of the network. Finally, an efficient learning scheme to
learn the model parameters is provided. We conduct empirical
studies based upon four real world datasets, i.e., Wikipedia,
CondMat, Epinions, and MovieLens 1M, of which the largest
network contains more than 70 thousand nodes and over one
million links. Our experiments demonstrate that the proposed
algorithms outperform several state-of-the-art methods.

Keywords-Link recommendation, cost-sensitive ranking loss,
top-k learning to rank, social networks.

I. INTRODUCTION

In the past decade, social networks, e.g., Facebook, Twit-

ter, LinkedIn, etc., have become increasingly common and

have dramatically reshaped people’s social lives. Thus a

considerable amount of effort has been devoted to inves-

tigating their underlying social mechanisms for the purpose

of enhancing user experience. Link prediction [15, 16] and

link recommendation [4] are two fundamental problems,

solutions to which can help users connect to people they are

interested in. Specifically, given a set of potential people,

link prediction is actually a binary classification problem

indicating the presence or absence of links to these people

with either explicit network topological structure [9, 1, 15]

(e.g., common friends) or latent features [15, 16]. Link

recommendation, which casts the same problem as a per-

sonalized ranking problem, suggests a list of people to each

user with whom the user might create new connections; in

the ranked list, people are recommended in decreasing order

of ranking scores (which estimate the user’s preferences).

In this paper, we focus on link recommendation, which

has been studied in many previous works [9, 1, 15, 17,

32, 16, 4, 8]. These approaches, in general, fall into two

categories, i.e., explicit network topological feature-based

approaches and latent feature-based approaches. Given a

partially observed social network, the first recommends links

based upon explicit network topological features such as

common neighbors, Jaccard coefficients [15], Katz index

[9], or Adamic and Adar similarity [1]. These approaches,

however, cannot perform well when little topological infor-

mation is available for nodes. The second recommends links

based upon latent features extracted from the network. For

instance, Rendle et al. [17] and Menon et al. [16] employ

low rank approximation as the underlying model to extract

latent features and produce ranking scores by optimizing

areas under receiver operating characteristic curves (AUC)

which treats each pairwise comparison equally.

Although various approaches have demonstrated their

usefulness for link recommendation, few of them are specif-

ically designed for producing a ranking list with high

precision at the top—the most important consideration for

practical applications. In this paper, we cast this aim as the

top-k link recommendation problem. Intuitively, top-k link

recommendation is combinatorially difficult because given

each user and a positive integer k, we aim to select a subset

of k people (in descending order of likelihood) from all

people with whom this user may connect, such that the

precision at the top k positions is maximized.

To tackle this problem, we propose two top-k link rec-

ommendation algorithms which focus on optimizing the top

ranks. Rather than minimizing the expected 0-1 loss defined

between the top-k predicted and ground truth lists [29],

we define a cost-sensitive ranking loss which penalizes the

mistakes at the top of a ranked list more than the mistakes

at the bottom. In particular, we propose a log loss, derive its

surrogate form, and formulate a top-k link recommendation

algorithm by optimizing this surrogate loss function based

upon latent features. Moreover, we extend this top-k link

recommendation model by incorporating both the latent

features and explicit features of the network. Finally, we

employ an efficient learning scheme to learn model param-



eters. To study the effectiveness of the proposed algorithm,

we compare the proposed approaches with five different

baseline methods based upon four real world datasets, i.e.,
Wikipedia, CondMat, Epinions, and MovieLens 1M. The

largest network has more than 70 thousand nodes and one

million links. Our experimental results demonstrate that our

proposed top-k link recommendation algorithms outperform

state-of-the-art methods.

The rest of this paper is organized as follows: in Section 2,

we describe related work. In Section 3, we state the problem

we aim to study and present a cost-sensitive ranking loss. In

Section 4, we develop two algorithms to perform top-k link

recommendation based upon the cost-sensitive ranking loss.

We show the experimental results in Section 5, and conclude

our work in Section 6.

II. RELATED WORK

Existing methods for link recommendation fall into two

main categories, i.e., explicit network topological feature-

based approaches and latent feature-based approaches.

