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Abstract—Memory replay, which stores a subset of repre-
sentative historical data from previous tasks to replay while
learning new tasks, exhibits state-of-the-art performance for
various continual learning applications on Euclidean data. While
topological information plays a critical role in characterizing
graph data, existing memory replay based graph learning tech-
niques only store individual nodes for replay and do not consider
their associated edge information. To this end, we propose a
sparsified subgraph memory (SSM), which sparsifies the selected
computation graphs into fixed size before storing them into the
memory. In this way, we can reduce the memory consumption of
a computation subgraph from O(dL) to O(1), and for the first
time enable GNNs to utilize the explicit topological information
for memory replay. Finally, our empirical studies show that SSM
outperforms state-of-the-art approaches by up to 27.8% on four
different public datasets. Unlike existing methods which focus on
task incremental learning (task-IL) setting, SSM succeeds in the
challenging class incremental learning (class-IL) setting in which
a model is required to distinguish all learned classes without task
indicators, and even achieves comparable performance to joint
training which is the performance upper bound for continual
learning. Our code is available at https://github.com/QueuQ/SSM.

Index Terms—Graph representation learning, continual learn-
ing, graph sparsification.

I. INTRODUCTION

In real-world graph applications, it is critical to ensure

that Graph Neural Networks (GNNs) [1]–[3] are capable of

continually adapting to new tasks without interfering with their

performance over previous tasks. Because of this, continual

graph representation learning is attracting increasingly more

attention recently. For example, a community detection model

is expected to detect the newly emerged communities in a

social network while maintaining its capability to recognize

existing communities; a document classifier should be able to

classify articles belonging to either existing or newly emerged

research areas in a citation network, etc.. However, the rich

topological connections among different data samples (graph

nodes) pose great challenges to applying some most effective

continual learning techniques on graph data.

Memory replay, inspired by research on cognitive science

[4], [5], has demonstrated state-of-the-art performance in

various classical continual learning tasks. The key idea is to

replay a subset of data samples from previous tasks over the

model while learning the new tasks [6]–[8]. Due to its success,

memory replay is also adopted for continual learning on graph

data by storing and replaying representative nodes [9]. For

graph data, however, only storing a subset of nodes for replay

will neglect the important topological information. Since the

properties of the target node are not only determined by itself

but also by its neighbors, in this paper, we propose to store

computation subgraphs to explicitly preserve the topological

information for memory replay. Directly storing computation

subgraphs, however, will trigger the memory explosion prob-

lem. Supposing the average node degree is d, then in a L-

layer GNN following the message passing paradigm [2], the

size of the neighboring nodes in the computation subgraph of

a node will be O(dL), let alone the associated edges which

are typically several orders of magnitude more than the nodes.

For instance, in the Reddit dataset, the average node degree

is 492, and the maximal degree is 21,657. Obviously, directly

storing the entire computation subgraphs is infeasible.

To utilize the topological information while maintaining a

tractable space complexity at the same time, we propose to

sparsify a computation subgraph to a fixed size before storing

it into the memory. Specifically, to sparsify the computation

subgraph of a node v while maintaining the connectivity of

sparsified subgraphs at the same time, we start by sampling

the 1-hop neighbors, and then iteratively sample the higher-

order neighbors hop by hop. In this way, since we can fix

the number of nodes to sample at each hop, the size of

the sparsified computation subgraph will be independent of

the original computation subgraph, i.e., the memory space

complexity can be reduced from O(dL) to O(1). In this

work, we adopted two sparsification strategies using uniform

sampling and degree based sampling, which are simple yet

empirically effective. Note that we are aware of other existing

graph sparsification techniques [10]–[17], however, most of

them are not applicable for continual graph representation

learning as detailed in Section II-B.

Based on our thorough empirical studies on four public

datasets, SSM outperforms the existing state-of-the-art meth-

ods by a large margin in the challenging class-IL scenario.

Moreover, the performance of SSM is even comparable to joint

training which is the performance upper bound for continual

learning. To summarize, our contributions are:

1) We develop the Sparsified Subgraph Memory (SSM) to

store the explicit topological information in the form of

sparsified computation subgraphs and perform memory

replay based continual graph representation learning.
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2) We resolve the memory explosion problem by sparsify-

ing the subgraphs.

