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ABSTRACT

The standard option framework is developed on the Semi-Markov Decision Pro-
cess (SMDP) which is unstable to optimize and sample inefficient. To this end,
we propose the Hidden Temporal MDP (HiT-MDP) and prove that the option-
induced HiT-MDP is homomorphic equivalent to the option-induced SMDP. A
novel transformer-based framework is introduced to learn options’ embedding vec-
tors (rather than conventional option tuples) on HiT-MDPs. We then derive a stable
and sample efficient option discovering method under the maximum-entropy policy
gradient framework. Extensive experiments on challenging Mujoco environments
demonstrate HiT-MDP’s efficiency and effectiveness: under widely used configura-
tions, HiT-MDP achieves competitive, if not better, performance compared to the
state-of-the-art baselines on all finite horizon and transfer learning environments.
Moreover, HiT-MDP significantly outperforms all baselines on infinite horizon
environments while exhibiting smaller variance, faster convergence, and better
interpretability. Our work potentially sheds light on the theoretical ground of
extending the option framework into a large scale foundation model.

1 INTRODUCTION
The option framework (Sutton et al., 1999) is one of the most promising frameworks to enable RL
methods to conduct lifelong learning (Mankowitz et al., 2016) and has proven benefits in speeding
learning (Bacon, 2018), improving exploration (Harb et al., 2018), and facilitating transfer learning
(Zhang & Whiteson, 2019). Standard option framework is developed on Semi-Markov Decision
Process, we refer to this as SMDP-Option. In SMDP-Option, an option is a temporally abstracted
action whose execution cross a variable amount of time steps. A master policy is employed to
compose these options and determine which option should be executed and stopped.

The SMDP formulation has two deficiencies that severely impair options’ applicability in a broader
context (Jong et al., 2008). The first deficiency is sample inefficiency. Since the execution of an
option persists over multiple time steps, one update of the master policy consumes various steps of
samples and thus is sample inefficient (Levy & Shimkin, 2011; Daniel et al., 2016; Bacon et al., 2017).
The second deficiency is unstable optimizing algorithms. SMDP-based optimization algorithms are
notoriously sensitive to hyperparameters. Therefore, they often exhibit large variance (Wulfmeier
et al., 2020) and encounter convergence issues (Klissarov et al., 2017).

Extensive research has tried to tackle these issues from aspects such as improving the policy iteration
procedure (Sutton et al., 1999; Daniel et al., 2016; Bacon et al., 2017) and adding extra constraints
on option discovering objectives (Khetarpal et al., 2020; Wulfmeier et al., 2020; Hyun et al., 2019).
However, rare works (Levy & Shimkin, 2011; Smith et al., 2018; Zhang & Whiteson, 2019) explore
from the perspective of improving the underlying Decision Process. Our work is largely different
from literatures above and more details are discussed in Section 6. In this work, we present a
counterintuitive finding: the SMDP formulated option framework has an MDP equivalence which is
still able to temporally extending the execution of abstracted actions.

MDP-based options can address SMDP-based ones’ deficiencies from two aspects: (1) sample
efficient, i.e., MDPs policies can be optimized at every sampling step (Bacon, 2018); and (2) more
stable to optimize, i.e., convergence of MDPs algorithms are well theoretically justified and have
smaller variance (Schulman et al., 2015). In this paper, we propose the Hidden Temporal MDP
(HiT-MDP) and theoretically prove the equivalence to the SMDP-Option. We first formulate HiT-
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MDP as an HMM-like PGM and introduce temporally dependent latent variables into the MDP to
preserve temporal abstractions. By exploiting conditional independencies in PGM, we prove that
the HiT-MDP is homomorphic equivalent (Ravindran, 2003) to SMDP-Option. To the best of our
knowledge, this is the first work proposing an MDP equivalence of the standard option framework.

In order to solve optimal values of the HiT-MDPs, we devise a Markovian Option-Value Function
V̄ [st,ot−1] and prove that it is an unbiased estimation of the standard value function V [st]. We further
develop the Hidden Temporal Bellman Equation in order to derive the policy evaluation theorem for
HiT-MDPs. We also show that the Markovian Option-Value Function has a variance reduction effect.
As a result, HiT-MDP is a general-purpose MDP that can be updated at every sampling step, and thus
naturally address the sample inefficiency issue.

We solve the learning problem by deriving a stable on-policy policy gradient method under the
maximum entropy reinforcement learning framework. One difficulty of learning standard option
frameworks is that they do not have any constraint on qualities of options (Harb et al., 2018).
Standard option frameworks have tendencies to learn either degenerate options (Harb et al., 2018)
(short execution time) that switching back-and-forth frequently, or dominant options (Zhang &
Whiteson, 2019) (long execution time) that executing through the whole episode. We tackle this
problem by proposing the Maximum entropy Options Policy Gradient (MOPG) algorithm. MOPG
includes an information-theoretical intrinsic reward to encourage consecutive executions of options
and entropy terms to encourage explorations of options. The whole algorithm can be solved in an
end-to-end manner under the structional variational inference framework. We theoretically prove that
optimizing through MOPG converges to the optimal trajectory.

We conduct experiments on challenging Mujoco (Todorov et al., 2012; Brockman et al., 2016b;
Tunyasuvunakool et al., 2020) environments. Thorough empirical results demonstrate that under
widely used configurations, HiT-MDP achieves competitive, if not better, performance compared
to the state-of-the-art baselines on all finite horizon and transfer learning environments. Moreover,
HiT-MDP significantly outperforms all baselines on infinite horizon environments while exhibiting
smaller variance, faster convergence, and interpretability.

2 BACKGROUND

Markov Decision Process: A Markov Decision Process (Puterman, 1994) M = {S,A, r, P, γ}
consists of a state space S, an action space A, a state transition function P (st+1|st,at) : S× A→ S,
a discount factor γ ∈ R, and a reward function r(s,a) = E[r|s,a] : S × A → R which is the
expectation of the reward rt+1 ∈ R received from the environment after executing action at at
state st. A policy π = P (a|s) : A × S → [0, 1] is a probability distribution defined over actions
conditioning on states. A discounted return is defined as Gt =

∑N
k γkrt+k+1, where γ ∈ (0, 1) is a

discounting factor. The value function V [st] = Eτ∼π[Gt|st] is the expected return starting at state st
and the trajectory τ = {st,at, rt+1, st+1, . . . } follows policy π thereafter. The action-value function
is defined as Q[st,at] = Eτ∼π[Gt|st,at].
Homomorphic Equivalence: Givan et al. (2003) define the equivalence relation between MDPs as
symmetric equivalence (bisimulation relation). Ravindran (2003) extends their work to homomorphic
equivalence that allows defining symmetries between an MDP and SMDP. Given two processes,
an MDP M = {S,A, R, P, γ} with the trajectory τ and an SMDP M̃ = {S̃,A, R̃, P̃ , γ̃} with the
trajectory τ̃ . Assume both M and M̃ share the same action space A. An homomorphism B̃ is a
tuple of surjection partition functions, M and M̃ is Homomorphic Equivalence if 1) for all state-
action pairs {s,a}, there exists a many-to-one correspondence equivalent state-action pair {s̃, ã} that
{s,a}/B̃ = {s̃, ã}/B̃, or denoted as B̃({s̃, ã}) = {s,a}, 2) and following conditions hold:

1. P (τ/B̃) ≡ P (τ̃ /B̃), and B̃ is a surjection,
2. r(τ/B̃) ≡ r(τ̃ /B̃),

The SMDP-based Option Framework: In SMDP-Option (Sutton et al., 1999; Bacon, 2018),
an option is a triple (Io, πo, βo) ∈ O, where O denotes the option set; the subscript o ∈ O =
{1, 2, . . . ,K} is a positive integer index which denotes the o-th triple where K is the number of
options; Io is an initiation set indicating where the option can be initiated; πo = Po(a|s) : A× S→
[0, 1] is the action policy of the oth option; βo = Po(b = 1|s) : S → [0, 1] where b ∈ {0, 1} is a
termination function. For clarity, we use Po(b = 1|s) instead of βo which is widely used in previous
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option literatures (e.g., Sutton et al. (1999); Bacon et al. (2017)). A master policy π(o|s) = P (o|s)
where o ∈ O is used to sample which option will be executed. Therefore, the dynamics (stochastic
process) of the option framework is written as:

P (τ) = P (s0)P (o0)Po0(a0|s0)
∞∏
t=1

P (st|st−1,at−1)Pot(at|st)

[Pot−1
(bt = 0|st)1ot=ot−1

+ Pot−1
(bt = 1|st)P (ot|st)], (1)

where τ = {s0,o0,a0, s1,o1,a1, . . .} denotes the trajectory of the option framework. 1 is an
indicator function and is only true when ot = ot−1 (notice that ot−1 is the realization at ot−1).
Therefore, under this formulation the option framework is defined as a Semi-Markov process since
the dependency on an activated option o can cross a variable amount of time (Sutton et al., 1999).

3 AN MDP EQUIVALENCE OF THE SMDP-BASED OPTION FRAMEWORK

In this section, we propose the Hidden Temporal MDP (HiT-MDP). We first reformulate the SMDP-
Option as an HMM-like Probabilistic Graphical Model (PGM). We then propose the HiT-MDP as a
marginalization of the PGM and prove that the HiT-MDP is homomorphic equivalent (Ravindran,
2003) to the SMDP-Option. We also derive the HiT-MDP’s Bellman Equation and prove its conver-
gence by presenting the policy evaluation theorem. As a result, HiT-MDP is a general-purpose MDP
that can be combined with any policy optimization algorithm off-the-shelf. We propose an efficient
learning algorithm and complete the proof of the policy iteration theorem in Section 4.

3.1 AN MDP FORMULATION OF THE OPTION FRAMEWORK

Following Bishop (2006)’s formulation of mixture distributions, we redefine the option random
variable o ∈ O = {1, 2, . . . ,K}, which was originally defined as an integer index, but now as a
K-dimensional one-hot vector ō ∈ Ō = {0, 1}K where K is the number of options. We further
employ the one-hot vector to reformulate the termination function and action function of each option
into two mixture distributions by introducing extra dependencies on ō:

P (at|st, ōt) =
∏
o∈ōt

Po(at|st)o, P (bt|st, ōt−1) =
∏

o∈ōt−1

Po(bt|st)o (2)

Since the option random variable ō is now a one-hot vector, an instantiation ō ≜ k denotes the
activation of the option k, and by definition only the k-th entry of ōt is 1 and all the other entries are
0. Therefore, we have Pot(at|st) = P (at|st, ōt = ōt) and βot−1

= Pot−1
(bt = 1|st) = P (bt =

1|st, ōt−1 = ōt−1).

The third reformulation is that we propose a novel MDP mixture master policy P (ōt|st,bt, ōt−1),
which is a mixture distribution containing the SMDP master policy P (ōt|st) and a degenerate
probability as mixture components by adding two extra dependencies on bt and ōt−1:

P (ōt|st,bt, ōt−1) = P (ōt|st)btP (ōt|ōt−1)
1−bt , (3)

where the indicator function 1ot=ot−1
used in Eq. 1 is now redefined as a degenerate probability

distribution (Puterman, 1994):

P (ōt|ōt−1) =

{
1 if ōt = ōt−1,

0 if ōt ̸= ōt−1.

and the joint distribution can be written as:

P (τ̄) = P (s0)P (ō0)P (a0|s0, ō0)

∞∏
t=1

P (st|st−1,at−1)P (at|st, ōt)∑
bt

P (bt|st, ōt−1)P (ōt|bt, st, ōt−1) (4)

Although the mixture master policy in Eq. 4 is MDP-formulated, as a mixture com-
ponent within it, the master policy P (ōt|st) is still SMDP-formulated and hence
cannot be updated by MDP-based algorithms. By marginalizing over the termi-
nation variable bt in Eq. 4:

∑
bt

P (bt|st, ōt−1)P (ōt|bt, st, ōt−1), we propose the
Markovian master policy P (ōt|st, ōt−1) to model this marginal distribution explicitly:

3



Published as a conference paper at ICLR 2023

Figure 1: Probabilistic Graphical Model
(PGM) of HiT-MDP.

