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ABSTRACT

Bilevel optimization plays an essential role in many machine learning tasks, rang-
ing from hyperparameter optimization to meta-learning. Existing studies on
bilevel optimization, however, focus on either centralized or synchronous dis-
tributed setting. The centralized bilevel optimization approaches require collect-
ing a massive amount of data to a single server, which inevitably incur significant
communication expenses and may give rise to data privacy risks. Synchronous dis-
tributed bilevel optimization algorithms, on the other hand, often face the straggler
problem and will immediately stop working if a few workers fail to respond. As a
remedy, we propose Asynchronous Distributed Bilevel Optimization (ADBO) al-
gorithm. The proposed ADBO can tackle bilevel optimization problems with both
nonconvex upper-level and lower-level objective functions, and its convergence is
theoretically guaranteed. Furthermore, it is revealed through theoretical analysis
that the iteration complexity of ADBO to obtain the ϵ-stationary point is upper
bounded by O( 1

ϵ2 ). Thorough empirical studies on public datasets have been con-
ducted to elucidate the effectiveness and efficiency of the proposed ADBO.

1 INTRODUCTION

Recently, bilevel optimization has emerged due to its popularity in various machine learning ap-
plications, e.g., hyperparameter optimization (Khanduri et al., 2021; Liu et al., 2021a), meta-
learning (Likhosherstov et al., 2021; Ji et al., 2020), reinforcement learning (Hong et al., 2020; Zhou
& Liu, 2022), and neural architecture search (Jiang et al., 2020; Jiao et al., 2022b). In bilevel opti-
mization, one optimization problem is embedded or nested with another. Specifically, the outer opti-
mization problem is called the upper-level optimization problem and the inner optimization problem
is called the lower-level optimization problem. A general form of the bilevel optimization problem
can be written as,

min F (x,y)
s.t. y = argmin

y′
f(x,y′)

var. x,y,

(1)

where F and f denote the upper-level and lower-level objective functions, respectively. x ∈ Rn

and y ∈ Rm are variables. Bilevel optimization can be treated as a special case of constrained
optimization since the lower-level optimization problem can be viewed as a constraint to the upper-
level optimization problem (Sinha et al., 2017).

The proliferation of smartphones and Internet of Things (IoT) devices has generated a plethora of
data in various real-world applications. Centralized bilevel optimization approaches require collect-
ing a massive amount of data from distributed edge devices and passing them to a centralized server
for model training. These methods, however, may give rise to data privacy risks (Subramanya &
Riggio, 2021) and encounter communication bottlenecks (Subramanya & Riggio, 2021). To tackle
these challenges, recently, distributed algorithms have been developed to solve the decentralized
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bilevel optimization problems (Yang et al., 2022; Chen et al., 2022b; Lu et al., 2022). Tarzanagh
et al. (2022) and Li et al. (2022) study the bilevel optimization problems under a federated setting.
Specifically, the distributed bilevel optimization problem can be given by

min F (x,y) =
N∑
i=1

Gi(x,y)

s.t. y = argmin
y′

f(x,y′) =
N∑
i=1

gi(x,y
′)

var. x,y,

(2)

where N is the number of workers (devices), Gi and gi denote the local upper-level and lower-level
objective functions, respectively. Although existing approaches have shown their success in resolv-
ing distributed bilevel optimization problems, they only focus on the synchronous distributed setting.
Synchronous distributed methods may encounter the straggler problem (Jiang et al., 2021) and its
speed is limited by the worker with maximum delay (Chang et al., 2016). Moreover, synchronous
distributed method will immediately stop working if a few workers fail to respond (Zhang & Kwok,
2014) (which is common in large-scale distributed systems). The aforementioned issues give rise to
the following question:

Can we design an asynchronous distributed algorithm for bilevel optimization?

To this end, we develop an Asynchronous Distributed Bilevel Optimization (ADBO) algorithm
which is a single-loop algorithm and computationally efficient. The proposed ADBO regards the
lower-level optimization problem as a constraint to the upper-level optimization problem, and uti-
lizes cutting planes to approximate this constraint. Then, the approximate problem is solved in an
asynchronous distributed manner by the proposed ADBO. We prove that even if both the upper-
level and lower-level objectives are nonconvex, the proposed ADBO is guaranteed to converge. The
iteration complexity of ADBO is also theoretically derived. To facilitate the comparison, we not
only present a centralized bilevel optimization algorithm in Appendix A, but also compare the con-
vergence results of ADBO to state-of-the-art bilevel optimization algorithms with both centralized
and distributed settings in Table 1.

Contributions. Our contributions can be summarized as:

1. We propose a novel algorithm, ADBO, to solve the bilevel optimization problem in an asyn-
chronous distributed manner. ADBO is a single-loop algorithm and is computationally efficient.
To the best of our knowledge, it is the first work in tackling asynchronous distributed bilevel opti-
mization problem.

2. We demonstrate that the proposed ADBO can be applied to bilevel optimization with nonconvex
upper-level and lower-level objectives with constraints. We also theoretically derive that the iteration
complexity for the proposed ADBO to obtain the ϵ-stationary point is upper bounded by O( 1

ϵ2 ).

3. Our thorough empirical studies justify the superiority of the proposed ADBO over the existing
state-of-the-art methods.

2 RELATED WORK

Bilevel optimization: The bilevel optimization problem was firstly introduced by Bracken & McGill
(1973). In recent years, many approaches have been developed to solve this problem and they can
be divided into three categories (Gould et al., 2016). The first type of approaches assume there
is an analytical solution to the lower-level optimization problem (i.e., ϕ(x) = argminy′ f(x,y′))
(Zhang et al., 2021). In this case, the bilevel optimization problem can be simplified to a single-level
optimization problem (i.e., minx F (x, ϕ(x)). Nevertheless, finding the analytical solution for the
lower-level optimization problem is often very difficult, if not impossible. The second type of ap-
proaches replace the lower-level optimization problem with the sufficient conditions for optimality
(e.g., KKT conditions) (Biswas & Hoyle, 2019; Sinha et al., 2017). Then, the bilevel program can
be reformulated as a single-level constrained optimization problem. However, the resulting prob-
lem could be hard to solve since it often involves a large number of constraints (Ji et al., 2021;
Gould et al., 2016). The third type of approaches are gradient-based methods (Ghadimi & Wang,
2018; Hong et al., 2020; Liao et al., 2018) that compute the hypergradient (or the estimation of hy-
pergradient), i.e., ∂F (x,y)

∂x + ∂F (x,y)
∂y

∂y
∂x , and use gradient descent to solve the bilevel optimization
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problems. Most of the existing bilevel optimziation methods focus on centralized settings and re-
quire collecting a massive amount of data from distributed edge devices (workers). This may give
rise to data privacy risks (Subramanya & Riggio, 2021) and encounter communication bottlenecks
(Subramanya & Riggio, 2021).

Asynchronous distributed optimization: To alleviate the aforementioned issues in the centralized
setting, various distributed optimization methods can be employed. Distributed optimization meth-
ods can be generally divided into synchronous distributed methods and asynchronous distributed
methods (Assran et al., 2020). For synchronous distributed methods (Boyd et al., 2011), the master
needs to wait for the updates from all workers before it proceeds to the next iteration. Therefore, it
may suffer from the straggler problem and the speed is limited by the worker with maximum delay
(Chang et al., 2016). There are several advanced techniques have been proposed to make the syn-
chronous algorithm more efficient, such as large batch size, warmup and so on (Goyal et al., 2017;
You et al., 2019; Huo et al., 2021; Liu & Mozafari, 2022; Wang et al., 2020). For asynchronous
distributed methods (Chen et al., 2020; Matamoros, 2017), the master can update its variables once
it receives updates from S workers, i.e., active workers (1≤ S≤ N , where N is the number of all
workers). The asynchronous distributed algorithm is strongly preferred for large scale distributed
systems in practice since it does not suffer from the straggler problem (Jiang et al., 2021). Asyn-
chronous distributed methods (Wu et al., 2017; Liu et al., 2017) have been employed for many
real-world applications, such as Google’s DistBelief system (Dean et al., 2012), the training of 10
million YouTube videos (Le, 2013), federated learning for edge computing (Lu et al., 2019; Liu
et al., 2021c). Since the action orders of each worker are different in the asynchronous distributed
setting, which will result in complex interaction dynamics (Jiang et al., 2021), the theoretical analy-
sis for asynchronous distributed algorithms is usually more challenging than that of the synchronous
distributed algorithms. In summary, the synchronous and asynchronous algorithm have different ap-
plication scenarios. When the delay of each worker is not much different, the synchronous algorithm
suits better. While there are stragglers in the distributed system, the asynchronous algorithm is more
preferred. So far, existing works for distributed bilevel optimization only focus on the synchronous
setting (Tarzanagh et al., 2022; Li et al., 2022; Chen et al., 2022b), how to design an asynchronous
algorithm for distributed bilevel optimization remains under-explored. To the best of our knowledge,
this is the first work that designs an asynchronous algorithm for distributed bilevel optimization.