3) Our proposed SSM outperforms the existing state-of-

the-art methods by a large margin, especially in the

challenging class-IL scenario.

II. RELATED WORKS

Our work is closely related to continual learning, continual

graph learning, and graph sparsification.

A. Continual Learning & Continual Graph Learning

Machine learning models often encounter the catastrophic

forgetting problem when adapting to new tasks. To resolve

this challenge, existing approaches are roughly divided into

three categories. Regularization based methods prevent drastic

modification to model parameters important to previous tasks

via different constraints [18]–[21]. Parametric isolation based

methods protect the important parameters by allocating new

parameters for new tasks [22]–[25]. Finally, memory replay

based methods alleviate forgetting by replaying representative

data from previous tasks when learning new tasks [6]–[8].

Recently, continual learning on graph data is also attracting

increasingly more attention due to its value in practical sce-

narios. Several methods and benchmarks have been developed

[9], [26]–[28]. These methods include regularization based

ones like topology-aware weight preserving (TWP) [27] which

preserves crucial parameters and topologies via regularization;

parametric isolation based approaches like HPNs [26] which

adaptively select different parameter combinations for different

tasks; and memory replay based methods like ER-GNN [9]

which stores representative nodes which are replayed when

learning new tasks. Our proposed work is also based on

memory replay, and the key advantage of our model is that

we store explicit topological information with a manageable

space complexity which has never been achieved before.

Finally, it is also worth noting the difference between

continual graph representation learning and other settings.

Dynamic graph representation learning [29]–[34] focuses on

capturing the temporal node dynamics with all previous in-

formation being accessible. On the contrary, continual graph

representation learning focuses on alleviating the forgetting on

previous tasks, therefore the previous data is inaccessible when

learning new tasks. Few-shot graph learning [35], [36] aims at

fast adapting the model to new tasks. During training, few-shot

learning models can access to data of all tasks simultaneously,

while models under the continual learning setting can only

access the data of the current task. During testing, few-shot

learning models are evaluated on new tasks and need to be

fine-tuned with the test data, while the continual learning

models are evaluated on existing tasks without any fine-tuning.

B. Graph Sparsification

Graph sparsification has been extensively studied in the past

few years [10]–[17]. However, unlike the strategies adopted

in our work, these methods are not specially developed to

preserve the most informative neighbors for training GNNs.

For instance, several prominent works have been presented

to preserve certain predefined metrics or statistics on graphs

[10]–[14], [37]. In addition, these approaches may also en-

counter high computational burdens. Recently, various GNN

explanation [15], [16], [38], [39] or graph denoising [17]

techniques have been developed to find the most informative

structures. These methods, however, typically require training

another network or iterative optimizations to explain one

trained GNN, which will result in more resource consumption

and are not suitable for continual learning. Despite this,

some neighborhood sampling strategies could be adopted for

our proposed SEM. For example, GraphSAGE [3] utilizes

randomly sampled neighbors at each layer to reduce the com-

putational burden. In this work, we adopt two sparsification

strategies. One is based on uniform sampling, which is similar

to the one used in GraphSAGE but without replacement.

Another is an importance sampling that samples the neighbors

iteratively based on the node degree distribution.

III. METHODS

In this section, we first introduce the preliminaries that

include the basic concepts, notations, and learning settings.

Next, we explain how memory replay works in traditional

continual learning with independent data examples and why

applying memory replay with GNNs on individual graph nodes

can result in severe information loss. After that, we explain

the memory explosion problem triggered by directly storing

the complete topological information. Finally, we introduce

our proposed solution for topology sparsification.