P (τ̄) =P (s0)P (ō0)P (a0|s0, ō0)

∞∏
t=1

P (st|st−1,at−1)

P (at|st, ōt)P (ōt|st, ōt−1) (5)

where Eq. 5 denotes the joint distribution of the PGM. In
this formulation, P (τ̄) is actually an HMM with st, at as
observable random variables and ōt as latent variables. We
use πO(st, ōt−1) = P (ōt|st, ōt−1) to denote the master
policy and πA(st,ot) = P (at|st, ōt) to denote the action
policy. Figure 1 shows the PGM (Eq. 5).

3.2 THE HIDDEN TEMPORAL MDPS (HIT-MDPS)
Given the PGM (Eq. 5, Figure 1), the Hidden Temporal
MDPs (HiT-MDPs) family can be described by a tuple M = {S̄, Ā, r, P, ϕ, γ} where S̄ .

= S× Ō is an
augmented state space, Ā .

= A×Ō is an augmented action space, and ϕ = P (ōt|s̄t) = P (ōt|st, ōt−1)
is the emit function for hidden variables. The joint distribution of HiT-MDPs is factorized as Eq. 5
(derivations see Appendix C).

We define a partition function B̄(s̄, ā) = B̄({ōt−1,at, ōt, st}) = (ot−1,at,ot, st) (proofs in Ap-
pendix C), which maps τ̄ to τ , where τ̄ = {s0, ō0,a0, s1, ō1,a1, . . .} is the trajectory of the HiT-MDP.
Therefore, by following the Partition Function B̄, the dynamics of the SMDP-Option in Eq. 1 under
the Surjection B̄ is equivalent to HiT-MDP P (τ/B̄) = P (τ̄ /B̄). With P (τ/B̄) = P (τ̄ /B̄) in hand,
to prove the equivalence between the SMDP-Option and HiT-MDP, we move on to prove both of them
share the same expected reward. This is non-trivial since compared to the SMDP-Option, the MDP
formulation introduces extra dependencies on ō. However, in Appendix C, by exploiting conditional
independencies we prove that they share the same expected return under the Surjection B̄. Therefore,
the SMDP-based option framework has an MDP-based equivalence:
Theorem 3.1. By the definition of Bisimulation Relation, the SMDP-based option framework, which
employs Markovian options, has an underlying MDP equivalence because:

1. P (τ/B̄) = P (τ̄ /B̄) and B̄ is a Surjection.

2. r(τ/B̄) = r(τ̄ /B̄)

Proof. See Appendix C.

Since the master policy P (ōt|st, ōt−1) introduces one extra dependency on ōt−1, conventional
Bellman equation which is derived by following the conventional value function V [st] no longer
applies to HiT-MDP (see Appendix D). In order to derive the Bellman equation of HiT-MDP, we
propose the novel Markovian option-value function, value functions with Markov dependencies
(such as ōt−1). Specifically, rather than use the conventional value function V [st], let the Markovian
option-value function V̄ [st, ōt−1] and the option-action value function QA[st, ōt,at] be defined by:

V̄ [st, ōt−1] = E[Gt|st, ōt−1] =
∑
ōt

P (ōt|st, ōt−1)Eat∼πA [QA[st, ōt,at]], (6)

QA[st, ōt,at] = E[Gt|st, ōt,at] = r(s, a) + Est+1∼πA [
∑
l=1

γlrt+l] (7)

As with the standard Q-function and value function, we can relate the Q-function to the Markovian
option-value function at a future state via a Hidden Temporal Bellman Operator T H.
Theorem 3.2. The option-action value function Eq. 7 satisfies the Bellman Operator T H

T HQA[st, ōt,at] = E[Gt|st, ōt,at]

= r(s, a) + γ
∑
st+1

P (st+1|st,at)V̄ [st+1, ōt], (8)

where the Markovian option-value function given by Eq. 6. Proof. See Appendix D.
We can obtain the option-action value function for any policy by repeatedly applying T H and the
sequence converges to the optimal value function:
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Theorem 3.3. (Markovian Option Policy Evaluation Theorem). Assume that throughout our compu-
tation the QA[·, ·] and V̄ [·] are bounded and A <∞, the sequence Qk

A defined by Qk+1
A = T HQk

A
will converge to the option-action value function QπA

A as k →∞.
Proof. As with the standard convergence results for policy evaluation (Sutton & Barto, 2018), by the
definition of T H (Eq. 8) the option-action value function QπA

A is a fixed point. In Appendix D we
show that T H is a contraction, and then Theorem 3.3 follows immediately.
In Appendix D, we further prove that V̄ [st, ōt−1] is an unbiased estimation of V [st] and has a
variance-reduction effect compared to the conventional value function. This property is empirically
witnessed and further discussed in experiments (Section 5.1).
Proposition 3.4. V̄ [st, ōt−1] is an unbiased estimation of V [st].
Proposition 3.5. The variance of V̄ [st, ōt−1] is up-bounded by V [st].

Proof. See both Proposition 3.4 and 3.5’s proof in Appendix D

The theoretical analysis above presents a counterintuitive fact: the SMDP formulated option frame-
work has an MDP formulated homomorphic equivalence (HiT-MDPs), and they both converge to
the same optimal value function. One natural question to ask is that how could an MDP temporally
extend executions of options? Note that the Markovian master policy P (ōt|st, ōt−1) is a result of the
marginalization over the termination variable bt (See Eq. 5 and Eq. 1) and has an extra dependency
on ōt−1). Therefore, the Markovian master policy acts like a distance measure. The decision of
selecting an option ōt can be made by simply comparing which ō ∈ ō is closest to the vector [st, ōt−1].
Because a vector is closest to itself, this mechanism has a natural tendency to assign ot to ot−1,
and thus extends ōt−1’s execution. On the other hand, a significantly different state st will pull the
distance far enough from ot−1 and result in other options being assigned. The effectiveness of the
Markovian master policy is also empirically addressed in Section 5.4.

4 LEARNING HIT-MDPS UNDER THE MAXIMUM ENTROPY FRAMEWORK

Figure 2: PGM of Eq. 5.

In this section, we propose a stable and sample efficient
Maximum entropy Option Policy Gradient (MOPG) algo-
rithm to learn HiT-MDPs. Learning temporal abstraction
like options has been a long standing challenge (Sutton
et al., 1999; Givan et al., 2003; Kolobov et al., 2012; Ba-
con et al., 2017). In theory (Sutton et al., 1999), options
are not generally necessary for learning optimal policies
since MDPs are sufficient enough. Therefore, standard
option learning algorithms optimizing Eq. 1 often leads to
sub-optimal results: either degenerate options (Harb et al.,
2018) (short execution time) switching back-and-forth fre-
quently, or dominant options (Zhang & Whiteson, 2019)
(long execution time) executing through the whole episode. Although there are various attempts
(Harb et al., 2018; Hyun et al., 2019; Smith et al., 2018) tackling this issue, yet they often introduce
bias which accumulates along the length of the trajectory and result in sub-optimal solutions.

Recently maximum entropy reinforcement learning framework (Todorov, 2006; Ziebart et al., 2010;
Haarnoja et al., 2017; 2018) has been witnessed success in encouraging exploration and improving
sample complexity. With the PGM of the HiT-MDP in hand, we tackle the above issues by deriving
the Maximum entropy Option Policy Gradient (MOPG), a stable algorithm for learning diversified
options and preventing degeneracy. Following the control as inference framework (Levine, 2018;
Haarnoja et al., 2018), we introduce the concept of “Optimality” (Todorov, 2006) into the HiT-MDP
and formulate the conventional RL problems Eq. 5 as a probabilistic inference problem (Kappen
et al., 2012). Specifically, we follow Levine (2018); Koller & Friedman (2009) and factorize Eq. 5
into another PGM (as shown in Figure 2):

q(τ̄ , eA1:T , e
O
1:T ) = P (s0)q(ō0)

T∏
t=1

q(eAt |st,at)q(eOt |st,at, ōt, ōt−1)P (st+1|st,at)q(ōt)q(at)

∝ P (s0)

T∏
t=1

P (st+1|st,at)︸ ︷︷ ︸
Original Dynamics

T∏
t=1

q(eAt |st,at)q(eOt |st,at, ōt, ōt−1)︸ ︷︷ ︸
Variational Terms

, (9)
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where e ∈ {0, 1} are observable binary “optimal random variables” (Levine, 2018). The agent
is optimal at time step t when q(eAt = 1|st,at) and q(eOt = 1|st,at, ōt, ōt−1) (to keep notations
uncluttered we use et to denote et = 1. To simplify the derivation, priors q(ō) and q(a) can be
assumed to be uniform distributions without loss of generality (Levine, 2018). Note that Eq. 9 shares
the same state-action dynamics with Eq. 5. With the optimal random variables eO and eA, the
conditional probability of a state-action {st,at} pair that is optimal is defined as:

q(eAt |st,at) = exp(r(st,at))[

∫
exp(r(st,at))da]

−1, (10)

which is an energy function that follows the Boltzmann distribution (Levine, 2018). This specific
design facilitates recovering the value function at the latter structural variational inference stage.
Based on the same motivation, the conditional probability of an option-state-action {ot, st,at,ot−1}
pair that is optimal is defined as,

q(eOt |st,at, ōt, ōt−1) = exp(I[ōt|st,at, ōt−1])[

∫
exp(I[ōt|st,at, ōt−1])do]

−1, (11)

where the mutual-information I[ōt|st,at, ōt−1] is chosen to be the energy function follows the
Boltzmann distribution. This design choice arises from a fact that when the uniform prior assumption
of q(o) is relaxed the optimization introduces a mutual-information as a regularizer in the Evi-
dence Lower BOund (ELBO) (Proof in Appendix E). When optimal random variables are observed,
substituting Eq. 10 & 11 into Eq. 9, the conditional probability of any feasible trajectory τ̄ is:

q(τ̄ |e1:T ) ∝
[
P (s0)

T∏
t=1

P (st+1|st,at)
]
exp(

T∑
t=1

r(st,at)) exp(

T∑
t=1

I[ōt|st,at, ōt−1]), (12)

where optimal random variables e1:T are treated as observed random variables (evidences) and the
trajectory τ̄ is treated as latent variables. Therefore, the problem of fitting the optimal trajectory
is equivalent to maximizing ELBO: log q(e1:T ) ≥ −DKL[P (τ̄)||q(τ̄ |e1:T )] (Proof in Appendix E).
This observation immediately gives rise to a structural variational inference solution as keeping the
system dynamix P (s0)

∏T
t=1 P (st+1|st,at) in both Eq. 12 and Eq. 5 fixed while optimizing the

action and master policies in the variational distribution of Eq. 5:
Theorem 4.1. (Markovian Option Policy Improvement Theorem). The problem of learning optimal
action and master policies can be simplified as shrinking the KL-Divergence: DKL[P (τ̄)||q(τ̄ |e1:T )]

πO∗, πA∗ =argmax
πO,πA

−DKL[P (τ̄)||q(τ̄ |e1:T )]

= argmax
πO,πA

∑
t

EπO,πA [r(st,at) + I(ot|st,at,ot−1) +H(πO) +H(πA)],
(13)

whereH(·) denotes the entropy term. Proof. See Appendix E.
With policy evaluation and improvement theorems, we further prove the convergence of MOPG by
proposing the Markovian Option Policy Iteration Theorem (Appendix E). Standard option frameworks
(as shown in Eq. 1 and Eq. 5) only consider maximizing the value function and have no constraints on
qualities of options, e.g., what good options should behave (Harb et al., 2018). As a result, previous
researches often lead to suboptimal results. In Eq. 44, the mutual-information is introduced as an
intrinsic reward to encourage consecutive executions of options and thus prevent degenerate options,
while entropy terms encourage explorations of options thus prevent dominant options.