3 ASYNCHRONOUS DISTRIBUTED BILEVEL OPTIMIZATION

In this section, we propose Asynchronous Distributed Bilevel Optimization (ADBO) to solve the
distributed bilevel optimization problem in an asynchronous manner. First, we reformulate problem
in Eq. (2) as a consensus problem (Matamoros, 2017; Chang et al., 2016),

min F ({xi}, {yi},v, z) =
N∑
i=1

Gi(xi,yi)

s.t. xi = v, i = 1, · · · , N

{yi}, z = argmin
{y′

i},z′
f(v, {y′

i}, z′) =
N∑
i=1

gi(v,y
′
i)

y′
i = z

′, i = 1, · · · , N
var. {xi}, {yi},v, z,

(3)

where xi ∈ Rn and yi ∈ Rm are local variables in ith worker, v ∈ Rn and z ∈ Rm are the con-
sensus variables in the master node. The reformulation given in Eq. (3) is a consensus problem
which allows to develop distributed training algorithms for bilevel optimization based on the pa-
rameter server architecture (Assran et al., 2020). As shown in Figure 13, in parameter server ar-
chitecture, the communication is centralized around the master, and workers pull the consensus
variables v, z from and send their local variables xi,yi to the master. Parameter server train-
ing is a well-known data-parallel approach for scaling up machine learning model training on a
multitude of machines (Verbraeken et al., 2020). Most of the existing bilevel optimization works
in machine learning only consider the bilevel programs without upper-level and lower-level con-
straints (Franceschi et al., 2018; Yang et al., 2021; Chen et al., 2022a) or bilevel programs with only
upper-level (or lower-level) constraint (Zhang et al., 2022; Mehra & Hamm, 2021). On the contrary,
we focus on the bilevel programs (i.e., Eq. (3)) with both lower-level and upper-level constraints,
which is more challenging. By defining ϕ(v) = argmin

{y′
i},z′

{
∑N

i=1 gi(v,y
′
i) : y′

i = z
′, i= 1,· · ·, N}
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and h(v, {yi}, z) = ||
[

{yi}
z

]
− ϕ(v)||2, we can reformulate problem in Eq. (3) as:

min F ({xi},{yi},v, z)=
N∑
i=1

Gi(xi,yi)

s.t. xi = v, i = 1, · · · , N
h(v, {yi}, z) = 0

var. {xi}, {yi},v, z.

(4)

To better clarify how ADBO works, we sketch the procedure of ADBO. Firstly, ADBO computes
the estimate of the solution to lower-level optimization problem. Then, inspired by cutting plane
method, a set of cutting planes is utilized to approximate the feasible region of the upper-level bilevel
optimization problem. Finally, the asynchronous algorithm for solving the resulting problem and
how to update cutting planes are proposed. The remaining contents are divided into four parts, i.e.,
estimate of solution to lower-level optimization problem, polyhedral approximation, asynchronous
algorithm, updating cutting planes.

3.1 Estimate of Solution to Lower-level Optimization Problem

A consensus problem, i.e., the lower-level optimization problem in Eq. (3), needs to be solved
in a distributed manner if an exact ϕ(v) is desired. Following existing works (Li et al., 2022;
Gould et al., 2016; Yang et al., 2021) for bilevel optimization, instead of pursuing the exact
ϕ(v), an estimate of ϕ(v) could be utilized. For this purpose, we first obtain the first-order
Taylor approximation of gi(v, {y′

i}) with respect to v, i.e., for a given point v, g̃i(v, {y′
i}) =

gi(v, {y′
i}) + ∇vgi(v, {y′

i})⊤(v − v). Then, similar to many works that use K steps of gradient
descent (GD) to approximate the optimal solution of lower-level optimization problem (Ji et al.,
2021; Yang et al., 2021; Liu et al., 2021b), we utilize the results after K communication rounds
between workers and master to approximate ϕ(v). Specifically, given g̃i(v, {y′

i}), the augmented
Lagrangian function of the lower-level optimization problem in Eq. (3) can be expressed as,

gp(v, {y′
i}, z′, {φi}) =

N∑
i=1

(
g̃i(v,y

′
i) +φ

⊤
i (y

′
i − z′) +

µ

2
||y′

i − z′||2
)
, (5)

whereφi∈Rm is the dual variable, and µ>0 is a penalty parameter. In (k+1)th iteration, we have,

(1) Workers update their local variables as follows,

y′
i,k+1 = y′

i,k − ηy∇yi
gp(v, {y′

i,k}, z′k, {φi,k}), (6)

where ηy is the step-size. Then, workers transmit the local variables y′
i,k+1 to the master.

(2) After receiving updates from workers, the master updates variables as follows,

z′k+1 = z′k − ηz∇zgp(v, {y′
i,k}, z′k, {φi,k}), (7)

φi,k+1 = φi,k + ηφ∇φi
gp(v, {y′

i,k+1}, z′k+1, {φi,k}), (8)

where ηz and ηφ are step-sizes. Next, the master broadcasts z′k+1 and φi,k+1 to workers.

As mentioned above, we utilize the results afterK communication rounds to approximate ϕ(v), i.e.,

ϕ(v) =

 {y′
i,0 −

∑K−1
k=0 ηy∇yi

gp(v, {y′
i,k}, z′k, {φi,k})}

z′0 −
∑K−1

k=0 ηz∇zgp(v, {y′
i,k}, z′k, {φi,k})

 . (9)

3.2 Polyhedral Approximation

Considering ϕ(v) in Eq. (9), the relaxed problem with respect to the problem in Eq. (4) is,

min F ({xi},{yi},v, z)=
N∑
i=1

Gi(xi,yi)

s.t. xi = v, i = 1, · · · , N
h(v, {yi}, z) ≤ ε

var. {xi}, {yi},v, z,

(10)
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where ε > 0 is a constant. Assuming that h(v, {yi}, z) is a convex function with respect to
(v, {yi}, z), which is always satisfied when we set K = 1 in Eq. (10) according to the opera-
tions that preserve convexity (Boyd et al., 2004). Since the sublevel set of a convex function is
convex (Boyd et al., 2004), the feasible set with respect to constraint h(v, {yi}, z)≤ ε is a convex
set. In this paper, inspired by the cutting plane method (Boyd & Vandenberghe, 2007; Michalka,
2013; Franc et al., 2011; Yang et al., 2014), a set of cutting planes is utilized to approximate the
feasible region with respect to constraint h(v, {yi}, z)≤ ε in Eq. (10). The set of cutting planes
forms a polytope, let Pt denote the polytope in (t+ 1)th iteration, which can be expressed as,

Pt = {al
⊤v +

N∑
i=1

bi,l
⊤yi + cl

⊤z + κl ≤ 0, l=1,· · ·, |Pt|}, (11)

where al ∈ Rn, bi,l ∈ Rm, cl ∈ Rm and κl ∈ R1 are the parameters in lth cutting plane, and |Pt|
denotes the number of cutting planes in Pt. Thus, the approximate problem in (t + 1)th iteration
can be expressed as follows,

min F ({xi}, {yi},v, z) =
N∑
i=1

Gi(xi,yi)

s.t. xi = v, i = 1, · · · , N

al
⊤v+

N∑
i=1

bi,l
⊤yi+cl

⊤z+κl≤0, l=1,· · ·, |Pt|

var. {xi}, {yi},v, z,

(12)

The cutting planes will be updated to refine the approximation, details are given in Section 3.4.