A. Preliminaries

In this work, we focus on the node-level continual graph

representation learning, which aims to continuously accom-

modate the new types (classes) of emerging nodes (new

tasks) and their associated edges without interfering with the

performance over existing nodes (previous tasks). With this

setting, a model is trained on a sequence of tasks (subgraphs):

S = {G1,G2, ...,GT }. Each Gτ contains nodes belonging to a

unique set of classes in its node set Vτ . The associated edge

set is Eτ , in which an edge euv denotes the existence of an

edge connecting node u and v. Eτ is often represented as

the adjacency matrix Aτ ∈ R
|Vτ |×|Vτ |, where every non-zero

entry corresponds to an edge in Eτ . Aτ can be normalized as

Âτ = D
− 1

2
τ AτD

− 1
2

τ , where Dτ ∈ R
|Vτ |×|Vτ | is the degree

matrix that contains the degree of each node (number of

connected edges) in its diagonal entries. Each node u ∈ Vτ

has a feature vector xu ∈ R
d, and a label yu ∈ {0, 1}C ,

where C is the number of all possible classes. GNNs generate

the representation for a node u based on a computation

subgraph denoted as Gsub
τ,u , which is a subgraph of Gτ . In

the following, Gsub
u without the graph index will be used for

simplicity. Finally, we denote the L-hop neighbors of u as

NL(u) containing the nodes within a distance of L from u,

i.e., for a node u ∈ Vi:

NL(u) = {v ∈ Vτ |d(u, v) = L}, (1)
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Fig. 1. (a) The pipeline of SEM. (b) The iterative sparsification process for a computation subgraph containing 2-hop neighbors.

where d(·, ·) denotes the shortest path distance between two

nodes. Specially, we have N 0(u) = {u}. The vast majority

of GNNs follow the message passing neural network (MPNN)

paradigm [2]. In this work, we focus on the MPNNs and refer

all GNNs to MPNNs in the following.

B. Memory Replay on Graphs
In this subsection, we first introduce how memory replay

works in traditional continual learning, and then derive the

information loss of directly applying memory replay to store

individual graph nodes. Finally, we introduce the challenge of

storing the topological information of graph data.
Traditional continual learning can be described as training

a model f(·;θ) on a task sequence of length T with the

accompanied datasets Dτ = {(xi,yi)
nτ
i=1} (τ ∈ {1, ..., T}).

The dataset for τ -th task Dτ is only available when learning

this task, and becomes inaccessible afterward. To alleviate the

forgetting problem, memory replay based methods typically

maintain a memory buffer B containing the representative data

from the previous tasks, which are replayed to the model

when learning new tasks. A straightforward way to utilize B
is through an auxiliary loss:

L =
∑

xi∈Dτ

l(f(xi;θ),yi)

︸ ︷︷ ︸
loss of the current task Lτ

+λ
∑
xj∈B

l(f(xj ;θ),yj)

︸ ︷︷ ︸
auxiliary loss Laux

, (2)

where the loss function is denoted as l(·, ·), and the contri-

bution of auxiliary loss is balanced by λ. Besides directly

optimizing an auxiliary loss, there are also other ways to

prevent forgetting with the stored data in B. For example,

GEM [7] calibrates the gradients of Lτ with the gradients

of Laux to prevent increasing the loss on previous tasks

(Laux); iCaRL [6] directly uses the representations of the

stored data ({f(xi;θ),xi ∈ B}) as prototypes to classify new

data. For different approaches, we always have to regenerate

their representations based on the buffered data. Traditional

continual learning deals with independent data samples, and

regenerating the representation f(xi;θ) only takes xi itself as

input. Therefore, the memory space complexity for replaying

the representation of one independent example (node) is O(1).

To capture the rich topological information within a graph,

the representation of a node not only depends on itself but also

depends on its neighboring nodes and the accompanied edges.

This will significantly increase the memory space complexity

for replaying a graph node. Without loss of generality, we

take the Message Passing Neural Networks (MPNNs) as an

example. The rule for updating the hidden representation of a

node u at layer l + 1 is:

ml+1
u =

∑

v∈N 1(u)

Ml(h
l
u,h

l
v,x

e
u,v;θ

M
l ), (3)

hl+1
u = Ul(h

l
u,m

l+1
u ;θU

l ), (4)

where hl
u, hl

v denote the hidden representations at layer l, xe
uv

denotes the possible edge features, the function Ml(·, ·, ·;θM
l )

generates message ml+1
u from neighboring nodes, and the

function Ul(·, ·;θU
l ) aggregates and updates the neighborhood

information ml+1
u into the representation hl

u of the target node

u. Given a L-layer MPNN, we can simplify the representation

of a node u as:

hL
u = MPNN(Gsub

u ;Θ), (5)

where MPNN(·, ·;Θ) denotes the composition of the message

functions and the update functions at all layers. According to

the updating rule, in L-layer MPNNs, Gsub
u would contain the

L-hop neighbors NL(v) and the accompanied edges.