Following value functions from Section 3.2, we directly optimize ELBO with respect to the variational
distribution and derive the Maximum entropy Options Policy Gradients (MOPG) theorems:
Theorem 4.2. Master Policy Gradient Theorem: Given a stochastic master policy which is
differentiable w.r.t. its parameter vector θō, the gradient of the expected discounted return w.r.t. θō is:

∂V̄ [st, ōt−1]

∂θō
= E[

∂P (ō′|s′, ō)
∂θō

QO[s
′, ō′] + I(ō′|s,a, ō) +H(πO

θō) | st, ōt−1], (14)

where QO[st, ōt] = E[Gt|st, ōt] (Appendix D Eq. 28). Proof. See Appendix E
Theorem 4.3. Action Policy Gradient Theorem: Given a stochastic action policy which is
differentiable w.r.t. its parameter vector θa, the gradient of the expected discounted return w.r.t. θa is:

∂QO[st, ōt]

∂θa
= E[

∂P (a|s, ō)
∂θa

QA[s, ō,a] +H(πA
θa) | st, ōt]. (15)

Proof. See Appendix E. To keep notations uncluttered, we use θō to denote master policy’s parameters
πO
θō

and θa to denote action policy’s parameters πA
θa

. The algorithm is summarized in Appendix F.
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5 EXPERIMENTS

In this section, we design experiments to answer five questions: (Q1) Whether MOPG can achieve
better performance than other option variants and non-option baselines? (Q2) Does MOPG have a
performance boost over other option variants in transfer learning settings? (Q3) Is HiT-MDP inter-
pretable? (Q4) Whether MOPG can encourage consecutive executions of options while preventing
dominant options problem?

For baselines, we follow DAC (Zhang & Whiteson, 2019)’s open source implementations and compare
our algorithm with six baselines, five of which are option variants, i.e., DAC+PPO, AHP+PPO (Levy
& Shimkin, 2011), IOPG (Smith et al., 2018), PPOC (Klissarov et al., 2017), and OC (Bacon et al.,
2017). The non-option baseline is PPO (Schulman et al., 2017). All baselines’ parameters used by
DAC remain unchanged other than the maximum number of training steps: MOPG only needs 1
million steps to converge rather than the 2 million used in DAC. For single task learning, experiments
are conducted on all OpenAI Gym MuJoCo environments (10 environments) (Brockman et al., 2016a).
For transfer learning, we follow DAC and run 6 pairs of transfer learning tasks based on DeepMind
Control Suite (Tassa et al., 2020). Figures are plotted following DAC’s protocol: curves are averaged
over 10 independent runs and smoothed by a sliding window of size 20. Shaded regions indicate
standard deviations. All experiments are run on an Intel® Core™ i9-9900X CPU @ 3.50GHz with
a single thread and process. Our implementation details are summarized in Appendix G. For a fair
comparison, we follow DAC and use four options in all implementations. Our code is available in
supplemental materials.

5.1 SINGLE-TASK LEARNING (Q1)

To answer Q1, we compare MOPG against five different option variants (i.e., DAC+PPO (Zhang &
Whiteson, 2019), AHP+PPO (Levy & Shimkin, 2011), IOPG (Smith et al., 2018), PPOC (Klissarov
et al., 2017) and OC (Bacon et al., 2017)) and PPO (Schulman et al., 2017). We observe that MOPG
exhibits two different behaviors on infinite (Figure 3a) and finite (Figure 3b) horizon environments.
Previous literatures (Klissarov et al., 2017; Smith et al., 2018; Harb et al., 2018; Zhang & Whiteson,
2019) find that option-based algorithms do not have advantages over hierarchy-free algorithms on
single-task environments. Despite this, MOPG can still achieve comparable performance with state
of the arts (Figure 3b). More importantly, on infinite horizon environments (Figure 3a), MOPG’s
performance significantly outperforms all baselines with respect to episodic return, convergence
speed, variance between steps, and variance between 10 runs (Proposition 3.5). Since infinite and
finite horizon environments are theoretically identical (Sutton & Barto, 2018), we do not have a
theoretical explanation for this phenomenon. In Appendix A, we conceptually explain that this might
be because conventional value functions are insufficient to approximate environments in which hidden
variables o only affect rewards but not states. In conclusion, our experiment results show that MOPG
is at least as effective as other option variants, but is significantly more sample efficient. Furthermore,
it has significant advantages in infinite horizon environments.

5.2 TRANSFER LEARNING (Q2)

We run 6 pairs of transfer learning tasks based on DeepMind Control Suite (Tassa et al., 2020). Each
pair contains two different tasks. Following the setting in DAC (Zhang & Whiteson, 2019), we
train all models one million steps on the first task and then switch to the second task to further train
another one million steps. Results are reported in Figure 4. On the transfer learning task, MOPG’s

(a) Infinite horizon environments (b) Finite horizon environments

Figure 3: Single-task episodic returns in 4 different environments (i.e., HalfCheetah-v2, HumanoidStandup-v2,
Walker2d-v2, and Hopper-v2). Results in all 10 environments are available in Appendix B.1.
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Figure 4: Transfer learning results on three pairs of tasks. All 6 pairs of results are available in Appendix. B.1

performance ranks the first in 5 out of 6 environments. This demonstrate MOPG’s advantages in
knowledge reuse and its performance is at least comparable with other option variants.

5.3 INTERPRETATION OF OPTION EMBEDDINGS (Q3)

Interpretability is a key property to apply RL agents in real-world applications. Our implementation
follows the Skill-Action (SA) architecture (Li et al., 2020) and introduces transformer’s decoder as a
distance measure to learn option embeddings.

One unique advantage of HiT-MDP is that hidden variables ō are interpretable. In the implementation,
the master policy is defined as πO = P (ōt|st, ōt−1;Wo) where Wo = [ô1, ..., ôK ] is an embedding
matrix, ô ∈ RN is the embedding vector for an option with dimension N , and K is the total number
of options (N = 40 and K = 4 in figure 5(a)). More implementation details are described in
Appendix G. Similar to word embeddings (Vaswani et al., 2017), option embeddings learn a semantic
space of options with each dimension encodes a particular property and can be interpreted explicitly.
As in the capsule network (Sabour et al., 2017), we first infer each embedding dimension’s semantic
by adding perturbations on to it ôperturb

[i,j] = ϵ[i] + ô[:,j], where ϵi ∈ [−0.1,−0.09, ..., 0.09] is an array
ranging from −0.1 to 0.09 with an interval of 0.01 and j ∈ N is the jth dimension of the option
embedding. We then sample primary actions a[:,j] ∼ πA(st,o

perturb
[i,j] ) from perturbed options to

observe how actions change along with perturbations.

For instance, Figure 5(b) visualizes how perturbations on dimension 0 of the option embedding
affect the primary action. The Y-axis denotes actions defined by the HalfCheetah environment. The
magnitude of Dim 0 have an opposite effect on the back leg and front leg: a larger value will increase
the back leg’s torque while decrease the front leg’s, and vice versa. This means Dim 0 has a “focus
point” property: it focuses torque on only one leg. Other dimensions in Figure 5(c) can be interpreted
in the same manner. Once each dimension is understood, embeddings become straightforward to
interpret by simply inspecting on which dimensions each embedding ô (Figure 5(a)) has significant
weight. Due to space limitations, more details and GIFs are provided in Appendix B.3.

(b) 20 Perturbations of Dimension 0 (c) Perturbations of Dim 2, 5, 11, 15, 22, 36

(a) Option Embedding Matrix: x-axis is the index of embedding dimensions

Option 1

Option 2

Option 3

Option 4

(a) Option Execution Duration
per Episode

Run 1

Run 2

Run 3

Run 4

(b) Execution duration of all options of 4 Runs

Option 1

Option 2
Option 3

Option 4

Figure 5: Interpretation of option embeddings learned in HalfCheetah Figure 6: Options Composing Patterns

5.4 TEMPORAL EXTENSION (Q4)

One significant advantage of MOPG over other algorithms is that the intrinsic reward and entropy
terms (Eq. 44) enable MOPG automatically learns to balance between degenerate and dominant
options. In this subsection, we empirically demonstrate this in Figure 6 (experiment results from
HalfCheetah, more details in Appendix B.2). At the start of training, all options’ durations are
short, while Option 3’s duration quickly grows. This proves that MOPG can indeed temporally
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extend an option. More than temporal extension, as shown in the video1, MOPG learns to compose
distinguishable options. Option 3 (green background in the video) is a running forward skill thus it is
executed most of the time. Option 2 (blue background) is mainly used to recover from falling down
thus its duration decreases with training. Therefore, the empirical study also shows that MOPG can
compose disentangled options while preventing the dominant option problem.

6 RELATED WORKS

To discover options automatically, Sutton et al. (1999) proposed Intra-option Q-learning to update
the master Q value function at every time step. However, all policies under this formulation are
approximated implicitly using the Q-learning method. AHP (Levy & Shimkin, 2011) is proposed to
unify the Semi-Markov process into an augmented Markov process and explicitly learn an “overall
policy” by applying MDP-based policy gradient algorithms. However, their method for updating the
master policy is still SMDP-style thus sample inefficient (Zhang & Whiteson, 2019). OC (Bacon
et al., 2017) proposes a policy gradient based framework for explicitly learning intra-option policies
and termination functions in an intra-option manner. However, for the master policy’s policy gradients
learning, OC remains SMDP-style. One closely related work is DAC (Zhang & Whiteson, 2019)
which reformulates the option framework into two augmented MDPs. Under this formulation, all
policies can be modeled explicitly and learned in MDP-style. However, DAC is not theoretically
proven to be homomorphic equivalent to the SMDP-Option. Moreover, the reward function r(τ) used
in Lemma 1 & 2 (Zhang & Whiteson, 2019) is undefined and makes the equivalence in proposition
1 (Zhang & Whiteson, 2019) does not hold. To the best of our knowledge, this is the first work proving
MDPs’ equivalence to option-induced SMDPs under the homomorphic equivalence framework.