3.3 Asynchronous Algorithm

In the proposed ADBO, we solve the distributed bilevel optimization problem in an asynchronous
manner. The Lagrangian function of Eq. (12) can be written as:

Lp =
N∑
i=1

Gi(xi,yi) +
|Pt|∑
l=1

λl

(
al

⊤v +
N∑
i=1

bi,l
⊤yi + cl

⊤z + κl

)
+

N∑
i=1

θi
⊤(xi − v), (13)

where λl ∈R1, θi ∈Rn are dual variables, Lp is simplified form of Lp({xi},{yi},v,z,{λl},{θi}).
The regularized version (Xu et al., 2020) of Eq. (13) is employed to update all variables as follows,

L̃p({xi},{yi},v, z,{λl},{θi}) = Lp −
|Pt|∑
l=1

ct1
2
||λl||2 −

N∑
i=1

ct2
2
||θi||2, (14)

where ct1 and ct2 denote the regularization terms in (t + 1)th iteration. In each iteration, we set
that |Pt| ≤M,∀t. ct1 = 1

ηλ(t+1)
1
4
≥ c1, ct2 = 1

ηθ(t+1)
1
4
≥ c2 are two nonnegative non-increasing

sequences, where ηλ and ηθ are positive constants, and constants c1, c2 meet that 0< c1 ≤ 1/ηλc,
0<c2≤1/ηθc, c=((4Mα3/ηλ

2+4Nα4/ηθ
2)21/ϵ2+1)

1
4 (ϵ, α3, α4 are introduced in Section 4).

Following (Zhang & Kwok, 2014), to alleviate the staleness issue in ADBO, we set that master
updates its variables once it receives updates from S active workers at every iteration and every
worker has to communicate with the master at least once every τ iterations. In (t + 1)th iteration,
let Qt+1 denote the index set of active workers, the proposed algorithm proceeds as follows,
(1) Active workers update the local variables as follows,

xt+1
i =

{
xt
i − ηx∇xi

L̃p({xt̂i
i },{y

t̂i
i },vt̂i , zt̂i ,{λ

t̂i
l },{θ

t̂i
i }), i ∈ Qt+1

xt
i, i /∈ Qt+1 , (15)

yt+1
i =

{
yt
i − ηy∇yiL̃p({xt̂i

i },{y
t̂i
i },vt̂i , zt̂i ,{λ

t̂i
l },{θ

t̂i
i }), i ∈ Qt+1

yt
i , i /∈ Qt+1 , (16)

where t̂i denotes the last iteration during which worker i was active, ηx and ηy are step-sizes. Then,
the active workers transmit the local variables xt+1

i and yt+1
i to the master.

(2) After receiving the updates from active workers, the master updates the variables as follows,

vt+1 = vt − ηv∇vL̃p({xt+1
i },{yt+1

i },vt, zt,{λtl},{θti}), (17)

zt+1 = zt − ηz∇zL̃p({xt+1
i },{yt+1

i },vt+1, zt,{λlt},{θti}), (18)
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λt+1
l = λtl + ηλ∇λl

L̃p({xt+1
i },{yt+1

i },vt+1, zt+1,{λtl},{θti}), (19)

θt+1
i =

{
θti + ηθ∇θi

L̃p({xt+1
i },{yt+1

i },vt+1, zt+1,{λlt+1},{θti}), i ∈ Qt+1

θti , i /∈ Qt+1 , (20)

where ηv , ηz , ηλ and ηθ are step-sizes. Next, the master broadcasts vt+1, zt+1,θt+1
i and {λt+1

l } to
worker i, i ∈ Qt+1 (i.e., active workers). Details are summarized in Algorithm 1.

3.4 Updating Cutting Planes

Every kpre iterations (kpre > 0 is a pre-set constant, which can be controlled flexibly), the cutting
planes are updated based on the following two steps (a) and (b) when t < T1:

(a) Removing the inactive cutting planes,

Pt+1 =

{
Drop(Pt, cpl), if λ

t+1
l and λtl = 0

Pt, otherwise
, (21)

where cpl represents the lth cutting plane in Pt and Drop(Pt, cpl) represents the lth cutting plane
cpl is removed from Pt. The dual variable set {λt+1} will be updated as follows,

{λt+1}=
{

Drop({λt}, λl), if λt+1
l and λtl = 0

{λt}, otherwise , (22)

where {λt+1} and {λt} represent the dual variable set in (t + 1)th and tth iterations, respectively.
Drop({λt}, λl) represents that λl is removed from the dual variable set {λt}.

(b) Adding new cutting planes. Firstly, we investigate whether (vt+1,{yt+1
i }, zt+1) is feasible

for the constraint h(v, {yi}, z)≤ ε. We can obtain h(vt+1,{yt+1
i }, zt+1) according to ϕ(vt+1) in

Eq. (9). If (vt+1,{yt+1
i }, zt+1) is not a feasible solution to the original problem (Eq. (10)), new

cutting plane cpt+1
new will be generated to separate the point (vt+1,{yt+1

i }, zt+1) from the feasible
region of constraint h(v, {yi}, z)≤ ε. Thus, the valid cutting plane (Boyd & Vandenberghe, 2007)
al

⊤v +
∑N

i=1 bi,l
⊤yi + cl

⊤z + κl ≤ 0 must satisfy that,{
al

⊤v +
∑N

i=1 bi,l
⊤yi + cl

⊤z + κl ≤ 0,∀(v,{yi}, z) satisfies h(v,{yi}, z)≤ε
al

⊤vt+1 +
∑N

i=1 bi,l
⊤yt+1

i + cl
⊤zt+1 + κl > 0

. (23)

Since h(v, {yi}, z) is a convex function, we have that,

h(v, {yi}, z)≥h(vt+1, {yt+1
i }, zt+1)+


∂h(vt+1,{yt+1

i },zt+1)

∂v

{∂h(vt+1,{yt+1
i },zt+1)

∂yi
}

∂h(vt+1,{yt+1
i },zt+1)

∂z


⊤[

v
{yi}
z

]
−

 vt+1

{yt+1
i }

zt+1

 .

(24)
Combining Eq. (24) with Eq. (23), we have that a valid cutting plane (with respect to point
(vt+1, {yt+1

i }, zt+1)) can be expressed as,

h(vt+1, {yt+1
i }, zt+1) +


∂h(vt+1,{yt+1

i },zt+1)

∂v

{∂h(vt+1,{yt+1
i },zt+1)

∂yi
}

∂h(vt+1,{yt+1
i },zt+1)

∂z


⊤[

v
{yi}
z

]
−

 vt+1

{yt+1
i }

zt+1

 ≤ ε. (25)

For brevity, we utilize cpt+1
new to denote the new added cutting plane (i.e., Eq. (25)). Thus the

polytope Pt+1 will be updated as follows,

Pt+1 =

{
Add(Pt+1, cpt+1

new), if h(v
t+1,{yt+1

i }, zt+1) > ε
Pt+1, otherwise

, (26)

where Add(Pt+1, cpt+1
new) represents that new cutting plane cpt+1

new is added to polytope Pt+1. The
dual variable set {λt+1} is updated as follows,

{λt+1} =

{
Add({λt+1}, λt+1

|Pt+1|), if h(v
t+1,{yt+1

i }, zt+1) > ε

{λt+1}, otherwise
, (27)

where Add({λt+1}, λt+1
|Pt+1|) represents that dual variable λt+1

|Pt+1| is added to the dual variable set

{λt+1}. Finally, master broadcasts the updated Pt+1 and {λt+1} to all workers. The details of the
proposed algorithm are summarized in Algorithm 1.
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Algorithm 1 ADBO: Asynchronous Distributed Bilevel Optimization

Initialization: master iteration t=0, variables {x0
i }, {y0

i }, v0, z0, {λ0l }, {θ0i } and polytope P0.
repeat

for active worker do
updates variables xt+1

i , yt+1
i according to Eq. (15) and (16);

end for
Active workers transmit their local variables to master;
for master do

updates variables vt+1, zt+1, {λt+1
l }, {θt+1

i } according to Eq. (17), (18), (19) and (20);
end for
master broadcasts variables to active workers;
if (t+ 1) mod kpre == 0 and t < T1 then

master computes ϕ(vt+1) according to Eq. (9);
master updates Pt+1 and {λt+1} according to Eq. (21), (22), (26) and (27);
master broadcasts Pt+1 and {λt+1} to all workers;

end if
t = t+ 1;

until termination.