To perform memory replay over graphs, the naive approach

which stores individual nodes will lose the important explicit

topological information of the computation subgraph Gsub
u .

A proper way should be to store representative computation

subgraphs of existing tasks. However, due to the rich connec-

tions among different nodes, the size of different computation

subgraphs varies and could be extremely large. Supposing the

average node degree of Gsub
v is d, then the expected space

complexity of storing its nodes would be O(dL) (number of

edges not counted yet), which can easily exceed the memory

buffer size. For example, the average degree of the Reddit

dataset is 492, and the maximal degree is 21,657, which would

easily result in intractable memory consumption.
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Algorithm 1 Computation subgraph sparsification

1: Input: Gsub
u , node set Vsub, edge set Esub, memory budget

{kl|l = 1, ..., L}.

2: Output: Sparsified computation subgraph Ḡsub
u

3: Initialize a node set V = {u}, an empty edge set E.

4: for each l ← 1 to L do
5: Initialize a temporary node set Vtemp = {u}
6: Get the union of the 1-hop neighbors of the

nodes in Vtemp and excludes selected nodes V, i.e.⋃
v∈Vtemp

N 1(v)\V.

7: Sample kl nodes Vsamp from
⋃

v∈Vtemp
N 1(v)\V

according to a certain probability distribution (e.g. degree
based or uniform sampling).

8: V = V ∪ Vsamp

9: for each v ∈ Vtemp do
10: for each w ∈ Vsamp do
11: if ew,v ∈ E

sub then
12: E = E ∪ {ew,v} � Store the accompanied

edges

13: end if
14: end for each
15: end for each
16: Vtemp = Vsamp

17: end for each
18: Construct Ḡsub

u with V and E.

C. Graph Sparsification via Neighborhood Sampling

To sparsify a given computation subgraph, directly sampling

over the nodes may cause the sparsified subgraph to be

disconnected, causing problems for messaging passing over

the subgraph. To ensure the connectivity, we sample the nodes

iteratively from 1-hop neighbors to the outermost neighbors.

At each hop, we only sample from the nodes connected to the

selected ones. Specifically, given a computation subgraph Gsub
u

containing neighbors from 1- L-hop, we set a fixed memory

budget K on the nodes to sample from each hop. Denoting

the budget for the l-th hop as kl, we have
∑L

l=1 kl = K. Then

the detailed sampling procedure is described in Algorithm 1.

Since the memory budget K is constant regardless of the

graphs or models, the memory space complexity for replaying

one node is reduced to O(1), which is manageable and similar

to the traditional continual learning setting. With the sparisi-

fied computation subgraphs stored in the Subgraph Episodic

Memory SEM, the loss of learning on task τ becomes:

L =
∑
u∈Vτ

l(MPNN(Gsub
u ;Θ),yu)

︸ ︷︷ ︸
loss of the current task Lτ

+ λ
∑

Ḡsub
v ∈SEM

l(MPNN(Ḡsub
v ;Θ),yv)

︸ ︷︷ ︸
auxiliary loss Laux

. (6)

Unlike in traditional learning which selects λ manually,

to overcome the severe class imbalance problem in graph

TABLE I
STATISTICS OF DATASETS AND TASK SPLITTINGS

Dataset CoraFull [40] OGB-Arxiv 1 Reddit [3] OGB-Products 2

# nodes 19,793 169,343 232,965 2,449,029

# edges 130,622 1,166,243 114,615,892 61,859,140

# classes 70 40 40 47

# tasks 35 20 20 23

datasets, we choose to balance the loss with the class sizes

as shown in Section IV-B3.

IV. EXPERIMENTS

In this section, we aim to answer the research questions:

RQ1: Whether storing subgraphs (sparsified) guarantees a

better performance compared to only storing nodes? RQ2:

Whether our proposed model can outperform existing state-

of-the-art methods in the challenging class-IL scenario?

A. Datasets
We followed the Continual Graph Learning Benchmark

(CGLB) [28] and adopted four large public datasets, including

the datasets with up to millions of nodes, hundreds of millions

of edges, and tens of tasks, which are very challenging for

class-IL scenario. For all datasets, each task contains two

classes. For each class, 60% of the data are used for training,

20% are used for validation, and the remaining 20% are used

for testing. Detailed dataset statistics are shown in Table I.