Explicit network topological feature-based approaches

recommend links based upon explicit network topological

structures such as the neighborhoods of nodes or the ensem-

ble of paths. The neighborhoods of nodes-based methods

include common neighbors [15] and Jaccard’s coefficient

[20]; the ensemble of path-based methods, e.g., Katz in-

dex [9], PageRank [15], and supervised random walks [4],

produce ranking scores by considering the ensemble of

all paths between two nodes. These approaches, however,

cannot perform well when little topological information is

available for nodes (i.e., for example, when a node has few

direct connections or high-order connections to other nodes).

To handle this situation, latent feature-based approaches are

developed.

Latent feature-based approaches recommend links by ex-

tracting latent features to recover the values, or the relative

ordering of the values, of entries in the (weighted) adjacency

matrix associated with a social network. In particular, there

are three types of latent feature-based approaches. Pointwise

methods [19, 11, 12, 7] treat link recommendation as a

matrix completion problem and reconstruct the adjacency

matrix of a partially observed social network with a low

rank matrix factorization model. Pairwise methods treat link

recommendation as a learning to rank problem based upon

pairwise comparisons [17, 16, 13] of two triplets (i.e., (i, j,

score(i, j)) and (i , k, score(i, k)), where i denotes i-th row

(user) of the data matrix, j and k are columns (users) of the

data matrix)). Listwise methods [6, 30, 29] were originally

developed for information retrieval, but they can be adapted

to perform link recommendation [21]. In particular, they aim

to learn a ranking loss function by taking individual lists

as instances and minimizing the expected 0-1 loss function

defined on the predicted list and the ground truth list.

In this paper, we focus on solving the personalized top-

k link recommendation problem in social networks rather

than determining the top-k influential nodes/links from the

perspective of information diffusion [10, 26, 3]. One related

problem is top-k recommendation in collaborative filtering

which aims to find a few specific items which are assumed

to be most appealing to the user. Recent advances [7, 31]

have shown that root mean square error (RMSE) is not a

natural fit for evaluating top-k recommendations. This is

because pointwise methods do not directly model the relative

order of the values in the adjacency matrix. Another related

problem is the top-k learning to rank problem for informa-

tion retrieval. Recent work [29, 2] focuses on optimizing an

expected 0-1 loss function defined on the top-k predicted

and ground truth lists. In real world applications, however,

this loss could be cost-sensitive, i.e., it can depend on the

positions of incorrectly ranked objects. In this paper, there-

fore, we define a cost-sensitive ranking loss function, i.e., log

loss, which penalizes the mistakes at the top of a ranked list

more than the mistakes at the bottom, and derive its surrogate

form for real world applications. Then, we formulate two

link recommendation algorithms by optimizing the proposed

surrogate loss function.

Note that the proposed cost-sensitive ranking loss differs

from the ranking error function in [27, 28] since it is a

continuous and differentiable objective and thus gradient

based approaches such as Newton’s method and stochas-

tic gradient method can be utilized for optimization. The

ranking error function in [27, 28], however, is a discrete and

non-differentiable objective which is difficult to optimize di-

rectly. Although similar ideas have been used in completely

different contexts, such as information retrieval [33, 34] and

image annotation [28], to the best of our knowledge, our

work is the first one to conduct link recommendation with

a newly developed cost-sensitive ranking loss function.

III. COST-SENSITIVE RANKING LOSS

In this section, we first state the problem we aim to

study. Then, we present the cost-sensitive ranking loss which

penalizes the mistakes at the top of a ranked list more than

the mistakes at the bottom.

Notations: Let X ∈ R
n×n be an n by n matrix; we use

Xi ∈ R
1×n to denote its i-th row and use Xj ∈ R

n to

represent its j-th column; we use Xij to denote the entry in

its i-th row and j-th column; we utilize gij ∈ R
d to denote

a d dimensional explicit feature vector which is extracted

from the i-th row and j-th column of the adjacency matrix.

A. Problem statement

Given a partially observed social network, we use Xtrain ∈
{1, ?}n×n to denote its adjacency matrix, where 1 denotes a

known existing link, and ? denotes an unknown status link.