4 DISCUSSION

Theorem 1 (Convergence) As the cutting plane continues to be added to the polytope, the optimal
objective value of approximate problem in Eq. (12) converges monotonically.
The proof of Theorem 1 is presented in Appendix C.
Definition 1 (Stationarity gap) Following (Xu et al., 2020; Lu et al., 2020; Jiao et al., 2022a), the
stationarity gap of our problem at tth iteration is defined as:

∇Gt =


{∇xi

Lp({xt
i},{yt

i},vt,zt,{λtl},{θti})}
{∇yiLp({xt

i},{yt
i},vt,zt,{λtl},{θti})}

∇vLp({xt
i},{yt

i},vt,zt,{λtl},{θti})
∇zLp({xt

i},{yt
i},vt,zt,{λtl},{θti})

{∇λl
Lp({xt

i},{yt
i},vt,zt,{λtl},{θti})}

{∇θi
Lp({xt

i},{yt
i},vt,zt,{λtl},{θti})}

 . (28)

Definition 2 (ϵ-stationary point) ({xt
i},{yt

i},vt, zt,{λtl},{θti}) is an ϵ-stationary point (ϵ ≥ 0) of
a differentiable function Lp, if ||∇Gt||2 ≤ ϵ. T (ϵ) is the first iteration index such that ||∇Gt||2 ≤ ϵ,
i.e., T (ϵ) = min{t | ||∇Gt||2 ≤ ϵ}.

Assumption 1 (Smoothness/Gradient Lipschitz) Following (Ji et al., 2021), we assume that Lp has
Lipschitz continuous gradients, i.e., for any ω,ω′, we assume that there exists L > 0 satisfying that,

||∇Lp(ω)−∇Lp(ω
′)|| ≤ L||ω − ω′||, (29)

Assumption 2 (Boundedness) Following (Qian et al., 2019), we assume that variables are
bounded, i.e., ||xi||2 ≤ α1, ||v||2 ≤ α1, ||yi||2 ≤ α2, ||z||2 ≤ α2, ||λl||2 ≤ α3, ||θi||2 ≤ α4. And
we assume that before obtaining the ϵ-stationary point (i.e., t≤ T (ϵ)−1), the variables in master
satisfy that ||vt+1−vt||2+ ||zt+1−zt||2+

∑
l ||λ

t+1
l −λtl ||2 ≥ ϑ, where ϑ > 0 is a relative small

constant. The change of the variables in master is upper bounded within τ iterations:

||vt − vt−k||2≤τk1ϑ, ||zt − zt−k||2≤τk1ϑ,
∑

l ||λtl − λt−k
l ||2≤τk1ϑ,∀1≤k≤τ , (30)

where k1 > 0 is a constant.

Theorem 2 (Iteration complexity) Suppose Assumption 1 and 2 hold, we set the step-sizes as ηx=
ηy=ηv=ηz=

2

L+ηλML2+ηθNL2+8(MγL2

ηλc1
2 +NγL2

ηθc2
2 )

, ηλ < min{ 2
L+2c01

, 1
30τk1NL2 } and ηθ ≤ 2

L+2c02
.

For a given ϵ, we have:

T (ϵ)∼O(max{(4Mα3

ηλ2
+
4Nα4

ηθ2
)2

1

ϵ2
, (
4(d7 +

ηθ(N−S)L2

2 )(
−
d+kdτ(τ − 1))d6

ϵ
+ (T1 + 2)

1
2 )2}),

(31)
where α3, α4, γ, kd, T1,

−
d, d6 and d7 are constants. The detailed proof is given in Appendix B.
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5 EXPERIMENT

In this section, experiments1 are conducted on two hyperparameter optimization tasks (i.e., data
hyper-cleaning task and regularization coefficient optimization task) in the distributed setting to
evaluate the performance of the proposed ADBO. The proposed ADBO is compared with the state-
of-the-art distributed bilevel optimization method FEDNEST (Tarzanagh et al., 2022). In data hyper-
cleaning task, experiments are carried out on MNIST (LeCun et al., 1998) and Fashion MNIST (Xiao
et al., 2017) datasets. In coefficient optimization task, following (Chen et al., 2022a), experiments
are conducted on Covertype (Blackard & Dean, 1999) and IJCNN1 (Prokhorov, 2001) datasets.

5.1 DATA HYPER-CLEANING

Following (Ji et al., 2021; Yang et al., 2021), we compare the performance of the proposed ADBO
and distributed bilevel optimization method FEDNEST on the distributed data hyper-cleaning task
(Chen et al., 2022b) on MNIST and Fashion MNIST datasets. Data hyper-cleaning involves training
a classifier in a contaminated environment where each training data label is changed to a random
class number with a probability (i.e., the corruption rate). In the experiment, the distributed data
hyper-cleaning problem is considered, whose formulation can be expressed as,

min F (ψ,w) =
N∑
i=1

1
|Dval

i |
∑

(xj ,yj)∈Dval
i

L(xj
⊤w, yj)

s.t. w=argmin
w′

f(ψ,w′)=
N∑
i=1

1
|Dtr

i |
∑

(xj ,yj)∈Dtr
i

σ(ψj)L(xj
⊤w′, yj) + Cr||w′||2

var. ψ,w,

(32)

where Dtr
i and Dval

i denote the training and validation datasets on ith worker, respectively. (xj , yj)
denote the jth data and label. σ(.) is the sigmoid function, L is the cross-entropy loss, Cr is a
regularization parameter and N is the number of workers in the distributed system. In MNIST
and Fashion MNIST datasets, we set N = 18, S = 9 and τ = 15. According to Cohen et al.
(2021), we assume that the communication delay of each worker obeys the heavy-tailed distribu-
tion. The proposed ADBO is compared with the state-of-the-art distributed bilevel optimization
method FEDNEST and SDBO (Synchronous Distributed Bilevel Optimization, i.e., ADBO without
asynchronous setting). The test accuracy versus time is shown in Figure 1, and the test loss versus
time is shown in Figure 2. We can observe that the proposed ADBO is the most efficient algorithm
since 1) the asynchronous setting is considered in ADBO, the master can update its variables once it
receives updates from S active workers instead of all workers; and 2) ADBO is a single-loop algo-
rithm and only gradient descent/ascent is required at each iteration, thus ADBO is computationally
more efficient.