Regarding network architectures, Attention Option Critic (AOC) (Chunduru & Precup, 2020) first
introduces the attention mechanism into the option framework as a unique attention mask over state
s̈ = Ẅo⊙s and enables learning interpretable options with unique activation field (e.g., initiation set)
over the observation space. Unlike AOC, Section 5.3 follows the Skill-Action architecture (Li et al.,
2020) which employs the attention mechanism over the joint space of the observation and option
space. Regarding optimizing algorithms, Zhang & Whiteson (2019) pointed out that a large margin
of the performance boost of DAC comes from the Proximal Policy Optimization (Schulman et al.,
2017) (PPO). However, recent advances in probability inference based RL methods have also shown
great success. Haarnoja et al. (2018) combined the idea of soft optimality (Haarnoja et al., 2017)
from earlier control as inference frameworks (Todorov, 2006; Ziebart et al., 2010; Kappen et al.,
2012) with the actor-critic architecture (Konda & Tsitsiklis, 2000) and proposed the state-of-the-art
off-policy baseline SAC. Recent works show that the option framework trained under soft-optimality
off-policy algorithms outperform on-policy methods (Wulfmeier et al., 2020). HiT-MDPs are general
MDPs which can be trained by both on-policy and off-policy algorithms: the ELBO proposed in
Section 4 can easily be extended to a SAC-like algorithm and remains to the future work.

7 CONCLUSIONS

In this paper, we propose the Hidden Temporal MDP (HiT-MDP), to the best of our knowledge, the
first work proving option-induced MDP’ is homomorphic equivalent to the standard SMDP Option
framework. As for the learning algorithm, we propose the Maximum entropy Option Policy Gradients
(MOPG) algorithm. Unlike conventional option learning algorithms that only maximize the value
function without any constraint on the qualities of options, MOPG optimizes the Evidence Lower
BOund (ELBO) with an intrinsic reward to prevent degenerate options and entropy terms to prevent
dominant options. It is also theoretically proven fitting optimal trajectories without adding any bias.

On challenging Mujoco (Todorov et al., 2012; Brockman et al., 2016b; Tunyasuvunakool et al., 2020)
environments, thorough empirical results demonstrate that under widely used configurations, HiT-
MDP achieves comparable results to all baselines on finite horizon and transfer learning environments,
and significantly outperforms all baselines on infinite horizon environments. We also demonstrate
hidden temporal embeddings are interpretable, which is a key property for applying RL agents to
real-world applications. Embeddings exist in various applied ML domains such as CV and NLP, our
work shows that the idea also works for HRL and potentially lays the theoretical ground for building
a large scale HRL foundation model.

1https://youtube.com/shorts/M06BPqit7l4?feature=share
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A LEARNING OPTIONS AT MULTI-LEVELS OF GRANULARITY

Implementations of the option framework share some common limitations. When proposing the option
framework, Sutton et al. (1999) expected that learning at multi-level of temporal abstraction should
be in favor of faster convergence and better exploration. On the contrary, significant improvements on
single task environments have not been witnessed in most option implementations (Klissarov et al.,
2017; Smith et al., 2018; Harb et al., 2018; Zhang & Whiteson, 2019). To the best of our knowledge,
MOPG is the first option implementation in which these properties are significantly witnessed but
only on infinite horizon environments. In this section, we study this problem by explaning an intuition
of why the value function is the main reason for this deficiency and how deep wide value functions
could solve this problem.

The expectation of improvements of the option framework on single task environment builds on an
assumption that, by exploiting hierarchical action and state space, an agent’s searching space can
be greatly reduced thus accelerates learning and improving exploration. However, as reported in
section 5.4, most option frameworks suffer from “the dominant option problem” (Zhang & Whiteson,
2019) which prevents option frameworks from effectively learning hierarchy in action and state space
as well as coordinating between options.

One intuition behind this problem is that conventional value functions V [St] and Q[St, Ot, At] make
values depend on temporal latent variables indistinguishable (i.e. Although different options o1
and o2 results to different values, such as V [St, Ot−1 = o1] = 10 and V [St, Ot−1 = o2] = −10.
Because they arrive at the same state St, they have identical values under conventional value function
V [St] = 0). This deficiency makes option frameworks can only learn options at very coarse level
thus fail to exploit hierarchical information. The solution might be using a deep wide value function:
enabling the framework to learn fine-grained options at mutli-levels of granularity (deep) and making
value functions depend on latent variables with longer (wide) dependencies (e.g. V [St, Ot−1] and
Q[St, Ot, At, Ot−1]).

To have a better understanding the importance of the deep wide value function, let us consider a
simple environment which can be easily solved by Q[st, at, at−1] but not Q[st, at].

Suppose we are training a robot which only has a camera sensor to cook thanksgiving turkey. In
this setting there are only two states: S = {Raw Turkey Image,Cooked Turkey Image}. The robot’s
action space only consists of two actions: A = {Stuff turkey,Roast turkey}. As for reward, if the
robot roasted a stuffed turkey, then the reward is 10. However, if the robot roasted an un-stuffed
turkey, then the reward is −10. The stuff turkey action receives 0 reward.

The difficulty in this environment is, since the robot only has a camera to capture an image of
the turkey, it can only observes either {Raw Turkey Image} or {Cooked Turkey Image}. There is
no way to look inside the turkey and see if the turkey is stuffed. Under this setting, a robot can
never learn to first stuff a turkey and then roast it because Q[Raw Turkey Image,Stuff Turkey] =
Q[Raw Turkey Image,Roast Turkey] = 0. Therefore, the robot can only randomly cook a turkey.
However, this problem can be easily solved by using a deep wide value function Q[St, At, At−1].

The core problem in this setting is, action has no effect on states, it only affects rewards. At the first
glance this is a Partially Observed MDP (POMDP) problem since the state of whether the turkey is
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stuffed is un-observed. This is true in all reinforcement learning settings without dependencies on
latent variables. However, it goes much deeper in HRL settings.

In HRL, a common formulation is to estimate a latent variable O to encode hierarchical information
and makes the policy depends on it P (At|St, Ot). Since O is a latent variable, it is highly likely
that at state St, different latent variable P (At|St, Ot = ox) and P (At|St, Ot = oy) emits the same
action At = A1, and thus makes the conventional value function indistinguishable between ox and
oy .

This phenomenon is especially common around the switching time step of two options: around
switching point, states are usually compatible with both old and new options. Conventional value
functions will be especially confused at those moments. This is exactly what we observed in Fig-
ure 5.3: overall, option 3 is executed consistently. However, there are some random switches to option
2. And the randomization is increased between around switching time steps. To explicitly show this,
we visualized “Run4” into a video: https://www.youtube.com/shorts/M06BPqit7l4?
feature=share. The option selection is very random at the beginning of the episode as well as
around the switching point (the 16th second). These are exactly the most confusing moments of
conventional value functions. Thanks to proposition 3.4 and 3.5, one unbiased solution might be
employing the deep wide value function: the higher the order of the MDPs, the smaller the variance
will be. We will explore this direction in our future work.

B EXPERIMENTS RESULTS

B.1 PERFORMANCE

In this section we provide results for all ten OpenAI Gym Mujoco Environments (Brockman et al.,
2016b; Todorov et al., 2012). Those environments can be classified into two categories: infinite
horizon environments (i.e., HalfCheetah, Swimmer, HumanoidStandup and Reacher) and finite
horizon environments (the other).

Table 1: Performance of Infinite Horizon Environments

HalfCheetah Swimmer HumanoidStandup Reacher
PPO 2143.6 59.9 62262.2 -7.5
DAC+PPO 1830.1 85.0 38954.9 -8.1
AHP+PPO 1701.7 86.7 38684.9 -7.3
PPOC 1441.2 43.6 39841.7 -9.4
OC 832.3 33.0 52352.7 -15.3
MOPG 3446.7 107.8 91654.5 -4.6

Table 2: Performance of Finite Horizon Environments

Walker2d Hopper InvertedPendulum InvertedDoublePendulum Ant Humanoid
PPO 1512.5 1489.9 939.9 7112.6 1049.6 562.1
DAC+PPO 1968.0 1702.2 943.7 5804.5 985.8 487.6
AHP+PPO 1520.6 1993.6 940.0 7120.7 1359.3 569.3
PPOC 756.1 1308.1 936.2 7117.6 429.4 483.9
OC 391.9 487.6 207.1 2369.4 433.4 475.1
MOPG 1856.9 1955.3 906.5 6884.1 907.4 528.7
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Figure 5: Performance of Ten OpenAI Gym MuJoCo Environments.

B.2 TEMPORAL EXTENSION

In Figure 6, we plot the average duration of each option during 430 training episodes (each episode
contains a trajectory of 512 time steps) of the HalfCheetah environment. In this environment, the
agent learns to run half of a Cheetah by controlling 6 joints: back thigh, back shin, back foot, front
thigh, front shin, and front foot. The faster the Cheetah runs forward, the higher return it gets from
the environment. At the start of training, all options’ durations are short. After the 100-th episode,
Option 3’s duration quickly grows. This answers the question Q4 in the main text that MOPG is able
to temporally extending the execution of an option in the abscence of the termination function.

(a) Option Execution Duration per Episode

Option 1
Option 2

Option 3
Option 4

Figure 6: Duration of 4 options during 430 training episodes of HalfCheetah.

To illustrate how MOPG composes options, we take the HalfCheetah model trained after 1 million
steps and independently run it 4 times (4 episodes. each episode contains 512 time steps). Option
activation sequences of 4 runs are then plotted in Figure 7.
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Figure 7: Activated option sequences of 4 independent HalfCheetah runs.

As we can see that there are some common patterns between all 4 independent runs. For example,
all runs start with Option 1 and use Option 2 at the early stage. After executing Option 2 for a short
period, they all switch to Option 3 which has longest durations in all 4 runs. From time to time they
will fall back to Option 2 for short periods and quickly switch to Option 3 again. This pattern of
coordination indicates that because of the intrinsic reward and entropy terms in Eq. 44, one significant
advantages of the MOPG over other algorithms is that the ELBO objective function automatically
learns to balance between degenerate options and dominant options. As shown in the video2, Option
3 (green background in the video) is a running forward option thus it is executed most of the time.
Option 2 (blue background) is mainly used to recover from falling down thus its duration decreases
with training. Option 2 and Option 3 have completely different functionality. Therefore, empircal
study also shows that MOPG is able to compose disentangled options while preventing dominant
options problem.

Figure 8: All option baselines’ option durations for comparison in the HalfCheetah environment

One interesting question to ask is whether the performance boost of MOPG comes from increasing or
decreasing of option frequencies compared to other option variants. In Figure 8 we plot one run of all
option variants’ option duration.

As shown in Figure 8, it appears to be that there is not a significant difference in terms of option
duration between our method and other option variants. All of these methods are able to learn options
which execute across various amount of time as well as composing those options. It is also worth
to mention that comparing with Figure 3, there is not an apparent monotonically relation between
option changing frequency and performance. Therefore, on simple environments like HalfCheetah,
main performance difference comes with sample efficiency of training intra-option policies.

On the contrary, in harder environment like HumanoidStandupV2, there is a significant difference in
terms of option composition between our method and other variants. As shown in Figure 3, all option

2https://youtube.com/shorts/M06BPqit7l4?feature=share
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Figure 9: All option baselines failed to learn useful options in harder environment (HumanoidStandupV2)

Figure 10: Illustration of our method’s 4 Options composition in the HumanoidStandupV2 Environment.

variants except ours have a rather low score in HumanoidStandupV2. As shown in Figure 9, all of
these option variants tends to quickly and randomly switching between options. This means that they
failed to learn useful options which focus on specific sub-tasks with longer durations. This is because
that standard option frameworks have tendencies to learn either degenerate (Harb et al., 2018) options
(short execution time) that switching back-and-forth too frequently, or dominant options (Zhang &
Whiteson, 2019) (long execution time) that executing through the whole episode. Both cases severely
impair performance.