In the training stage, we treat ? as zero and aim to learn

a mapping function (encoding the preference score) from



user i to user j, i.e., f(Xtrain, i, j) = X̂ij , which produces a

ranking score (X̂ij ∈ R) to recover the relative ordering of

the entries in Xtrain. In the test phase, we evaluate whether

the top ranked unknown status links (?) are true links based

upon X̂ and the ground truth Xtest ∈ {1, 0}n×n. We assume

Xtrain and Xtest are sparse matrices in this work because real

world networks tend to be very sparse. For simplicity, we

use X to denote Xtrain in the following.

B. Cost-sensitive ranking loss
To better explain our newly proposed cost-sensitive rank-

ing loss, we compare it with the top-k true loss in [29]. In

particular, let sorted Xi denote the ordered Xi with existing

links ranked at the top and let sorted X̂i denote X̂i in

descending order. The top-k true loss for user i is defined

as:

Ltrue(sorted Xi, sorted X̂i)

=
{

0, if (sorted X̂i)s=(sorted Xi)s (∀ 1 ≤ s ≤ k)

1, otherwise,
(1)

where s is the index of sorted X̂i (or sorted Xi) and k
is determined by specific applications. The above true loss

indicates that if the permutation of the top-k predicted results

is exactly the same as the permutation in the top-k positions

of ground truth, then the loss is zero; otherwise the loss

is one. For real world applications, the loss can be cost-

sensitive, i.e., it can depend on the positions of incorrectly

ranked objects. Therefore, to optimize the precision at the

top positions of a ranking list, we develop a cost-sensitive

ranking loss which penalizes the mistakes at the top of a

ranked list more than the mistakes at the bottom.
Given an existing link from user i to person j within a

social network X , the rank for this link is determined by:

R(Xij , X̂
i) = I(Xij = 1) ·

n∑
s=1

I(X̂ij ≤ X̂is)I(Xis = 0),

(2)

where I(·) is an indicator function which is one if the

condition in the parenthesis is satisfied and is zero otherwise.

For user i, given any existing link Xij = 1, ideally, it should

be ranked on top of all unknown status links (i.e., Xis = 0).

Therefore, rank measures the number of incorrectly ranked

unknown status links before this particular link.
Based upon the rank we defined, the cost-sensitive rank-

ing loss over the ground truth ranking list (Xi) and the

predicted ranking list (X̂i) for user i is given as:

L
(
R(Xij , X̂

i)
)

= log
(
1 + R(Xij , X̂

i)
)
, (3)

where L(·) is essentially a transformation function which

weights the mistakes at the top of a ranked list more than

the mistakes at the bottom as shown in Figure 1. L
′
(rank) >

0 preserves the intuitive understanding of rank. To capture

the greater importance of lower ranks, we should expect

L
′
(rank) to be decreasing, i.e., L

′′
(rank) ≤ 0.
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Figure 1: The loss function L(R), its gradient L′(R), and

second-order gradient L′′(R).

IV. MODEL AND OPTIMIZATION

In this section, we present two link recommendation

approaches, i.e., the top-k link recommendation with latent

features and the top-k link recommendation with both latent

features and explicit features, based upon the cost-sensitive

ranking loss we developed. We also introduce a stochastic

gradient method to learn model parameters.

Since rank in Eq. 2 is non-continuous and non-

differentiable with respect to the ranking score X̂ , the

loss function in Eq. 3 is also non-continuous and non-

differentiable. To address this issue, we use the sigmoid

function g(z) = 1/(1 + exp(−z)) to approximate the

indicator function in rank, i.e.,

R̂(Xij , X̂
i) = I(Xij = 1) ·

n∑
s=1

g(X̂is − X̂ij)I(Xis = 0)

(4)

which is defined as the approximated rank. By replacing

R(·) with R̂(·), the surrogate loss function of L(Xij , X̂
i)

can be written as φ(Xij , X̂
i).