5.2 REGULARIZATION COEFFICIENT OPTIMIZATION

Following (Chen et al., 2022a), we compare the proposed ADBO with baseline algorithms
FEDNEST and SDBO on the regularization coefficient optimization task with Covertype and
IJCNN1 datasets. The distributed regularization coefficient optimization problem is given by,

min F (ψ,w) =
N∑
i=1

1
|Dval

i |
∑

(xj ,yj)∈Dval
i

L(xj
⊤w, yj)

s.t. w=argmin
w′

f(ψ,w′)=
N∑
i=1

1
|Dtr

i |
∑

(xj ,yj)∈Dtr
i

L(xj
⊤w′, yj) +

n∑
j=1

ψj(w
′
j)

2

var. ψ,w,

(33)

where ψ ∈Rn, w ∈Rn and L respectively denote the regularization coefficient, model parameter,
and logistic loss, andw′=[w′

1, . . . , w
′
n]. In Covertype and IJCNN1 datasets, we setN = 18, S = 9,

τ = 15 and N = 24, S = 12, τ = 15, respectively. We also assume that the delay of each worker
obeys the heavy-tailed distribution. Firstly, we compare the performance of the proposed ADBO,
SDBO and FEDNEST in terms of test accuracy and test loss on Covertype and IJCNN1 datasets,

1Codes are available in https://github.com/ICLR23Submission6251/adbo.
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which are shown in Figure 3 and 4. It is seen that the proposed ADBO is more efficient because of
the same two reasons we gave in Section 5.1.
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Figure 1: Test accuracy vs time on (a) MNIST
and (b) Fashion MNIST datasets.
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Figure 2: Test loss vs time on (a) MNIST and
(b) Fashion MNIST datasets.
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Figure 3: Test accuracy vs time on (a) Cover-
type and (b) IJCNN1 datasets.
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Figure 4: Test loss vs time on (a) Covertype and
(b) IJCNN1 datasets.
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Figure 5: Test accuracy vs time on (a) Cover-
type and (b) IJCNN1 datasets when there are
stragglers in distributed system.
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Figure 6: Test loss vs time on (a) Covertype and
(b) IJCNN1 datasets when there are stragglers
in distributed system.

We also consider the straggler problem, i.e., there exist workers with high delays (stragglers) in
the distributed system. In this case, the efficiency of the bilevel optimization method with the syn-
chronous distributed setting will be affected heavily. In the experiment, we assume there are three
stragglers in the distributed system, and the mean of (communication + computation) delay of strag-
glers is four times the delay of normal workers. The results on Covertype and IJCNN1 datasets are
reported in Figure 5 and 6. It is seen that the efficiency of the synchronous distributed algorithms
(FEDNEST and SDBO) will be significantly affected, while the proposed ADBO does not suffer
from the straggler problem since it is an asynchronous method and is able to only consider active
workers.

6 CONCLUSION

Existing bilevel optimization works focus either on the centralized or synchronous distributed set-
ting, which will give rise to data privacy risks and suffer from the straggler problem. As a rem-
edy, we propose ADBO in this paper to solve the bilevel optimization problem in an asynchronous
distributed manner. To our best knowledge, this is the first work that devises the asynchronous
distributed algorithm for bilevel optimization. We demonstrate that the proposed ADBO can effec-
tively tackle bilevel optimization problems with both nonconvex upper-level and lower-level objec-
tive functions. Theoretical analysis has also been conducted to analyze the convergence properties
and iteration complexity of ADBO. Extensive empirical studies on real-world datasets demonstrate
the efficiency and effectiveness of the proposed ADBO.
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A CUTTING PLANE METHOD FOR BILEVEL OPTIMIZATION

In this section, a cutting plane method, named CPBO, is proposed for bileve optimization. Defining
ϕ(x) = argmin

y′
f(x,y′) and h(x,y) = ||y − ϕ(x)||2, we can reformulate problem in Eq. (1) as:

min F (x,y)
s.t. h(x,y)=0
var. x,y.

(34)

Following the previous works (Li et al., 2022; Gould et al., 2016; Yang et al., 2021) in bilevel
optimization, it is not necessary to get the exact ϕ(x), and the approximate ϕ(x) is given as follows.
Firstly, as many work do (Ji et al., 2021; Yang et al., 2021), we utilize theK steps of gradient descent
(GD) to approximate ϕ(x). And the first-order Taylor approximation of f(x,y′) with respect to x
is considered, i.e., for a given point x, f̃(x,y′) = f(x,y′)+∇xf(x,y

′)⊤(x−x). Thus, we have,

ϕ(x) = y′
0 −

∑K−1

k=0
η∇y f̃(x,y

′
k), (35)

where η is the step-size. Considering the estimated ϕ(x) in Eq. (35), the relaxed problem with
respect to problem in Eq. (34) is considered as follows,

min F (x,y)
s.t. h(x,y)≤ε
var. x,y.

(36)

Assuming that h(x,y) is a convex function with respect to (x,y), which is always satisfied when
we set K = 1 in Eq. (35) according to the operations that preserve convexity (Boyd et al., 2004).
Since the sublevel set of a convex function is convex, we have that the feasible set of (x,y), i.e.,

Zrelax = {(x,y) ∈ Rn×Rm|h(x,y) ≤ ϵ}, (37)

is a convex set. We utilize a set of cutting plane constraints (i.e., linear constraints) to approximate
the feasible setZrelax. The set of cutting plane constraints forms a polytope, which can be expressed
as follows,

P = {(x,y) ∈ Rn×Rm|al
⊤x+ bl

⊤y + κl ≤ 0, l = 1, · · · , L}, (38)
where al∈Rn, bl∈Rm and κl∈R1 are parameters in lth cutting plane, and L represents the number
of cutting planes in P . Considering the approximate problem, which can be expressed as follows,

min F (x,y)

s.t. al
⊤x+bl

⊤y+κl ≤ 0, l=1,· · ·, |Pt| (39)
var. x,y,

where Pt is the polytope in (t + 1)th iteration, and |Pt| denotes the number of cutting planes in
Pt. Then, the Lagrangian function of Eq. (39) can be written as,

Lp(x,y, {λl}) = F (x,y) +

|Pt|∑
l=1

λl(al
⊤x+bl

⊤y+κl), (40)

where λl is the dual variable. The proposed algorithm proceeds as follows in (t+ 1)th iteration:

If t < T1, the variables are updated as follows,

xt+1 = xt − ηx∇xLp(x
t,yt, {λtl}), (41)

yt+1 = yt − ηy∇yLp(x
t+1,yt, {λtl}), (42)

λt+1
l = λtl + ηλl

∇λl
Lp(x

t+1,yt+1, {λtl}), l=1,· · ·, |Pt|, (43)
where ηx, ηy and ηλl

are the step-sizes.

And every kpre iterations (kpre>0 is a pre-set constant, which can be controlled flexibly) the cutting
planes will be updated based on the following two steps:
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Table 1: Convergence results of bilevel optimization algorithms (with centralized and distributed
setting).

Method Centralized Synchronous (Distributed) Asynchronous (Distributed)
AID-BiO (Ghadimi & Wang, 2018) O( 1

ϵ1.25 ) NA NA
AID-BiO (Ji et al., 2021) O( 1

ϵ1 ) NA NA
ITD-BiO (Ji et al., 2021) O( 1

ϵ1 ) NA NA
STABLE (Chen et al., 2022a) O( 1

ϵ2 )
1 NA NA

stocBio (Ji et al., 2021) O( 1
ϵ2 )

1 NA NA
VRBO (Yang et al., 2021) O( 1

ϵ1.5 )
1 NA NA

FEDNEST (Tarzanagh et al., 2022) NA O( 1
ϵ2 )

1 NA
SPDB (Lu et al., 2022) NA O( 1

ϵ2 )
1 NA

DSBO (Yang et al., 2022) NA O( 1
ϵ2 )

1 NA
Proposed Method O( 1

ϵ1 ) NA O( 1
ϵ2 )

1 Stochastic optimization algorithm.

(a) Removing the inactive cutting planes, that is,

Pt+1 =

{
Drop(Pt, cpl), if λ

t+1
l and λtl = 0

Pt, otherwise
, (44)

where cpl represents the lth cutting plane in Pt, and Drop(Pt, cpl) represents removing the lth

cutting plane cpl from Pt. And the dual variable set {λt} will be updated as follows,

{λt+1}=
{

Drop({λt}, λtl), if λ
t+1
l and λtl = 0

{λt}, otherwise , (45)

where {λt+1} and {λt} respectively represent the dual variable set in (t + 1)th and tth iteration.
And Drop({λt}, λtl) represents that λtl is removed from the dual variable set {λt}.