Figure 10 shows our method’s options composition in HumanoidStandupV2. As shown in the figure
that our method employs more options as the environment gets harder: it successfully learns 4 useful
optons and has a clear options composition schedule between stages of standing up. For option
(a), the humanoid is lying around and trying to sit up. For option (b) and option (c), these two
options are more interchangeably used: option (b) is more sitting and swirling while option (c) is
more trying to stand up and recover from failed trials. After the humanoid stands up, the agent
constantly call option (d) which is running around and trying to balance itself. In conclusion, our
method can learn distinguishable options and composition schedule in harder environment. Because
of MOPG’s maximum entropy framework, our method is able to adapt to environment’s complexity
in an end-to-end manner and is more robust to degenerate and dominant options.

One last thing worth to mention is that the number of options used is not only related to complexity
of the environment, but also the coefficient of entropy terms. Figure 11 shows a histogram of the
magnitude of entropy weights and how many options are used in total 20 runs. As we can see
that as entropy weight increasing, more options are to be used since there is more randomness in
option policy: when entropy weight is 0.01, all 20 runs only use 2 options; when entropy weight
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Figure 11: Histogram of entropy weights v.s. number of options used in HalfCheetah environment. The larger
the entropy weight, more options will be used.

is 0.2, 9 of 20 runs use 4 options while only 7 runs use 2 options. Therefore, having an annealing
training schedule of entropy weights might significantly boost performance of MOPG. However, to
demonstrate the robustness of our method we fixed the entropy weight to 0.01 in all experiments.

B.3 INTERPRETATION OF OPTION CONTEXT VECTORS

In this section we continue with the HalfCheetah model used in Section B.2 and demonstrate how to
interpret option context vectors as well as option activation sequences (Figure 7). In HalfCheetah, the
agent learns to run half of a Cheetah by controlling 6 joints: back thigh, back shin, back foot, front
thigh, front shin, and front foot. The faster the Cheetah runs forward, the higher return it gets from
the environment. We interpret option context vectors and activation patterns by first inspecting what
property each dimension of the option context vector encodes (Figure 13). Once each dimension is
understood, options (Figure 12) become straight forward to interpret by simply inspecting on which
dimension (property) they have the most significant weights (Figure 14). These interpretations can
further be taken to explain option activation patterns in Figure 7.

Figure 12: Heatmap of all 4 option context vectors

As the first step, we follow Sabour et al. (2017) to interpret what property each dimension of the
option context vector in Figure 12 encodes by perturbing each dimension and decode perturbed
option context vectors into primary actions. Specifically, we perturb one dimension by adding a range
of perturbations [−0.1, 0.09] by intervals of 0.01 onto it while keep the other dimensions fixed. After
perturbation, each option context vector dimension has 20 perturbed vectors. We then use the action
policy decoder to decode all those vectors into primary actions and see how the perturbation affects
the primary action. As an illustration, we plot Dimension 4’s all 20 perturbed results in Figure 13.

With visualization of perturbation results in hand, we can interpret what property each dimension
encode by inspecting relationships between perturbations and primary actions. In Figure 13, as an
example, it is clear that changes on Dim 4 has the same direction: as the magnitude of Dim 4 increase,
all actuators move towards the same direction. This Dim can be seen as having an acceleration of
running forward effect.

Once we know how to interpret one dimension, we can move on to interpret the whole option context
vector. Since Option 1 and Option 2 are two main options employed in Figure 7, here we provide an
example of how to interpret them. Figure 12 shows that Option 1 has significant values on dimension
11, 15 and 22. Option 2 is significant on dimension 2, 5 and 36. We demonstrate these dimensions in
the same manner as Figure 13 below:
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Figure 13: Perturbation on the Dim 4

Figure 14: Interpretation of Option 1 and Option 2

Subfigures in Figure 14 can be interpreted in the same manner as Figure 13. As an example, from
Figure 12 we can see that Option 1 has a significant small value on Dim 11. In Figure 14, it shows
that a smaller Dim 11 will twist the front leg forward and back foot forward while twist back thigh,
back shin backward. Composition of these movements is a back leg landing property. Similarly,
we can interpret that Dim 15 is a front leg landing property and Dim 22 is a balancing property.
Therefore, Option 1 is focusing on landing from all positions.

Unlike other option context vectors which have apparent focusing dimensions, Option 2 has a rather
balanced option context vector. It has no apparently dominant dimension. It only has slightly more
significant values on Dim 2, 5, 36, which are focusing on jumping and running properties. Therefore,
Option 2 is more like an “all-weather” option: it is a option having very balanced properties with a
slightly demonstration on running and jumping.

Interpretations of Option 1 and 2 above can then be taken to understand option activation patterns
in Figure 7: as an all-weather option, Option 2 is the most frequently executed one and has the
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longest duration. From time to time, when the Cheetah needs to land and balance itself, Option 1
will be executed. However, since landing option does not provide power of moving forward and thus
has lower returns to continue, once the body is balanced the Cheetah will quickly stop Option 1’s
execution and keep running with Option 2.

B.4 TRANSFER LEARNING RESULTS

Below are statistics for Deepmind Control Suite (Tunyasuvunakool et al., 2020) transfer learning
environments.

Table 3: Performance of Deepmind Control Suite Transfer Learning Environments

CartPole Reacher Cheetah Fish Walker1 Walker2
PPO 829.7 327.6 73.0 287.9 231.8 72.2
DAC+PPO 970.8 517.2 211.2 505.4 590.3 360.5
AHP+PPO 966.5 395.2 167.4 357.9 362.1 143.2
PPOC 942.1 400.1 72.7 336.7 236.6 80.9
OC 106.1 19.4 100.6 286.6 356.3 238.7
MOPG 974.1 675.3 233.8 562.1 473.8 403.0

C AN MDP EQUIVALENCE TO THE SMDP OPTION FRAMEWORK

In this section, we show that the the conventional Semi-Markov Decision Problem (SMDP) option
framework which employs Markovian options has an option-induced MDP equivalence. We first
introduce the conventional SMDP formulated option framework (SMDP-Option). In Section C.2
we follow Bishop (2006)’s method and formulate the dynamics of the SMDP-Option framework as
an Hidden Markov Model (HMM) style Probability Graphical Model (PGM) (Koller & Friedman,
2009). With the PGM and its conditional independence relationships (Chapter 8.2.1 (Bishop, 2006))
in hand, in Section C.3 we move on to propose the Hidden Temporal MDPs (HiT-MDP) and prove
its equivalence to the SMDP-Option under the definition of homomorphic equivalence (Ravindran,
2003). To the best of our knowledge, this is the first work discovering the option framework’s MDP
equivalence.

Following Bishop (2006)’s notation, we use A, B and C to denote three non-overlapping sets
of arbitrarily many random variables. Sets A and B are conditional independent on set C if
P (A,B|C) = P (A|C)P (B|C), denoted as A ⊥⊥ B | C. We mainly use head-to-tail conditional
independence properties (Chapter 8.2.1 (Bishop, 2006)) in this section.

C.1 THE SMDP FORMULATED OPTION FRAMEWORK

Sutton et al. (1999) proposed the option framework to demonstrate the temporal abstraction problem.
Following Bishop (2006)’s notation, we use bolded letter s ∈ S to denote a random variable
and normal letter s to denote its realization. Without special clarification, a random vector can
have either a vector of continuous or discrete entries. A scalar o ∈ Z denotes the index of an
option where O ⊆ {1, 2, . . . ,M} and M is the number of options. An Markovian option is a
triple (Io, Po(a|s), Po(b|s)) in which Io ⊆ S is an initiation set where the option o can be initiated.
Po(a|s) : S→ A is the intra-option policy which maps environment states s ∈ S to an action vector
a ∈ A. Po(b|s) : S → Z2 is a termination function where b is a binary random variable. It is
used to determine whether to terminate (b = 1) the policy Po(a|s) or not (b = 0). Conventionally,
βo = Po(b = 1|s). Since an option’s execution may persist over a variable period of time, a set of
options’ execution together with its value functions constitutes a Semi-Markov Decision Problem
(SMDP) (Puterman, 1994). When an old option is terminated, a new option will be sampled from the
master policy (policy-over-options) o ∼ P (ot+1|st+1) : S→ O.

A master policy π(o|s) = P (o|s) where o ∈ O is used to sample which option will be executed.
Note that we use the bold-case o to denote unrealized random variables and the light-italic-case o to
denote a realized instantiation. Conventionally, the execution of an option employs the call-and-return
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Figure 15: An Illustration of the SMDP Option Framework. An option ot−1 is selected by master policy
P (ot−1|st−1) at time step t− 1. At time step t, termination function βot−1(st) determines to continue option
ot−1. So that there is no random variable ot at time step t compared to there are random variables o at every
time step in MDP formulation (figure 16).

model (Sutton et al., 1999): at time step t, an agent either continues the previously executed option
ot−1 = o with probability Po(b = 0|s) and sets ot = ot−1 = o, or terminates o with probability
Po(b = 1|s) and samples a new option ot from the master policy P (ot|st). Therefore, the dynamics
(stochastic process) of the option framework is written as:

P (τ) =P (s0)P (o0)Po0(a0|s0)
∞∏
t=1

P (st|st−1,at−1)Pot(at|st)[(1− βo)1ot=ot−1 + βoP (ot|st)].

=P (s0)P (o0)Po0(a0|s0)
∞∏
t=1

P (st|st−1,at−1)Pot(at|st)

[Pot−1
(bt = 0|st)1ot=ot−1

+ Pot−1
(bt = 1|st)P (ot|st)]. (16)

where τ = {s0,o0,a0, s1,o1,a1, . . .} denotes the trajectory of the option framework. 1 is an
indicator function and is only true when ot = ot−1 (notice that ot−1 is the realization at ot−1). For
clarity reasons, we use Po(b = 1|s) instead of βo which is widely used in previous option literatures
(e.g. (Sutton et al., 1999; Bacon et al., 2017)). Therefore, under this formulation the option framework
is defined as a Semi-Markov process since the dependency on an activated option o can cross a
variable amount of time (Sutton et al., 1999).

C.2 AN MDP FORMULATION OF THE OPTION FRAMEWORK

We follow Bishop (2006)’s formulation of mixture distribution and Probabilistic Graphical Models
(PGMs). By introducing option variables as latent variables and adding extra dependencies into the
termination function and master policy, we show that the conventional SMDP version of the option
framework (Bacon et al., 2017; Sutton & Barto, 2018; Sutton et al., 1999; Harb et al., 2018; Zhang &
Whiteson, 2019) can be re-formulated into an MDP formulation. We first follow Bishop (2006)’s
formulation of mixture distributions and redefine the option random variable o ∈ O = {1, 2, . . . ,K},
which was originally defined as an integer index, but now as a K-dimensional one-hot vector
ō ∈ Ō = {0, 1}K where K is the number of options, and each entry o ∈ {0, 1} is a binary random
variable. P (ōt|st) denotes the probability distribution over one-hot vector ō at time step t conditioned
on state st. P (ōt = ot|st) denotes a probability entry (a scalar value) of the random variable ōt with
a realization at time step t where ot = 1 and o ∈ ōt/ot = 0.