A. Top-k link recommendation with latent features

Based upon the surrogate loss function, i.e., φ(Xij , X̂
i),

we develop a novel top-k link recommendation algorithm

to perform link recommendation in social networks. In real

world applications, social networks tend to be very large and

sparse, so directly seeking for an n × n parameter matrix

X̂ will be both computationally and memory inefficient. To

tackle this issue, we approximate X̂ with two low rank

matrices U ∈ R
r×n and V ∈ R

r×n and our aim can be

recast as learning the following ranking score function:

X̂ij = UT
i Vj , (5)

such that the precision of the top k positions of the ranking

list is maximized. Note that Ui and Vj are the two latent

user feature vectors, respectively. r � n is the matrix rank.



When X is a symmetric network, we can set U = V in Eq.

5 for simplicity.

With this underlying ranking score function, the objective

function of the top-k link recommendation algorithm can be

formulated as

O(U, V )

=
n∑

i=1

n∑
j=1

φ(Xij , X̂
i) +

λ

2

n∑
i=1

UT
i Ui +

μ

2

n∑
j=1

V T
j Vj

=
n∑

i=1

n∑
j=1

φ
(

R̂(Xij , X̂
i)

)
+

λ

2

n∑
i=1

UT
i Ui +

μ

2

n∑
j=1

V T
j Vj ,

(6)

where the first term is a surrogate loss function and the

other two terms are regularization terms to avoid over-fitting.

λ > 0 and μ > 0 are two hyper-parameters for controlling

the trade off between the surrogate loss function and the

regularization terms.

A local minimum of the objective in Eq. 6 can be achieved

by performing gradient descent over U and V iteratively. In

particular, the gradient of O(U, V ) with respect to Ui is

given as

∂O(U, V )
∂Ui

=
n∑

j=1

1

1 + R̂(Xij , X̂i)

n∑
s=1

g(X̂is − X̂ij)·

g(−X̂is + X̂ij) · (Vs − Vj) · I(Xij = 1)·
I(Xis = 0) + λUi,

(7)

the gradient of O(U, V ) with respect to Vj is given as

∂O(U, V )
∂Vj

=
n∑

i=1

1

1 + R̂(Xij , X̂i)

n∑
s=1

g(X̂is − X̂ij)·

g(−X̂is + X̂ij) · (−Ui) · I(Xij = 1)·
I(Xis = 0) + μVj ,

(8)

and the gradient of O(U, V ) with respect to Vs is given as

∂O(U, V )
∂Vs

=
n∑

i=1

n∑
j=1

1

1 + R̂(Xij , X̂i)
g(X̂is − X̂ij)·

g(−X̂is + X̂ij) · UiI(Xij = 1)·
I(Xis = 0) + μVs.

(9)

One disadvantage of the top-k link recommendation algo-

rithm is that it does not consider explicit network topological

features, e.g., node degree, common neighbors, etc. To over-

come this issue, we extend the top-k link recommendation

algorithm to consider both the latent features and the explicit

features of social networks.

B. Top-k link recommendation with both latent features and
explicit features

Although various link recommendation algorithms have

been developed based upon either latent features or explicit

Algorithm 1 Top-k link recommendation algorithm with

latent features.
Input: X , λ, μ, α, T (maximum iteration).

Initialize: set t = 0, initialize U and V randomly.

repeat
t = t + 1
Randomly pick up an observed link Xij = 1;

Fix user i, uniformly draw b unknown status links

Xis = 0;

if ∃ s such that UT
i Vj < UT

i Vs

Calculate
∂O(U,V )

∂Ui
based upon Eq. 7;

Calculate
∂O(U,V )

∂Vj
with Eq. 8;

Calculate
∂O(U,V )

∂Vs
with Eq. 9;

U = U − α∂O(U,V )
∂U ;

V = V − α∂O(U,V )
∂V ;

end
until validation error does not improve or t > T .

network topological features of social networks, few of them

incorporates both of them. With the intuition that both of

them provide confidence to recover the relative ordering of

the values, of entries in the (weighted) adjacency matrix

associated with a social network, we extend top-k link

recommendation with the following model:

X̂ij = UT
i Vj + gT

ijθ, (10)

where Ui and Vj are the two latent user feature vectors,

respectively; gij is a 3-dimensional explicit feature vector

which encodes the degree of node i, the degree of node j,

and the number of common neighbors of node i and node

j; θ ∈ R
3 is parameter of explicit features.