B. Experimental Settings

1) Continual learning setting and model evaluation: In

continual learning, a model continuously learns a sequence

of tasks with access only to the data of the current task during

training. During testing, the model is tested on all learned

tasks. The setting is further divided into class-incremental

(class-IL) and task-incremental (task-IL) scenario [28]. Class-

IL scenario requires a model to classify the given data by pick-

ing a class from all previously learnt classes, while the task-

IL scenario only requires the model to distinguish the classes

within each task. For example, suppose the model learns on

a citation network with a two-task sequence {(physics, chem-
istry), (biology, math)}. In class-IL scenario, after training, the

model is required to classify a given document into one of the

four classes. In task-IL scenario, the model is only required to

classify a document into to (physics, chemistry) or (biology,

math), while cannot distinguish between physics and biology
or chemistry and math.

For continual learning, the most thorough evaluation is the

accuracy matrix Macc ∈ R
T×T . Each entry Macc

i,j denotes the

model’s accuracy on task j after learning task i. Each row

Macc
i,: shows the accuracy on all previous tasks after learning

task i. Each column Macc
:,j shows how the model’s accuracy

on task j changes when being trained consecutively on all

T tasks. To derive a single numeric value for evaluation, the

average accuracy (AA)
∑T

i=1 Macc
T,i

T and average forgetting (AF)

1https://ogb.stanford.edu/docs/nodeprop/#ogbn-arxiv
2https://ogb.stanford.edu/docs/nodeprop/#ogbn-products
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TABLE II
PERFORMANCE COMPARISONS UNDER CLASS-IL ON 4 DATASETS (↑ HIGHER MEANS BETTER).

Continual learning techniques CoraFull OGB-Arxiv Reddit OGB-Products
AA/% ↑ AF/% ↑ AA/% ↑ AF /% ↑ AA/% ↑ AF /% ↑ AA/% ↑ AF /% ↑

Fine-tune 3.5±0.5 -95.2±0.5 4.9±0.0 -89.7±0.4 5.9±1.2 -97.9±3.3 3.4±0.8 -82.5±0.8
EWC [19] 52.6±8.2 -38.5±12.1 8.5±1.0 -69.5±8.0 10.3±11.6 -33.2±26.1 23.8±3.8 -21.7±7.5
MAS [21] 12.3±3.8 -83.7±4.1 4.9±0.0 -86.8±0.6 13.1±2.6 -35.2±3.5 16.7±4.8 -57.0±31.9
GEM [7] 8.4±1.1 -88.4±1.4 4.9±0.0 -89.8±0.3 28.4±3.5 -71.9±4.2 5.5±0.7 -84.3±0.9
TWP [27] 62.6±2.2 -30.6±4.3 6.7±1.5 -50.6±13.2 13.5±2.6 -89.7±2.7 14.1±4.0 -11.4±2.0
LwF [20] 33.4±1.6 -59.6±2.2 9.9±12.1 -43.6±11.9 86.6±1.1 -9.2±1.1 48.2±1.6 -18.6±1.6

ER-GNN [9] 34.5±4.4 -61.6±4.3 30.3±1.5 -54.0±1.3 88.5±2.3 -10.8±2.4 56.7±0.3 -33.3±0.5

Joint (Not under continual setting) 81.2±0.4 -3.3±0.8 51.3±0.5 -6.7±0.5 97.1±0.1 -0.7±0.1 71.5±0.1 -5.8±0.3

SEM-uniform (Ours) 73.0±0.3 -14.8±0.5 47.1±0.5 -11.7±1.5 94.3±0.1 -1.4±0.1 62.0±1.6 -9.9±1.3
SEM-degree (Ours) 75.4±0.1 -9.7±0.0 48.3±0.5 -10.7±0.3 94.4±0.0 -1.3±0.0 63.3±0.1 -9.6±0.3

∑T−1
i=1 Macc

T,i−Macc
i,i

T−1 after learning all T tasks will be used. All

experiments are repeated 5 times on an Nvidia Titan Xp GPU.