(b) Adding new cutting planes. Firstly, we investigate whether (xt+1,yt+1) is a feasible solution to
the original problem in Eq. (36). If (xt+1,yt+1) is not a feasible solution to the original problem,
that is h(xt+1,yt+1) > ε, new cutting plane is generated to separate the point (xt+1,yt+1) from
Zrelax, that is, the valid cutting plane al

⊤x+bl
⊤y+κl ≤ 0 must satisfy that,{

al
⊤x+bl

⊤y+κl ≤ 0,∀(x,y) ∈ Zrelax

al
⊤xt+1+bl

⊤yt+1+κl > 0
. (46)

Since h(x,y) is a convex function, we have that,

h(x,y) ≥ h(xt+1,yt+1) +

[
∂h(xt+1,yt+1)

∂x
∂h(xt+1,yt+1)

∂y

]⊤([
x

y

]
−
[
xt+1

yt+1

])
. (47)

According to Eq. (47), h(xt+1,yt+1) +

[
∂h(xt+1,yt+1)

∂x
∂h(xt+1,yt+1)

∂y

]⊤([
x

y

]
−
[
xt+1

yt+1

])
≤ ε is a valid

cutting plane at point (xt+1,yt+1) which satisfies Eq. (46). For brevity, we utilize cpt+1
new to denote

this cutting plane. Thus, we have that,

Pt+1 =

{
Add(Pt+1, cpt+1

new), if h(x
t+1,yt+1) > ε

Pt+1, if h(xt+1,yt+1) ≤ ε
, (48)

where Add(Pt+1, cpt+1
new) represents that new cutting plane cpt+1

new is added to polytope Pt+1. And
the dual variable set is updated as follows,

{λt+1} =

{
Add({λt+1}, λt+1

|Pt+1|), if h(x
t+1,yt+1) > ε

{λt+1}, if h(xt+1,yt+1) ≤ ε
, (49)
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Algorithm 2 CPBO: Cutting Plane Method for Bilevel Optimization

Initialization: iteration t = 0, variables x0, y0, {λ0l } and polytope P0.
repeat

if t < T1 then
updating variables xt+1, yt+1 and λt+1

l according to Eq. (41), (42) and (43);
if (t+ 1) mod kpre == 0 then

updating the polytope Pt+1 according to Eq. (44) and (48);
updating the dual variable set {λt+1} according to Eq. (45) and (49);

end if
else

updating variables xt+1 and yt+1 according to Eq. (50) and (51);
end if
t = t+ 1;

until termination.
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Figure 7: Comparison of (a) test accuracy vs time, (b) test loss vs time on Covertype dataset.

where Add({λt+1}, λt+1
|Pt+1|) represents that new dual variable λt+1

|Pt+1| is added to {λt+1}.

Else if t ≥ T1, the polytope PT1 and dual variables will be fixed. Variables x,y will be updated as
follows,

xt+1 = xt − ηx∇xL̂p(x
t,yt), (50)

yt+1 = yt − ηy∇yL̂p(x
t+1,yt), (51)

where L̂p(x,y) = F (x,y) +
|PT1 |∑
l=1

λl[max{0,al
⊤x+bl

⊤y+κl}]2. And details of the proposed

algorithm are summarized in Algorithm 2. The comparison about the convergence results between
the proposed method and state-of-the-art methods are summarized in Table 1.

A.1 EXPERIMENT

To evaluate the performance of the proposed CPBO, experiments are carried out on two applica-
tions: 1) hyperparameter optimization, 2) meta-learning. In hyperparameter optimization, we com-
pare CPBO with baseline algorithms stocBio (Ji et al., 2021), STABLE (Chen et al., 2022a), VRBO
(Yang et al., 2021)), and AID-CG (Grazzi et al., 2020) on the regularization coefficient optimiza-
tion task (Chen et al., 2022a) with Covertype (Blackard & Dean, 1999) and IJCNN1 (Prokhorov,
2001) datasets. We compare the performance of the proposed CPBO with all competing algorithms
in terms of both the test accuracy and the test loss, which are shown in Figure 7 and 8. In meta-
learning, we focus on the bilevel optimization problem in (Rajeswaran et al., 2019). And we compare
the proposed CPBO with baseline algorithms MAML (Finn et al., 2017), iMAML (Rajeswaran et al.,
2019), and ANIL (Raghu et al., 2019) on Omniglot (Lake et al., 2015) and CIFAR-FS (Bertinetto
et al., 2018) datasets. And the comparison between the proposed method with the baseline algo-
rithms are shown in Figure 9 and 10. It is seen that the proposed CPBO can achieve relatively fast
convergence rate among all competing algorithms since 1) the iteration complexity of the proposed
method is not high; 2) every step in CPBO is computationally efficient.
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Figure 8: Comparison of (a) test accuracy vs time, (b) test loss vs time on IJCNN1 dataset.
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Figure 9: Comparison of (a) test accuracy vs time, (b) test loss vs time on Omniglot dataset.

A.2 DISCUSSION

Definition A.1 (x,y) is an ϵ-stationary point of a differentiable function L̂p, if ||∇xL̂p(x,y)||2 +
||∇yL̂p(x,y)||2 ≤ ϵ.

Assumption A.1 (Smoothness/Gradient Lipschitz) Following (Ji et al., 2021), we assume that L̂p

has Lipschitz continuous gradients, i.e., for any ω,ω′, we assume that there exists L > 0 satisfying
that,

||∇L̂p(ω)−∇L̂p(ω
′)|| ≤ L||ω − ω′||. (52)

Assumption A.2 (Boundedness) Following (Qian et al., 2019), we assume that variables have
boundedness, i.e., ||x||2 ≤ β1, ||y||2 ≤ β2.

Theorem 3 (Iteration Complexity) Under Assumption A.1, A.2, and setting the step-sizes as ηx <
2
L , ηy < 2

L , the iteration complexity (also the gradient complexity) of the proposed algorithm to
obtain ϵ-stationary point is bounded by O( 1ϵ ).

Proof of Theorem 3:

According to Assumption A.1 and Eq. (50), when t ≥ T1, we have,

L̂p(x
t+1,yt) ≤ L̂p(x

t,yt) +
〈
∇xL̂p(x

t,yt),xt+1 − xt
〉
+ L

2 ||x
t+1 − xt||2

≤ L̂p(x
t,yt)− ηx||∇xL̂p(x

t,yt)||2 + Lηx
2

2 ||∇xL̂p(x
t,yt)||2.

(53)

Similarly, according to Assumption A.1 and Eq. (51), we have,

L̂p(x
t+1,yt+1) ≤ L̂p(x

t+1,yt) +
〈
∇yL̂p(x

t+1,yt),yt+1 − yt
〉
+ L

2 ||y
t+1 − yt||2

≤ L̂p(x
t+1,yt)− ηy||∇yL̂p(x

t+1,yt)||2 + Lηy
2

2 ||∇yL̂p(x
t+1,yt)||2.

(54)
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Figure 10: Comparison of (a) test accuracy vs time, (b) test loss vs time on CIFAR-FS dataset.

Combining Eq. (53) with Eq. (54), we have,

(ηx−
Lηx

2

2
)||∇xL̂p(x

t,yt)||2+(ηy−
Lηy

2

2
)||∇yL̂p(x

t+1,yt)||2 ≤ L̂p(x
t,yt)−L̂p(x

t+1,yt+1).

(55)

According to the setting of ηx, ηy , we have that ηx − Lηx
2

2 > 0, ηy − Lηy
2

2 > 0. And we set

constant d = min{ηx − Lηx
2

2 , ηy − Lηy
2

2 }, thus we can obtain that,

||∇xL̂p(x
t,yt)||2 + ||∇yL̂p(x

t+1,yt)||2 ≤ L̂p(x
t,yt)− L̂p(x

t+1,yt+1)

d
. (56)

Summing both sides of Eq. (56) for t = {T1, · · · , T − 1}, we obtain that,

1

T − T1

T−1∑
t=T1

(||∇xL̂p(x
t,yt)||2 + ||∇yL̂p(x

t+1,yt)||2) ≤
L̂p(x

T1 ,yT1)− L̂∗
p

(T − T1)d
, (57)

where L̂∗
p = min L̂p(x,y). Combining Eq. (57) with Definition A.1, we have that the number of

iterations required by Algorithm 2 to return an ϵ-stationary point is bounded by

O(
L̂p(x

T1 ,yT1)− L̂∗
p

d

1

ϵ
+ T1). (58)

B PROOF OF THEOREM 2

In this section, we provide complete proofs for Theorem 2. Firstly, we make some definitions about
our problem.