With the above model, the objective of extended top-k
link recommendation can be written as:

O(U, V, θ) =
n∑

i=1

n∑
j=1

φ
(

R̂(Xij , X̂
i)

)
+

λ

2

n∑
i=1

UT
i Ui

+
μ

2

n∑
j=1

V T
j Vj +

γ

2
θT θ,

(11)

where the first term is the cost-sensitive ranking loss, the

second, third, and last terms are regularization terms. λ > 0,

μ > 0, and γ > 0 are three hyper-parameters to control

the trade-off between the surrogate loss function and other

terms.

A local minimum of the objective in Eq. 11 can be

achieved by performing gradient descent over U , V , and

θ, iteratively. Specifically, the gradient of O(U, V, θ) with



respect to Ui is given as

∂O(U, V, θ)
∂Ui

=
n∑

j=1

1

1 + R̂(Xij , X̂i)

n∑
s=1

g(X̂is − X̂ij)·

g(−X̂is + X̂ij) · (Vs − Vj) · I(Xij = 1)·
I(Xis = 0) + λUi,

(12)

the gradient of O(U, V, θ) with respect to Vj is given as

∂O(U, V, θ)
∂Vj

=
n∑

i=1

1

1 + R̂(Xij , X̂i)

n∑
s=1

g(X̂is − X̂ij)·

g(−X̂is + X̂ij) · (−Ui) · I(Xij = 1)·
I(Xis = 0) + μVj ,

(13)

the gradient of O(U, V, θ) with respect to Vs is given as

∂O(U, V, θ)
∂Vs

=
n∑

i=1

n∑
j=1

1

1 + R̂(Xij , X̂i)
g(X̂is − X̂ij)·

g(−X̂is + X̂ij) · UiI(Xij = 1)·
I(Xis = 0) + μVs,

(14)

and the gradient of O(U, V, θ) with respect to θ is written

as

∂O(U, V, θ)
∂θ

=
n∑

i=1

n∑
j=1

n∑
s=1

1

1 + R̂(Xij , X̂i)
g(X̂is − X̂ij)·

g(−X̂is + X̂ij) · (gis − gij) · I(Xij = 1)·
I(Xis = 0) + γθ.

(15)

C. Optimization

Although a local minimum of the objective functions

given by Eq. 6 and Eq. 11 can be found by performing

gradient descent over U and V (and θ) iteratively, the

computational complexity for a full gradient over U (or

V , θ) is around O(pnr) where p � n2 is the number

of existing links. In real world applications, p can be as

large as one million or even one billion. In this case,

calculating the full gradient will be too slow or even

infeasible. Therefore, a stochastic learning scheme which

minimizes φ
(
R̂(Xij , X̂

i)
)

for each given existing link is

used. In this case, the computational complexity for a

gradient over Ui (or Vj , θ) for each given existed link is

only around O(nr). To further reduce the complexity, given

each observed link, we can randomly sample a subset of

unknown status links (e.g., b � n). If at least one violation

(i.e., UT
i Vj < UT

i Vs or UT
i Vj + gT

ijθ < UT
i Vs + gT

isθ) is

found in this subset, we can approximate φ
(
R̂(Xij , X̂

i)
)

with φ
(

n
b I(Xij = 1)

∑b
s=1 g(X̂is − X̂ij)I(Xis = 0)

)
by

assuming that violations are uniformly distributed and con-

duct gradient descent over U and V (and θ) subsequently.

Algorithm 2 Top-k link recommendation algorithm with

both latent features and explicit features.

Input: X , λ, μ, α, T (maximum iteration).