In figure 16, s ∈ S, ō ∈ ŌK , b ∈ BK and a ∈ A, denote the state, option, termination and action
random variable respectively. ō is an K-dimensional one-hot vector and b is an K-dimensional binary
vector where each entry b ∈ {0, 1}. K is the number of options. Rt+1 is the actual reward received
from the environment after executing action at in state st. Gt = Rt+1 + γRt+2 + γ2Rt+3 · · · is the
discounted expected return where γ ∈ R is a discount factor.
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Figure 16: PGM of the MDP Option Framework. Notice the difference to Figure 15. Figure 15 is SMDP
formulated, suppose the agent decides to continue the execution of ot−1, then the random variable ot does not
exist, and thus ot+1 depends on the random variable ot−1 directly. However, here the PGM is MDP formulated,
and the random variable ō exists at every time step.

The termination policy distribution P (bt|st, ōt−1) : S × Ō → B can be formulated as a mixture
distribution3 conditioned on option vector (the one-hot vector) ōt−1 and state st.

P (bt|st, ōt−1) =
∏

i∈ōt−1

Pi(bt|st)i. (17)

Because each option has its own termination policy Po(b|s), with a slightly abuse of notation, in
equation (17) we use P (bt|st, ōt−1) to denote the termination policy activated at time step t by
previous chosen option ōt−1. To keep notation uncluttered, we use βt = P (bt = 1|st, ōt−1) to
denote the probability of option ōt−1 terminates at time step t and (1− βt) = P (bt = 0|st, ōt−1) to
denote the probability of continuation.

Conventionally, master policy (Zhang & Whiteson, 2019) (also called “policy-over-options” (Sutton
et al., 1999; Bacon et al., 2017))) is defined as:

P (ōt|st). (18)

Similarly, we propose a novel mixture master policy as a mixture distribution4:

P (ōt|st,bt, ōt−1) = P (ōt|st)btP (ōt|ōt−1)
1−bt , (19)

where P (ōt|ōt−1) is a degenerated probability distribution (Puterman, 1994)

P (ōt|ōt−1) =

{
1 if ōt = ōt−1,

0 if ōt ̸= ōt−1.
(20)

As shown in equation (19), the master policy only exists when bt = 1 the option terminates. Therefore,
PPOC (Klissarov et al., 2017) uses inaccurate gradients for updating the master policy during an
option’s execution.

According to the conditional dependency relationships in PGM (figure 16), the joint probability
distribution of ōt and bt can be written as:

P (ōt,bt|st, ōt−1) = P (bt|st, ōt−1)P (ōt|st,bt, ōt−1), (21)

3Different from conventional formulation which only depends on state st, our termination function has an
extra dependence on ōt−1

4Different from conventional formulation which only depends on state st, our mixture master policy has
extra dependencies on ōt−1 and bt
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and the marginal probability distribution can be written as:

P (ōt|st, ōt−1) =
∑
bt

P (bt|st, ōt−1)P (ōt|st,bt, ōt−1) (22)

= P (bt = 0|st, ōt−1)P (ōt|ōt−1) + P (bt = 1|st, ōt−1)P (ōt|st)
= (1− βt)P (ōt|ōt−1) + βtP (ōt|st)
= (1− βt)1ōt=ōt−1

+ βtP (ōt|st).

The intra-option (action) policy distribution can also be formulated as a mixture distribution

P (at|st, ōt) =
∏
i∈ōt

Pi(at|st)i. (23)

Therefore, the dynamics of the PGM in figure 16 can be written as:

P (τ̄) =P (s0)P (ō0)P (a0|s0, ō0)
∞∏
t=1

P (st|st−1,at−1)P (at|st, ōt)
∑
bt

P (bt|st, ōt−1)P (ōt|bt, st, ōt−1) (24)

where P (τ̄) = P (s0, ō0,a0, s1,b1, ō1,a1, . . .) denotes the joint distribution of the PGM. Notice
that under this formulation, P (τ) is actually an HMM with st, at as observable random variables and
bt, ōt as latent variables.

It is worth to mention that equation (20) is essentially the indicator function 1ōt=ōt−1
used in

conventional SMDP option framework papers and the last line in equation (22) is identical to
transitional probability distribution in their formulation. However, as we show in this section, by
adding latent variables ōt−1 and introducing the dependency between ōt and bt, our formulation is
essentially an HMM. It opens the door to introduce many well developed PGM algorithms such as
message passing (Forney, 1973) and variational inference (Hoffman et al., 2013) to the reinforcement
learning framework. As we show below, the nice conditional independence relationships enjoyed by
this model also enable us to prove the equivalence between the option framework’s SMDP and MDP
formulation.

C.3 HIDDEN TEMPORAL MDPS (HIT-MDPS)

In this section we propose the Hidden Temporal MDPs (HiT-MDPs) and prove its equivalence
under the definition of homomorphic equivalence. Following notations from Section C.2, the
Hidden Temporal MDPs (HiT-MDPs) family can be described by a tuple M̄ = {S̄, Ā, r, P, ϕ, γ}
where S̄ .

= S × Ō is an augmented state space, Ā .
= A × Ō is an augmented action space, and

ϕ = P (ōt|s̄t) = P (ōt|st, ōt−1) is the emit function for hidden variables. The joint distribution of
HiT-MDPs is:

P (τ̄) =P (s̄1)

∞∏
t=1

P (s̄t+1, āt|s̄t) = P (ō0, s1)

∞∏
t=1

P (st+1,at, ōt|st, ōt−1), (25)

=P (ō0)P (s1)

∞∏
t=1

P (st+1|st,at)P (at|st, ōt)P (ōt|st, ōt−1), (26)

Notice that the Markovian master policy P (ōt|st, ōt−1) is actually the marginalization over the
termination variable bt in Eq. 24: P (ōt|st, ōt−1) =

∑
bt

P (bt|st, ōt−1)P (ōt|bt, st, ōt−1). The
joint distribution is factorized from Eq. 25 to Eq. 26 by following conditional independences in the
PGM (Figure 17):

We define a linear function f̄(ō) = ō · dT : Ō→ O which maps ō to o, where d = [1, 2, . . . ,K]T

is a K-dimensional constant integer vector, and hence f̄(ō) = o. Note that f̄ is a Bijection since
it is a linear function defined on a finite integer space. We define a tuple of partition function
B̄ =< f̄, Ī, Ī, f̄ > where Ī is the identical function and is also a Bijection. Therefore, the partition
function B̄ is a tuple of Bijection functions B̄(s̄, ā) = B̄({ōt−1, st,at, ōt}) = {ot−1, st,at,ot},
which maps τ̄ to τ , where τ̄ = {s0, ō0,a0, s1, ō1,a1, . . .} is the trajectory of the HiT-MDP. Therefore,
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Figure 17: PGM of the HiT-MDP

by following the Partition Function B̄, the dynamics P (τ) of the SMDP-Option in Eq. 24 under the
Bijection B̄ is equivalent to the dynamics P (τ̄) of the HiT-MDP P (τ/B̄) ≡ P (τ̄ /B̄).

As for the reward function r, notice that from the PGM we have the conditional independence
rt+1 ⊥⊥ ōt|at. Therefore, SMDP-Option and the HiT-MDP also share the same expected reward
function rt+1(st,at,ot) = E[rt+1|st,at,ot] = E[rt+1|st,at] = rt+1(st,at). Therefore, the
SMDP-based option framework has an MDP-based equivalence:

Theorem C.1. By the definition of Bisimulation Relation, the SMDP-based option framework, which
employs Markovian options, has an underlying MDP equivalence because:

1. P (τ/B̄) ≡ P (τ̄ /B̄) and B̄ is a Bijection.

2. r(τ/B̄) ≡ r(τ̄ /B̄).

Although the reward function r is equivalent, in Section D we identify a problem that under the
configuration of HiT-MDPs, the conventional value function V [st] does not yield a Bellman equation.
We have to propose a Markovian Option-Value Function V [st, ōt−1] to solve this problem and
prove that it is equivalent to V [st]. This is non-trivial since compared to the SMDP-Option, the
MDP formulation introduces extra dependencies on ō. In Section D.2, by exploiting conditional
independencies we prove that they do have the same expected return under the Bijection B̄.

D PROOF OF THE OPTIMAL VALUE EQUIVALENCE

In this Section we derive value functions of HiT-MDPs and prove its optimal value equivalence to
the option framework. Following the structure of Section C, we first reformulate value functions of
SMDP-Option into an MDP formulation by following the dynamics in Section C.2. We then following
the HiT-MDPs’ dynamics proposed in Section C.3 and derive a Markovian Option-Value function of
HiT-MDPs, and prove it converges to the optimal value. In the end we prove that MDP-Option is
optimal value equivalent to the SMDP-Option.

D.1 THE MDP FORMULATED OPTION FRAMEWORK’S VALUE FUNCTIONS

With dynamics proposed in C.2, we now derive the MDP formulated value functions for the option
framework (Bacon et al., 2017; Sutton et al., 1999). We follow Sutton & Barto (2018)’s notation in
this section and write value functions for MDP below:
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V [st] = E[Gt|st] =
∑
Gt

Gt

∑
ot

P (Gt,ot|st)

=
∑
ot

P (ot|st)
∑
Gt

GtP (Gt|st,ot)

=
∑
ot

P (ot|st)E[Gt|ot, st]

=
∑
ot

P (ot|st)QO[ot, st], (27)

where V [st] is the state value function(Sutton & Barto, 2018) and QO[ot, st] is the option value
function(Bacon et al., 2017; Sutton et al., 1999), Gt =

∑
t rt+1 is the return. Note that in deriv-

ing equation (27) we only use summation rule and production rule, the conditional dependency
relationships in PGM (figure 16) are not used.

The option value function QO[ot, st] can be further expanded as:

QO[ot, st] = E[Gt|ot, st] =
∑
at

P (at|st,ot)E[Gt|ot, st,at]

=
∑
at

P (at|st,ot)QU [ot, st,at], (28)

where QU [ot, st,at] is the option-action value function.

Proposition D.1.1. MDP formulation has identical state value function V [st] and option value
function QO[ot, st] to SMDP formulations

Proof. Note that in derivations above we only use summation and production rules. Both equation (27)
and (28) are identical to the conventional SMDP option framework.

From now on, we will continue derivations with conditonal independence relationships encoded in
PGM (Chapter 8.2.1 (Bishop, 2006)). We have following conditional independence relationships
from PGM (figure 16):

{Rt+2, Gt+1} ⊥⊥ {bt+1} | {ot+1}, (29)
{Rt+2, Gt+1} ⊥⊥ {st} | {st+1,ot}, (30)
{Rt+2, Gt+1} ⊥⊥ {at} | {st+1}, (31)
{Rt+2, Gt+1} ⊥⊥ {ot} | {st+1,ot+1}, (32)

{Rt+1, Gt, st+1} ⊥⊥ {ot} | {at}. (33)

With above conditional independence relationships in hand, we now show that the MDP formulation
has identical value functions to the conventional SMDP formulation(Sutton et al., 1999; Bacon et al.,
2017).

Proposition D.1.2. MDP formulation has identical option-action value function QU [ot, st,at] to
SMDP formulations

QU [ot, st,at] = r(st,at) + γ
∑
st+1

P (st+1|st,at)U [st+1,ot]. (34)
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Proof.

QU [ot, st,at] =E[Gt|ot, st,at]

=E[Rt+1 + γGt+1|ot, st,at] by definition of Gt

=E[Rt+1|st,at]+ use eq (33)

γ
∑
Gt+1

Gt+1

∑
st+1

P (st+1|st,ot,at)P (Gt+1|st+1,ot, st,at)

=r(st,at)+

γ
∑
Gt+1

Gt+1

∑
st+1

P (st+1|st,at)P (Gt+1|st+1,ot) use eq 30 31 and 33

=r(st,at) + γ
∑
st+1

P (st+1|st,at)E[Gt+1|st+1,ot]

=r(st,at) + γ
∑
st+1

P (st+1|st,at)U [st+1,ot].