Definition B.1 Following (Xu et al., 2020), the stationarity gap at tth iteration is defined as:

∇Gt =



{∇xi
Lp({xt

i},{yt
i},vt,zt,{λtl},{θti})}

{∇yi
Lp({xt

i},{yt
i},vt,zt,{λtl},{θti})}

∇vLp({xt
i},{yt

i},vt,zt,{λtl},{θti})

∇zLp({xt
i},{yt

i},vt,zt,{λtl},{θti})

{∇λl
Lp({xt

i},{yt
i},vt,zt,{λtl},{θti})}

{∇θi
Lp({xt

i},{yt
i},vt,zt,{λtl},{θti})}


. (59)
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And we also define:

(∇Gt)xi
= ∇xi

Lp({xt
i},{yt

i},vt,zt,{λtl},{θti}),

(∇Gt)yi
= ∇yi

Lp({xt
i},{yt

i},vt,zt,{λtl},{θti}),

(∇Gt)v = ∇vLp({xt
i},{yt

i},vt,zt,{λtl},{θti}),

(∇Gt)z = ∇zLp({xt
i},{yt

i},vt,zt,{λtl},{θti}),

(∇Gt)λl
= ∇λl

Lp({xt
i},{yt

i},vt,zt,{λtl},{θti}),

(∇Gt)θi
= ∇θi

Lp({xt
i},{yt

i},vt,zt,{λtl},{θti}).

(60)

It follows that,

||∇Gt||2=
N∑
i=1

(||(∇Gt)xi
||2+||(∇Gt)yi

||2+||(∇Gt)θi
||2)+||(∇Gt)v||2+||(∇Gt)z||2+

|Pt|∑
l=1

||(∇Gt)λl
||2.

(61)

Definition B.2 At tth iteration, the stationarity gap w.r.t L̃p({xi},{yi},v, z,{λl},{θi}) is defined
as:

∇G̃t =



{∇xi
L̃p({xt

i},{yt
i},vt,zt,{λtl},{θti})}

{∇yi
L̃p({xt

i},{yt
i},vt,zt,{λtl},{θti})}

∇vL̃p({xt
i},{yt

i},vt,zt,{λtl},{θti})

∇zL̃p({xt
i},{yt

i},vt,zt,{λtl},{θti})

{∇λl
L̃p({xt

i},{yt
i},vt,zt,{λtl},{θti})}

{∇θi
L̃p({xt

i},{yt
i},vt,zt,{λtl},{θti})}


. (62)

We further define:

(∇G̃t)xi
= ∇xi

L̃p({xt
i},{yt

i},vt,zt,{λtl},{θti}),

(∇G̃t)yi = ∇yiL̃p({xt
i},{yt

i},vt,zt,{λtl},{θti}),

(∇G̃t)v = ∇vL̃p({xt
i},{yt

i},vt,zt,{λtl},{θti}),

(∇G̃t)z = ∇zL̃p({xt
i},{yt

i},vt,zt,{λtl},{θti}),

(∇G̃t)λl
= ∇λl

L̃p({xt
i},{yt

i},vt,zt,{λtl},{θti}),

(∇G̃t)θi = ∇θiL̃p({xt
i},{yt

i},vt,zt,{λtl},{θti}).

(63)

It follows that,

||∇G̃t||2=
N∑
i=1

(||(∇G̃t)xi
||2+||(∇G̃t)yi

||2+||(∇G̃t)θi
||2)+||(∇G̃t)v||2+||(∇G̃t)z||2+

|Pt|∑
l=1

||(∇G̃t)λl
||2.

(64)

Definition B.3 In the proposed asynchronous algorithm, for the ith worker in tth iteration, the last
iteration where this worker was active is defined as t̂i. And the next iteration this worker will be
active is defined as ti. For the iteration index set which ith worker is active during T1 + T + τ
iteration, it is defined as Vi(T ). And the jth element in Vi(T ) is defined as v̂i(j).

Then, we provide some useful lemmas used for proving the main convergence results in Theorem 2.
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Lemma 1 Let sequences ηtx = ηty = ηtv = ηtz = 2

L+ηλ|Pt|L2+ηθNL2+8(
|Pt|γL2

ηλ(ct1)2
+ NγL2

ηθ(ct2)2
)
, suppose

Assumption 1 and 2 hold, we can obtain that,

Lp({xt+1
i },{yt+1

i },vt+1,zt+1,{λtl},{θti})− Lp({xt
i},{yt

i},vt,zt,{λtl},{θti})

≤
N∑
i=1

(L+L2+1
2 − 1

ηt
x
)||xt+1

i −xt
i||2 +

N∑
i=1

(L+1
2 − 1

ηt
y
)||yt+1

i −yt
i ||2 + 3NL2τk1

|Pt|∑
l=1

||λt+1
l −λtl ||2

+(L+6NL2τk1

2 − 1
ηt
v
)||vt+1−vt||2 + (L+6NL2τk1

2 − 1
ηt
z
)||zt+1−zt||2.

(65)

Proof of Lemma 1:

Utilizing the Lipschitz properties in Assumption 1, we can obtain that,

Lp({xt+1
1 ,xt

2,· · ·,xt
N},{yt

i},vt, zt,{λtl},{θti})−Lp({xt
i},{yt

i},vt, zt,{λtl},{θti})

≤
〈
∇x1Lp({xt

i},{yt
i},vt, zt,{λtl},{θti}),x

t+1
1 −xt

1

〉
+ L

2 ||x
t+1
1 −xt

1||2,

Lp({xt+1
1 ,xt+1

2 ,· · ·,xt
N},{yt

i},vt,zt,{λtl},{θti})−Lp({xt+1
1 ,xt

2,· · ·,xt
N},{yt

i},vt,zt,{λtl},{θti})

≤
〈
∇x2

Lp({xt
i},{yt

i},vt,zt,{λtl},{θti}),x
t+1
2 −xt

2

〉
+ L

2 ||x
t+1
2 −xt

2||2,

...

Lp({xt+1
i },{yt

i},vt,zt,{λtl},{θti})−Lp({xt+1
1 ,· · ·,xt+1

N−1,x
t
N},{yt

i},vt,zt,{λtl},{θti})

≤
〈
∇xN

Lp({xt
i},{yt

i},vt,zt,{λtl},{θti}),x
t+1
N −xt

N

〉
+ L

2 ||x
t+1
N −xt

N ||2.
(66)

Summing up the above inequalities in Eq. (66), we can obtain that,

Lp({xt+1
i },{yt

i},vt,zt,{λtl},{θti})−Lp({xt
i},{yt

i},vt,zt,{λtl},{θti})

≤
N∑
i=1

(〈
∇xi

Lp({xt
i},{yt

i},vt,zt,{λtl},{θti}),x
t+1
i −xt

i

〉
+ L

2 ||x
t+1
i −xt

i||2
)
.

(67)

Combining ∇xi
Lp({xt̂i

i }, {y
t̂i
i },vt̂i , zt̂i , {λ

t̂i
l }, {θ

t̂i
i }) = ∇xi

L̃p({xt̂i
i }, {y

t̂i
i },vt̂i , zt̂i , {λ

t̂i
l }, {θ

t̂i
i })

with Eq. (15), we have that,〈
xt+1
i −xt

i,∇xi
Lp({xt̂i

i },{y
t̂i
i },v

t̂i ,zt̂i ,{λt̂il },{θ
t̂i
i })

〉
= − 1

ηx
||xt+1

i −xt
i||2 ≤ − 1

ηtx
||xt+1

i −xt
i||2.