Results are reported with mean and standard deviations.

2) Baselines and model settings: Our baselines are

adopted from CGLB [28] including Experience Replay

based GNN (ERGNN) [9], Topology-aware Weight Preserv-

ing (TWP) [27], Elastic Weight Consolidation (EWC) [19],

Learning without Forgetting (LwF) [20], Gradient Episodic

Memory (GEM) [7], and Memory Aware Synapses (MAS)

[21]). We also adopt joint training as the upper bound [26]–

[28]. A jointly trained model is simultaneously trained on

all tasks without forgetting problem. Besides, fine-tune (with-

out continual learning technique) is adopted as the lower

bound [26]–[28]. All models are implemented based on

four popular backbone GNNs, i.e., Graph Convolutional Net-

works (GCNs) [1], Simple Graph Convolution (SGC) [41],

Graph Attention Networks (GATs) [42], and Graph Isomor-

phism Network (GIN) [43]. Overall, the results of different

backbones do not exhibit an essential difference in perfor-

mance. Since the full results on all backbones are too many

to be shown and the backbone choice is not our key focus, we

show the best results of each method. For a fair comparison,

all backbones are set as 2-layer with 256 hidden dimensions.

3) Class imbalance & class-IL classifier: According to

Section IV-B1, the performance on different tasks contribute

equally to the average accuracy. However, unlike the tra-

ditional continual learning with balanced datasets, the class

imbalance problem is usually severe in graphs, of which the

effect will be entangled with the effect of forgetting. To

balance the data by simply choosing an equal number of

graph nodes from each class is impractical. For example,

in the OGB-Products dataset, the largest class has 668,950

nodes, while the smallest contains only 1 node. Therefore,

sampling an equal amount of nodes from each class would

result in either deleting many classes without enough nodes

or sampling a very small number of nodes from each class so

that all classes can provide enough nodes. Moreover, deleting

nodes in a graph would also change the original topological

structures of the remaining nodes, which is undesired. To this

end, we propose to rescale the loss according to the class

sizes. Denoting the set of all classes as C, and the number of

examples of each class as {nc | c ∈ C}, we can calculate a

scale for each class c to balance their contribution in the loss

function as sc =
nc∑
i∈C ni

. Finally, the balanced loss is:

L =
∑
v∈Vτ

l(f(ev;θ), yv) · syv

+
∑

ew∈SEM
l(f(ew;θ), yw) · syw

, (7)

λ in Equation (6) is omitted as it will influence the balance

of each class. Empirically, this choice results in significantly

better performance for all methods.

The number of the output heads of a model in a standard

classification task equals the number of classes and is fixed at

the beginning. But in the class-IL, the output heads continually

increase with the new classes. To better accommodate the new

classes, cosine distance is adopted by some works [44], [45]

to modify the standard softmax classifier. In our experiments,

all baselines except LwF adopt the standard classifier, since

only LwF exhibits better performance through the classifier

modified with the cosine distance.

C. Comparisons for Class-IL Scenario (RQ1,RQ2)

In this subsection, we compare SEM and the baselines under

the class-IL scenario. For SEM, both SEM with uniform sam-

pling (SEM-uniform) and SEM with degree based sampling

(SEM-degree) are included. For OGB-Arxiv, OGB-Products,

and Reddit datasets, we choose the buffer size to be 400 per

class. For CoraFull, we only allow a budget of 60 per class. For

the memory based baselines, we allow a budget of up to 800

per class for all datasets to highlight the advantage of SEM.

As shown in Table II, under the class-IL setting, SEM not only

outperforms the baselines with a large margin on all datasets,

but also is comparable to the joint training. In addition, for

SEM, degree based sampling also yields better performance

than uniform sampling.

V. CONCLUSION

In this paper, we developed the Subgraph Episodic Memory

(SEM), which stores the topological information in the form of

sparsified computation subgraphs to perform continual graph

representation learning. By sampling based graph sparsifica-

tion, we reduce the memory consumption of a computation

subgraph from O(dL) to O(1), and for the first time enable

1339



GNNs to fully utilize the explicit topological information for

memory replay. Our proposed method outperforms the existing

state-of-the-art methods by a large margin on 4 public datasets

in the class-IL (more practical and challenging) scenario.
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