However, unlike conventional value functions V [st], QO[ot, st], QU [ot, st,at] of the option frame-
work derived in Section D.1, the value function U [st+1, ōt] has an extra dependency on the hidden
variable ōt. Therefore, conventional value function V [st] does not yield a Bellman equation under the
configuration of HiT-MDPs. To tackle this issue, we propose the Markovian Option-Value Function
V̄ (derivations of Eq. (6) in the main text):

V̄ [st, ōt−1] =E[Gt|st, ōt−1]

=
∑
ōt

P (ōt|st, ōt−1)E(Gt|st, ōt, ōt−1)

=
∑
ōt

P (ōt|st, ōt−1)E[Gt|st, ōt]

=
∑
ōt

P (ōt|st, ōt−1)QO[ōt, st], (35)

where from line 2 to line 3 we use the conditional independence property in PGM that Gt ⊥⊥
ōt−1|{st, ōt}.

Proposition D.1.3. MDP formulation has identical option-value function upon arrival U [st+1,ot]
to SMDP formulations5

U [st+1,ot] =(1− βt+1)QO[ot+1 = ot, st+1] + βt+1V [st+1] (36)
=QO[ot+1 = ot, st+1]− βt+1A[ot+1 = ot, st+1]. (37)

5Both equations (36) and (37) is largely used in the conventional SMDP papers(Sutton et al., 1999; Bacon
et al., 2017).
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Proof.

U [st+1,ot] =E[Gt+1|st+1,ot]

=
∑
Gt+1

Gt+1∑
ot+1

∑
bt+1

P (bt+1|ot, st+1)P (ot+1|bt+1,ot, st+1)P (Gt+1|ot+1,bt+1,ot, st+1)

=
∑
ot+1

∑
bt+1

P (bt+1|ot, st+1)P (ot+1|bt+1,ot, st+1)
∑
Gt+1

Gt+1P (Gt+1|ot+1, st+1)

=
∑
ot+1

[
(1− βt+1)1ot+1=ot

+ βt+1P (ot+1|st+1)
]
QO[ot+1, st+1]

=(1− βt+1)QO[ot+1 = ot, st+1] + βt+1V [st+1]

=QO[ot+1 = ot, st+1]− βt+1A[ot+1 = ot, st+1].

from line 3 to line 4 use equation (29) and (32). From line 4 to line 5 use equation (22) and definition
of QO. The second last line use equation (27). The last line use the definition of advantage function
A.

Under our MDP formulation, we also propose proposition D.1.4. We derive our gradient theorems
based on equation (38) in section E. This important relationship largely simplify derivations than the
original paper (Bacon et al., 2017) as well as give rise to the the HiT-MDP.
Proposition D.1.4. The option-value function upon arrival U [st+1,ot] is an expectation over option
value function QO[ot+1, st+1] conditioned on previous option Ot

U [st+1,ot] =
∑
ot+1

P (ot+1|ot, st+1)QO[ot+1, st+1]. (38)

Proof. Following proof of proposition D.1.3,

U [st+1,ot] =
∑
ot+1

∑
bt+1

P (bt+1|ot, st+1)P (ot+1|bt+1,ot, st+1)
∑
Gt+1

Gt+1P (Gt+1|ot+1, st+1)

=
∑
ot+1

P (ot+1|ot, st+1)QO[ot+1, st+1].

D.2 THE OPTIMAL VALUE EQUIVALENCE BETWEEN HIT-MDP AND OPTION FRAMEWORKS

Theorem D.1. The option-action value function Eq. 7 satisfies the Bellman Operator T H

T HQA[st, ōt,at] = E[Gt|st, ōt,at]

= r(s, a) + γ
∑
st+1

P (st+1|st,at)V̄ [st+1, ōt], (39)

where the Markovian option-value function given by Eq. 6.

Proof. Following dynamics derived in Section C.3, we can define value functions on HiT-MDPs as
(derivations of Eq. (8) in the main text):

QA[st, ōt,at] =E[Gt|st, ōt,at] = E[Rt+1 + γGt+1|st, ōt,at]

=r(s, o, a) + γ
∑
st+1

P (st+1|st, ōt,at)E[Gt+1|st+1, st, ōt,at]

=r(s, a) + γ
∑
st+1

P (st+1|st,at)E[Gt+1|st+1, ōt]

=r(s, a) + γ
∑
st+1

P (st+1|st,at)V̄ [st+1, ōt],
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where from line 2 to line 3 we use the conditional independence property in PGM that Rt+1 ⊥⊥ ōt|at,
Gt+1 ⊥⊥ st|{st+1, ōt} and Gt+1 ⊥⊥ at|st+1. γ ∈ R is a discounting factor. The last line uses the
definition of the Markovian option value function (Eq. 35).

Theorem D.2. (Markovian Option Policy Evaluation Theorem). Assume that throughout our compu-
tation the QA[·, ·] and V̄ [·] are bounded and A <∞, the sequence Qk

A defined by Qk+1
A = T HQk

A
will converge to the option-action value function QπA

A as k →∞.
Proof. As with the standard convergence results for policy evaluation (Sutton & Barto, 2018), by the
definition of T H (Eq. 8) the option-action value function QπA

A is a fixed point.

To prove the T H is a contraction, define a norm on V -values functions V and U

∥V − U∥∞ ≜ max
s̄∈S̄
|V (s̄)− U(s̄)|. (40)

where s̄ = {s, o}.
By recurssively apply the Hidden Temporal Bellman Operator T H , we have:

V̄ [st, ōt−1] = E[Gt|st, ōt−1] =
∑
ōt

P (ōt|st, ōt−1)QO[st, ōt]

=
∑
ōt

P (ōt|st, ōt−1)
∑
at

P (at|st, ōt)

[
r(s, a) + γ

∑
st+1

P (st+1|st,at)V̄ [st+1, ōt]

]
= r(s, a) + γ

∑
ōt

P (ōt|st, ōt−1)
∑
at

P (at|st, ōt)
∑
st+1

P (st+1|st,at)V̄ [st+1, ōt]

= r(s, a) + γ
∑

ōt,st+1

P (st+1, ōt|st, ōt−1)V̄ [st+1, ōt]

= r(s, a) + γEst+1,ōt

[
V̄ [st+1, ōt]

]
(41)

Therefore, by applying Eq. 41 to V and U we have:

∥TπV − TπU∥∞

= max
s̄∈S̄

∣∣∣∣γEst+1,ōt

[
V̄ [st+1, ōt]

]
− γEst+1,ōt

[
Ū [st+1, ōt]

]∣∣∣∣
= γmax

s̄∈S̄
Est+1,ōt

[∣∣∣∣V̄ [st+1, ōt]− Ū [st+1, ōt]

∣∣∣∣]
≤ γmax

s̄∈S̄
Est+1,ōt

[
γmax

s̄∈S̄

∣∣∣∣V̄ [st+1, ōt]− Ū [st+1, ōt]

∣∣∣∣]
≤ γmax

s̄∈S̄
|V [s̄]− U [s̄]|

= γ∥V − U∥∞ (42)

Therefore, T H is a contraction and by the fixed point theorem, Theorem 3.3 follows immediately.
Proposition D.2.1. The option-induced Markovian Option-Value Function V̄ is equivalent to the
conventional value function V

Proof. for Proposition 3.4: By law of total expectation:

Eōt−1 [V [st, ōt−1]] = Eōt−1 [E[Gt|st, ōt−1]] = E[Gt|st] = V [st]

thus V [st, ōt−1] is an unbiased estimator of V [st], with conditional independences defined in PGM
17.

Proposition D.2.2. The option-induced Markovian Option-Value Function V̄ has smaller variance
than the conventional value function V

27



Published as a conference paper at ICLR 2023

Proof. for Proposition 3.5: By law of total conditional variance:

Var(V [st]) = Var([E[Gt|st]]) = E[Var(E[Gt|st, ōt−1])|st] + Var(E[E[Gt|st, ōt−1]]|st)
= E[Var(V [st, ōt−1])|st] + Var(E[V [st, ōt−1]]|st)
≥ Var(E[V [st, ōt−1]]|st),

with conditional independences defined in PGM 17

E MAX-ENTROPY OPTION POLICY GRADIENTS

In the main text Section 4 we solve the HiT-MDPs under the maximum entropy framework (Levine,
2018). Here we proof the Evidence Lower BOund (ELBO) proposed in the main text and derive the
Maximum entropy Option Policy Gradient (MOPG) theorems.

E.1 THE MAXIMUM ENTROPY OBJECTIVE FUNCTION

Following notations defined in the main text Section 4, optimality variables e1:T (e denotes the
realization of e when e = 1) are treated as observed variables while random variables from the
trajectory τ̄ = {s,a, ō, ...} are treated as latent variables. The variational Evidence Lower BOund
(ELBO) is given by:
Theorem E.1. The problem of learning optimal action and master policies can be simplified as
shrinking the KL-Divergence: DKL[P (τ̄)||q(τ̄ |e1:T )]

Proof.

log q(e1:T ) = log

∫ ∫ ∫
q(e1:T , s1:T ,a1:T , ō1:T )ds1:T da1:T dō1:T

= log

∫ ∫ ∫
q(e1:T , s1:T ,a1:T , ō1:T )

P (τ̄)

P (τ̄)
ds1:T da1:T dō1:T

= logE(s1:T ,a1:T ,ō1:T )∼P (τ̄)

[
q(s1:T ,a1:T , ō1:T |e1:T )q(e1:T )

P (τ̄)

]
≥ E(s1:T ,a1:T ,ō1:T )∼P (τ̄)

[
log q(s1:T ,a1:T , ō1:T |e1:T )− logP (τ̄)

]
= −DKL[P (τ̄)||q(τ̄ |e1:T )]

(43)

where third last line to the second last line follows from the Jensen’s inequality and P (τ̄) is the
dynamics of the HiT-MDPs defined in Eq. 26

Theorem E.2. (Markovian Option Policy Iteration Theorem). Repeated application of Marko-
vian Option evaluation and improvement to any πO,A ∈

∏
converges to a policy π∗

O,A such that
Qπ∗

O,A(s̄t, āt) ≥ QπO,A(s̄t, āt) for all πO,A ∈
∏

and s̄t, āt ∈ S̄× Ā, assuming |Ā| <∞.

Proof. In this proof we use πA for illustration, the proof of πO follows the same derivation. From
Theorem 4.1 we have that:

π∗
A =argmax

πA

−DKL[P (τ̄)||q(τ̄ |e1:T )]

= argmax
πA

∑
t

EπA
[r(st,at) + I[ot] +H(πO) +H(πA)],

=argmax
πA

∑
t

EπA
[r(st,at) + I[ot] +H(πA)],

=argmax
πA

∑
t

EπA
[r(st,at) + I[ot] +H(πA)],

(44)

Therefore, it must be the case that Eat∼πnew
A

[r(st,at) + I(ot) +H(πold
A )] ≥ Eat∼πold

A
[r(st,at) +

I[ot] +H(πold
A )] = V̄ πold

A [s, ō], since we can always choose πnew
A = πold

A ∈
∏

. Substituting this
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inequality into Theorem 3.2 leads to:

Q
πold
A

A [s, ō,a] = r(s,a) + I[o] + γEs[V̄
πold
A [s, ō]]

≤ r(s,a) + I[o] + γEs[Ea∼πnew
A

[r(st+1,at+1) + I[ot+1] +H(πold
A )]]

≤ Q
πnew
A

A [s, ō,a]

(45)

where the convergence to Q
πnew
A

A follows from the Markovian Option Policy Evaluation Theorem D.2.