Initialize: set t = 0, initialize U and V randomly.

repeat
t = t + 1
Randomly pick up an observed link Xij ;

Fix user i, uniformly draw b unknown status links

Xis = 0;

if ∃ s such that UT
i Vj + gT

ijθ < UT
i Vs + gT

isθ

Calculate
∂O(U,V,θ)

∂Ui
based upon Eq. 12;

Calculate
∂O(U,V,θ)

∂Vj
with Eq. 13;

Calculate
∂O(U,V,θ)

∂Vs
with Eq. 14;

Calculate
∂O(U,V,θ)

θ with Eq. 15;

U = U − α∂O(U,V,θ)
∂U ;

V = V − α∂O(U,V,θ)
∂V ;

θ = θ − α∂O(U,V,θ)
θ ;

end
until validation error does not improve or t > T .

Table I: The detailed statistics of four datasets. Note that

MovieLens 1M is a bipartite network which has 6040 users

and 3592 items.
Dataset Wikipedia CondMat Epinions MovieLens 1M

Nodes 7,115 23,133 75,879 6040/3592
Links 103,689 186,994 508,837 1,000,209
Links: Non-links 1:488 1:2,929 1:11,317 1:20.70
Average degree 14.57 7.89 6.70 165.59
Type Directed Undirected Directed Directed

In practical applications, we stop updating U and V (and

θ) until it exceeds the maximum iteration or the validation

metric (e.g., MAP) does not improve. The detailed optimiza-

tion procedure for top-k link recommendation with latent

features is provided in Algorithm 1 and the detailed opti-

mization procedure for extended top-k link recommendation

with both latent features and explicit features is provided in

Algorithm 2.

V. EXPERIMENTS

To demonstrate the effectiveness of the proposed top-k
link recommendation algorithms, we compare them with

various baseline approaches based upon two different tasks,

i.e., link recommendation and collaborative ranking (which

can be seen as a generalized link recommendation problem

with multiple scales), over four publicly available datasets.

A. Datasets

For the link recommendation task, we consider two well-

known directed social networks, i.e., Wikipedia [5] and
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Figure 2: (a) to (c) are AUC obtained on Wikipedia, CondMat, and Epinions when the size of training set varies from 1%,

5%, 10%, 20%, 40%, to 60%. Error bars denote the standard deviations.
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Figure 3: (a) to (c) are MAP obtained on Wikipedia, CondMat, and Epinions when the size of training set varies from 1%,

5%, 10%, 20%, 40%, to 60%. Error bars denote the standard deviations.

Epinions [18], as well as one undirected social network, i.e.,
CondMat [14] 1.

The Wikipedia data comprise a voting network for pro-

moting candidates to the role of admin. The voters, half

coming from existing admins and another half coming from

ordinary Wikipedia users, can indicate a vote with respect to

the promotion of a candidate. Epinions, which is a product

review website, is a trust network in which users can indicate

whether they trust each other based upon their reviews.

CondMat is a collaboration network from the e-print arXiv

and covers scientific collaborations between authors’ papers

submitted to Condensed Matter category.

For collaborative ranking, we consider MovieLens 1M

dataset2 which consists of 6040 users as well as 3952 items.

In this dataset, each rating value is a integer which ranges

from 1 to 5. The detailed statistics of these four datasets are

provided in Table I.

1These datasets are available online at
http://snap.stanford.edu/data/.

2This dataset is available online at
http://grouplens.org/datasets/movielens/.

B. Evaluation
For link recommendation, given a fully observed social

network X ∈ {0, 1}n×n, we keep a fraction (i.e., 1%, 5%,

10%, 20%, 40%, and 60%) of observed links (as Xtrain) for

training, 10% of the observed links for validation (Xvali), and

evaluate on a test set (Xtest) comprising 30% of the observed

links. We define the zero entries in Xtrain as unknown status

links (?) since each zero entry has the potential to be either

a link or non-link.
For each user with minimum node degree 3, we evaluate

the link recommendation performance based upon area under

the receiver operating characteristic (ROC) curve (AUC),

average precision (AP), the precision of unknown existing

links at the top-k positions (i.e., Precision@k (P@k )), and

the recall of unknown existing links at the top-k positions

(i.e., Recall@k). For all users with minimum node degree

3, average AUC, mean average precision (MAP), average

P@k, and average Recall@k are employed for comparison.
Similarly, for collaborative ranking, given a fully observed

bipartite network X ∈ {0, 1, 2, 3, 4, 5}m×n, we keep a

fraction (i.e., 20%, 40%, and 60%) of observed non-zero

entries (as Xtrain) for training, 10% of the observed non-

zero entries for validation (Xvali), and evaluate on a test set

(Xtest) comprising 30% of the observed non-zero entries. The
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Figure 4: Precision@k for Wikipedia, CondMat, and Epinions when the size of training set is 1%. Error bars denote the

standard deviations.
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(c) Recall@k Epinions (1%)