Therefore, the iteration of the sequence Qπi
A

A is monotonically increasing and we get Qπ∗
A

A > QπA

A for
all πA ̸= π∗

A and (s,o,a) ∈ S×O× A.

E.2 PROOF FOR THE MASTER POLICY GRADIENT THEOREM

Proof.

∂QO[st, ōt]

∂θo
=
∑
at

P (at|st, ōt)
[
r(s, a) + I(ō′|s,a, ō) +H(πO

θō) + γ
∑
st+1

P (st+1|st,at)
∂V [st+1, ōt]

∂θo

]
=
∑
st+1

γP (st+1|st, ōt)
∂V [st+1, ōt]

∂θo

∂V [st, ōt−1]

∂θo
=
∑
ōt

∂P (ōt|st, ōt−1)

∂θo
QO[st, ōt] + I(ō′|s,a, ō) +H(πO

θō) + γ
∑
ōt

P (ōt|st, ōt−1)
QO[st, ōt]

∂θo

=
∑
ōt

∂P (ōt|st, ōt−1)

∂θo
QO[st, ōt] + I(ō′|s,a, ō) +H(πO

θō) + γ
∑

st+1,ōt

P (st+1, ōt|st, ōt−1)
∂V [st+1, ōt]

∂θo

=−
∞∑

k=0

∑
st+k,ōt+k−1

P (k)
γ (st+k, ōt+k−1|st, ōt−1)

∑
ōt+k

∂P (ōt+k|st+k, ōt+k−1)

∂θo
QO[st+k, ōt+k] + I(ō′|s,a, ō) +H(πO

θō)

=E[
∂P (o′|s′,o)

∂θo
QO[s

′,o′] + I(ō′|s,a, ō) +H(πO
θō) | st, ōt−1].

E.3 PROOF FOR THE ACTION POLICY GRADIENT THEOREM

Proof. Similar to the first equation above, continue expanding gradients of ∂QO

∂θa
by equations (6) (28)

and (8):

∂QO[st, ōt]

∂θa
=
∑
at

∂P (at|st, ōt)

∂θa
QA[st, ōt,at] +H(πA

θa) + γ
∑
st+1

P (st+1|st, ōt)
∂V [st+1, ōt]

∂θa

=
∑
at

∂P (at|st, ōt)

∂θa
QA[st, ōt,at] +H(πA

θa) + γ
∑

st+1,ōt+1

P (st+1, ōt+1|st, ōt)
∂QO[st+1, ōt+1]

∂θa

=−
∞∑

k=0

∑
st+k,ōt+k

P (k)
γ (st+k, ōt+k|st, ōt)

∑
at+k

∂P (at+k|st+k, ōt+k)

∂θa
QA[st+k, ōt+k,at+k] +H(πA

θa)

=E[
∂P (at+k|st+k, ōt+k)

∂θa
QA[st+k, ōt+k,at+k] +H(πA

θa) | st, ōt].
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F LEARNING ALGORITHM FOR MOPG

Algorithm 1: The MOPG Algorithm
1 Initialize the option embedding matrix WS

2 Assign Initial State: st ← s0
3 Assign Initial Option: ôt−1 ← ô0

4

5 while Converge do
6 # Rollout trajectories and store in replay buffer
7 repeat
8 Retrieve the option context vector ôt−1 = W T

S · ôt−1

9 Sample ôt ∼ P (ôt|st, ôt−1)

10 Retrieve the option context vector ôt = W T
S · ôt

11 Sample at ∼ P (at|st, ôt)
12 Compute QO[st, ôt] and V [st, ôt−1]
13 Take action at in st, observe new state st+1 and reward Rt+1

14 until Rollout Length Reached
15

16 # Compute Advantages for option & action policies
17 Assign t reversely, from RolloutLength− 1 to 1
18 repeat
19 Compute option Advantage

AO
t = Rt+1 + γ(V [st+1, ôt]− V [st, ôt−1] + ∆I +∆HO) + γλAO

t+1

20 Compute action Advantage
AA

t = Rt+1 + γ(QO[st+1, ôt+1]−QO[st, ôt] + ∆HA) + γλAA
t+1

21 until Rollout Length Reached
22

23 # λ is the GAE coefficient used in PPO.
24 # Optimize PPO Obj
25 while i < PPO Optimization Epochs do
26 θo← PPO(∂P (o′|s′,o)

∂θo
, AO)

27 θa← PPO(∂P (a|s,o)
∂θa

, AA)

28 end
29 end

G IMPLEMENTATION DETAILS

G.1 NEURAL NETWORK ARCHITECTURE

Interpretability is a key property to apply RL agents in real-world applications. Attention Option
Critic (AOC) (Chunduru & Precup, 2020) first introduces the attention mechanism into options. In
AOC, each option has a unique attention mask over state s̈ = Ẅo ⊙ s. Therefore, each option has a
unique activation field (e.g., initiation set) over the observation space. Options learned by AOC are
also interpretable since each option attends to different context in the state vector.

Option Embedding
Matrix 𝑾𝑶

𝑶#𝒕#𝟏

C
𝑪𝒐𝒏𝒄𝒂𝒕[𝑺𝒕, 𝑶#𝒕#𝟏]

State 𝑺𝒕

Multi-Head 
Attention

Query Key Value

𝑾𝑶

Add & Norm

Feed Forward

Add & Norm

Linear

Categorical
Distribution

𝑷(𝑶'𝒕|𝑺𝒕, 𝑶'𝒕"𝟏)

Option 
Policy

𝑶#𝒕

C
𝑪𝒐𝒏𝒄𝒂𝒕[𝑺𝒕, 𝑶#𝒕]

State 𝑺𝒕

Feed Forward

Gaussian
Distribution

𝑷(𝑨𝒕|𝑺𝒕, 𝑶(𝒕)
Action 
Policy

Feed Forward

𝑸𝑶[𝑺𝒕, 𝑶#𝒕]Critic

Feed Forward

𝑨𝒕

𝑶0𝒕

𝑶0𝒕#𝟏

Clustering

Figure 18: The Neural Network Architec-
ture.

Our methods contributes to the option framework from
a different aspect. In AOC, an option is still a tuple of
(I, β, πA) while in our work an option is an embedding
vector ô. The attention mechanism is used as a distance
measure to compare which option is closer to the concate-
nated state-option pair (as shown in Eq. 48). As explained
in the main text Section 5.3, options in HiT-MDP can be
learned as option embeddings. Inspired by the Transformer
(Vaswani et al., 2017), in this section we implement the
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HiT-MDP as a simple yet effective Multi-Head Attention
(MHA) (Vaswani et al., 2017) based Encoder-Decoder
architecture as shown in Figure 18. Specifically, an atten-
tion mechanism is described as the mapping from a query
q ∈ RE and a set of key-value pairs, i.e., K ∈ RM×E

and V ∈ RM×E (M and E are total number of options
and embedding dimensions), to an output:

Attention(q,K,V ) = softmax(
qKT

√
E

)V (46)

A Multi-Head Attention MHA(q,K,V ) is a linear projection of h (number of heads) concatenated
linearly projected Attention outputs:

MHA(q,K,V ) = Concat[head1, . . . , headh]WH (47)

where headi = Attention(qW q
i ,KWK

i ,V W V
i )

where projections are parameter matrices W q
i ∈ RE×E , WK

i ∈ RE×E , W V
i ∈ RE×E , WO

i ∈
RhE×E . In this paper we use MHA as one building block as illustrated in Figure 18.

We implement the option policy P (ōt|st, ōt−1;Wo) as the encoder and treat the option embedding
matrix Wo as encoder’s parameters. Specifically, we define the option encoder as:

ōt ∼ Categorical(Clustering(st, ōt−1,Wo)) (48)

where Categorical(·) is a K-dimensional categorical distribution, K is the number of options, and
distances between the pair [st, ôt−1] (where ôt−1 = Woōt−1).Under this configuration, options can
be seen as clustering centroids. The problem of selecting the next option ot is equivalent to calculate
which clustering centroid ô in embedding matrix Wo = [ô1, ..., ôK ] is closest to the projected
state-option pair FFN([st, ôt−1]) by an efficient MHA-based clustering module:

Clustering(st, ōt−1,Wo) = FFN(MHA(Query = FFN([st, ôt−1]),Key=Value = Wo)) (49)

The action policy can be simply implemented as one decoder, which learns to decode ôt and st into
primary actions at.

at ∼ Gaussian(FFN([st, ôt])) (50)

Because of the Markovian option-value function V̄ [st+1, ōt] is an expectation of the option-value func-
tion QO[st+1, ōt+1] in Eq. (6), we only need to model only one critic function: QO = FFN(st, ōt),
where QO is also a decoder of st and ōt. We summarize the detailed algorithm in Appendix F and
upload our code in supplementary materials.

G.2 HYPERPARAMETERS

In this section we summarize our implementation details. For a fair comparison, all baselines:
DAC+PPO (Zhang & Whiteson, 2019), AHP+PPO (Levy & Shimkin, 2011), PPOC (Klissarov et al.,
2017), OC (Bacon et al., 2017) and PPO (Schulman et al., 2017) are from DAC’s open source Github
repo: https://github.com/ShangtongZhang/DeepRL/tree/DAC. Hyper-parameters
used in DAC (Zhang & Whiteson, 2019) for all these baselines are kept unchanged.

MOPG Architecture: For all experiments, our implementation of MOPG is exactly the same as
Figure 18 (b). We use Pytorch to build neural networks. Specifically, for skill policy module, we
use a skill context matrix WS ∈ R4×40 which has 4 skills (4 rows) and an embedding size of 40 (40
columns). For Multi-Head Attention, we use Pytorch’s built-in MultiheadAttention function6 with
num_heads = 1 and embed_dim = 40. For layer normalization we use Pytorch’s built-in function
LayerNorm 7. For Feed Forward Networks (FNN), we use a 2 layer FNN with ReLu function as
activation function with input size of 40, hidden size of 64, and output size of 64 neurons. For Linear
layer, we use built-in Linear function8 to map FFN’s outputs to 4 dimension. Each dimension acts

6https://pytorch.org/docs/stable/generated/torch.nn.MultiheadAttention.html
7https://pytorch.org/docs/stable/generated/torch.nn.LayerNorm.html
8https://pytorch.org/docs/stable/generated/torch.nn.Linear.html
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like a logit for each skill and is used as density in Categorical distribution9. For both action policy
and critic module, FFNs are of the same size as the one used in the skill policy.

Preprocessing: States are normalized by a running estimation of mean and std.

Hyperparameters of PPO: For a fair comparison, we use exactly the same parameters of PPO as
DAC. Specifically:

• Optimizer: Adam with ϵ = 10−5 and an initial learning rate 3× 10−4

• Discount ratio γ: 0.99
• GAE coefficient: 0.95
• Gradient clip by norm: 0.5
• Rollout length: 2048 environment steps
• Optimization epochs: 10
• Optimization batch size: 64
• Action probability ratio clip: 0.2

Computing Infrastructure: We conducted our experiments on an Intel® Core™ i9-9900X CPU @
3.50GHz with a single thread and process with PyTorch.

9https://github.com/pytorch/pytorch/blob/master/torch/distributions/categorical.py
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