Figure 5: Recall@k for Wikipedia, CondMat, and Epinions when the size of training set is 1%. Error bars denote the standard

deviations.

difference is that we evaluate how the non-zero entries are

ranked based upon normalized discounted cumulative gain

(NDCG) at top 10 positions, i.e., NDCG@10.

C. Baseline algorithms and parameter setting

To demonstrate the effectiveness of the proposed top-k
link recommendation algorithms, we compare the following

seven methods:

• Katz index [9] is a representative network topological

approach; the parameter β is determined by search over

the grid {0.001, 0.005, 0.01, 0.05, 0.1, 0.5};

• Matrix factorization (MF) [12] is a pointwise method;

• Bayesian personalized ranking based matrix factor-

ization (BPR+MF) [17] is a representative pairwise

method;

• Adapted top-k listwise maximum likelihood estimation

(top-k ListMLE) based upon the top-k likelihood loss

[29] and matrix factorization;

• Weighted approximated-rank approximation

(WARP) [28] based matrix factorization;

• Top-k LR-I: top-k link recommendation with latent

features;

• Top-k LR-II: top-k link recommendation with both

latent features and explicit features.

For MF, BPR+MF, and top-k ListMLE, the hyper-

parameters for regularization terms are determined by

searching over the grid {1, 5, 10, 20, 50, 100, 200} and the

matrix rank r is determined by searching over the grid

{5, 10, 30, 50, 70, 90}. For WARP, top-k LR-I, and top-k
LR-II, we set λ = μ = γ for simplicity and it is optimized

by searching over the grid {10−5, 5 × 10−5, 10−4, 5 ×
10−4, 10−3, 5×10−3, 10−2, 5×10−2, 10−1} and the matrix

rank r is determined over the same set as for MF, BPR+MF,

and top-k ListMLE for fair comparison; the parameters

which achieve the best performance over the validation

set (Xvali) are used for test. We conduct five trials for

each dataset and report the average performance and their

associated standard deviations.

For collaborative ranking, Katz index cannot work be-

cause MovieLens 1M is a bipartite network. The parameter

settings for MF, WARP, top-k ListMLE, BPR+MF, and top-

k LR-I are identical as in link recommendation.

D. Task-I: link recommendation

As shown in Figure 2(a) to 2(c) and Figure 3(a) to 3(c),

link recommendation performance is evaluated with AUC

and MAP when the size of each dataset varies from 1%,

5%, 10%, 20%, 40% to 60%. We observe that top-k LR-I
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Figure 6: Precision@k over Wikipedia, CondMat, and Epinions when the size of training set is 20%. Error bars denote the

standard deviations.
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Figure 7: Recall@k over Wikipedia, CondMat, and Epinions when the size of training set is 20%. Error bars denote the

standard deviations.

and top-k LR-II generally achieve better AUC and MAP than

baseline algorithms for Wikipedia, CondMat, and Epinions.

This is because both top-k LR-I and top-k LR-II focus on

optimizing the precisions at the top positions of a ranking

list. In particular, top-k LR-II consistently outperforms top-

k LR-I since it incorporates explicit features of the networks

which is extremely helpful when networks become less

sparse (i.e., the size of training set increases). Besides, we

observe that Katz index outperforms other latent feature

based approaches over CondMat and Epinions (regarding

MAP) when the size of training set is over 20%. This is

because CondMat is a collaboration network and Epinions

is a trust network, both of them contain relatively rich high-

order relationships (when the networks are relatively dense)

which can be captured by the Katz index. Latent feature

approaches, however, do not explicitly model high-order

relationships in these two networks.

To further investigate the top-k link recommendation

performance, we report the AUC and MAP associated

Precision@k and Recall@k in Figure 5 and 6, 7 and 8,

respectively. On these three datasets, we observe that top-

k LR-I and top-k LR-II consistently outperform baseline

approaches for Precision@k and Recall@k when k varies.

This is because: (1) little high-order relationship is available

for Katz; (2) BPR+MF is optimizing AUC, rather than the

precision@k; (3) Top-k ListMLE is optimizing the expected

0-1 loss defined between the top-k predicted and ground

truth lists, rather than a cost-sensitive loss; (4) the objective

of WRAP is non-smooth and the optimization is limited for

only one violation per step which may make the gradient

direction inaccurate.

We test the parameter sensitivity of top-k LR-I when

λ = μ ∈ {10−5, 5 × 10−5, 10−4, 5 × 10−4, 10−3, 5 ×
10−3, 10−2, 5 × 10−2, 10−1} and matrix rank r ∈
{5, 10, 30, 50, 70, 90}. In Figure 8(a) and Figure 8(b), we

observe that the AUC and MAP values are very stable when

k varies from 5 to 90 and λ = μ varies from 0.00001 to

0.005. We also evaluate the parameter sensitivity of top-k
LR-II in Figure 9(a) and Figure 9(b), we notice that top-

k LR-II is even more stable than top-k LR-I since it can

achieve better AUC and MAP in a wider range of parameter

space.

E. Task-II: collaborative ranking

Collaborative ranking can be seen as a generalized link

recommendation problem to perform link recommendation

at each scale (level). For instance, given a rating value 5, we

would like to rank it above rating values of 1 to 4, and given
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Figure 8: AUC and MAP of Top-k LR-I for Wikipedia when the size of training set is 20% and the hyper-parameter λ and

r varies.
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Figure 9: AUC and MAP of Top-k LR-II for Wikipedia when the size of training set is 20% and the hyper-parameter λ and

r varies.

Table II: Average NDCG@10 and associated standard deviations for MovieLens 1M dataset when 20%, 40%, and 60%
non-zero entries are used for training

Methods/Setting 20% 40% 60%
MF 0.7112(±0.0013) 0.7262(±0.0007) 0.7456(±0.0014)
Top-k ListMLE 0.6906(±0.0210) 0.6990(±0.0008) 0.7204(±0.0102)
BPR+MF 0.6864(±0.0014) 0.6930(±0.0003) 0.7164(±0.0008)
WRAP 0.6854(±0.0073) 0.6874(±0.0016) 0.7082(±0.0023)
Top-k LR-I 0.7234(±0.0022) 0.7356(±0.0026) 0.7582(±0.0038)

a rating value 4, we expect to rank it above rating values 1 to

3, etc. We compare top-k LR-I against MF, MAP, BPR+MF,

and top-k ListMLE for collaborative ranking in which we

aim to rank non-zero entries based upon NDCG@k. To

achieve this purpose, top-k LR-I, WRAP, and BPR+MF

are adapted to aggregate binary ranking at different levels

(scales). In Table II, we observe that Top-k LR-I achieves

the best performance when the size of training set varies

from 20%, 40% to 60%. This is because aggregated Top-k
LR-I aims to optimize the top precisions at each level. Top-

k LR-II is not used here since explicit features (common

neighbors) are unavailable.

VI. CONCLUSION

We proposed two top-k link recommendation algorithms

based upon a newly defined cost-sensitive ranking loss which

penalizes the mistakes at the top of a ranked list more than

the mistakes at the bottom. In particular, we defined log loss,

derived its surrogate form, and formulated our algorithms

by optimizing the proposed surrogate losses with latent

features and explicit features of the networks. Our empirical

studies demonstrated the effectiveness of our approach over

Wikipedia, CondMat, Epinions, and MovieLens 1M.

In the future, one potential problem is to investigate how

to model social circles in social networks appropriately

and how to leverage this information to conduct top-k link

recommendation. Another interesting problem is to study

how to utilize log loss to perform link recommendation in

signed networks [23, 24, 25, 22].
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