(68)

Next, combining the Cauchy-Schwarz inequality with Assumption 1, 2, we can get,〈
xt+1
i −xt

i,∇xi
Lp({xt

i},{yt
i},vt,zt,{λtl},{θti})−∇xi

Lp({xt̂i
i },{y

t̂i
i },vt̂i ,zt̂i ,{λ

t̂i
l },{θ

t̂i
i })

〉
≤ 1

2 ||x
t+1
i −xt

i||2+ L2

2 (||vt−vt̂j ||2+||zt−zt̂j ||2+
|Pt|∑
l=1

||λtl−λ
t̂j
l ||2)

≤ 1
2 ||x

t+1
i −xt

i||2+ 3L2τk1

2 (||vt+1−vt||2+||zt+1−zt||2+
|Pt|∑
l=1

||λt+1
l −λtl ||2).

(69)

Thus, according to Eq. (67), (68) and (69), we can obtain that,

Lp({xt+1
i },{yt

i},vt,zt,{λtl},{θti})−Lp({xt
i},{yt

i},vt,zt,{λtl},{θti})

≤
N∑
i=1

(L+1
2 − 1

ηt
x
)||xt+1

i −xt
i||2 + 3NL2τk1

2 (||vt+1−vt||2+||zt+1−zt||2+
|Pt|∑
l=1

||λt+1
l −λtl ||2).

(70)
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Similarly, using the Lipschitz properties in Assumption 1, we have,

Lp({xt+1
i },{yt+1

i },vt,zt,{λtl},{θti})−Lp({xt+1
i },{yt

i},vt,zt,{λtl},{θti})

≤
N∑
i=1

(〈
∇yi

Lp({xt+1
i },{yt

i},vt,zt,{λtl},{θti}),y
t+1
i −yt

i

〉
+ L

2 ||y
t+1
i −yt

i ||2
)
.

(71)

Combining ∇yi
Lp({xt̂i

i }, {y
t̂i
i },vt̂i , zt̂i , {λ

t̂i
l }, {θ

t̂i
i })=∇yi

L̃p({xt̂i
i }, {y

t̂i
i },vt̂i , zt̂i , {λ

t̂i
l }, {θ

t̂i
i })

with Eq. (16), we can obtain that,

〈
yt+1
i −yt

i ,∇yi
Lp({xt̂i

i },{y
t̂i
i },v

t̂i ,zt̂i ,{λt̂il },{θ
t̂i
i })

〉
= − 1

ηy
||yt+1

i −yt
i ||2 ≤ − 1

ηty
||yt+1

i −yt
i ||2.

(72)

Then, combining the Cauchy-Schwarz inequality with Assumption 1, 2, we can get the following
inequalities,

〈
yt+1
i −yt

i ,∇yi
Lp({xt+1

i },{yt
i},vt,zt,{λtl},{θti})−∇yi

Lp({xt̂i
i },{y

t̂i
i },vt̂i ,zt̂i ,{λ

t̂i
l },{θ

t̂i
i })

〉
≤ 1

2 ||y
t+1
i −yt

i ||2+ L2

2 (||xt+1
i −xt

i||2+||vt−vt̂j ||2+||zt−zt̂j ||2+
|Pt|∑
l=1

||λtl−λ
t̂j
l ||2)

≤ 1
2 ||y

t+1
i −yt

i ||2+ L2

2 ||xt+1
i −xt

i||2+ 3L2τk1

2 (||vt+1−vt||2+||zt+1−zt||2+
|Pt|∑
l=1

||λt+1
l −λtl ||2).

(73)

Thus, combining Eq. (71), (72) with (73), we have,

Lp({xt+1
i },{yt+1

i },vt,zt,{λtl},{θti})− Lp({xt+1
i },{yt

i},vt,zt,{λtl},{θti})

≤
N∑
i=1

(L+1
2 − 1

ηt
y
)||yt+1

i −yt
i ||2 +

N∑
i=1

L2

2 ||xt+1
i −xt

i||2

+ 3NL2τk1

2 (||vt+1−vt||2+||zt+1−zt||2+
|Pt|∑
l=1

||λt+1
l −λtl ||2).

(74)

Combining the Lipschitz properties in Assumption 1 with Eq. (17), we have,

Lp({xt+1
i },{yt+1

i },vt+1,zt,{λtl},{θti})− Lp({xt+1
i },{yt+1

i },vt,zt,{λtl},{θti})

≤
〈
∇vLp({xt+1

i },{yt+1
i },vt,zt,{λtl},{θti}),vt+1−vt

〉
+ L

2 ||v
t+1−vt||2

≤ (L2 − 1
ηt
v
)||vt+1−vt||2.

(75)

Similarly, combining the Lipschitz properties in Assumption 1 with Eq. (18), we have,

Lp({xt+1
i },{yt+1

i },vt+1,zt+1,{λtl},{θti})−Lp({xt+1
i },{yt+1

i },vt+1,zt,{λtl},{θti})

≤
〈
∇zLp({xt+1

i },{yt+1
i },vt+1,zt,{λtl},{θti}), zt+1−zt

〉
+ L

2 ||z
t+1−zt||2

≤ (L2 − 1
ηt
z
)||zt+1−zt||2.

(76)

By combining Eq. (70), (74), (75), (76), we conclude the proof of Lemma 1.
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Lemma 2 Suppose Assumption 1 and 2 hold, ∀t ≥ T1, we have:

Lp({xt+1
i },{yt+1

i },vt+1,zt+1,{λt+1
l },{θt+1

i })− Lp({xt
i},{yt

i},vt,zt,{λtl},{θti})

≤ (L+L2+1
2 − 1

ηt
x
+ |Pt|L2

2a1
+ |Qt+1|L2

2a3
)
N∑
i=1

||xt+1
i −xt

i||2

+(L+1
2 − 1

ηt
y
+ |Pt|L2

2a1
+ |Qt+1|L2

2a3
)
N∑
i=1

||yt+1
i −yt

i ||2

+(L+6τk1NL2

2 − 1
ηt
v
+ |Pt|L2

2a1
+ |Qt+1|L2

2a3
)||vt+1−vt||2

+(L+6τk1NL2

2 − 1
ηt
z
+ |Pt|L2

2a1
+ |Qt+1|L2

2a3
)||zt+1−zt||2+ 1

2ηθ

N∑
i=1

||θti−θ
t−1
i ||2

+(a1+6τk1NL2

2 − ct−1
1 −ct1

2 + 1
2ηλ

)
|Pt|∑
l=1

||λt+1
l −λtl ||2+(a3

2 − ct−1
2 −ct2

2 + 1
2ηθ

)
N∑
i=1

||θt+1
i −θti ||2

+
ct−1
1

2

|Pt|∑
l=1

(||λt+1
l ||2−||λtl ||2)+ 1

2ηλ

|Pt|∑
l=1

||λtl−λ
t−1
l ||2+ ct−1

2

2

N∑
i=1

(||θt+1
i ||2−||θti ||2),

(77)

where a1 > 0 and a3 > 0 are constants.

Proof of Lemma 2:

According to Eq. (19), in (t+ 1)th iteration, ∀λ ∈ Λ, it follows that:〈
λt+1
l −λtl−ηλ∇λl

L̃p({xt+1
i },{yt+1

i },vt+1,zt+1,{λtl},{θti}), λ−λt+1
l

〉
= 0. (78)

Let λ = λtl , we can obtain:〈
∇λl

L̃p({xt+1
i },{yt+1

i },vt+1,zt+1,{λtl},{θti})−
1

ηλ
(λt+1

l −λtl), λtl−λt+1
l

〉
= 0. (79)

Likewise, in tth iteration, we can obtain:〈
∇λl

L̃p({xt
i},{yt

i},vt,zt,{λt−1
l },{θt−1

i })− 1

ηλ
(λtl−λt−1

l ), λt+1
l −λtl

〉
= 0. (80)

Since L̃p({xi},{yi},v,z,{λl},{θi}) is concave with respect to λl and follows from Eq. (79) and
Eq. (80), ∀t ≥ T1, we have,

L̃p({xt+1
i },{yt+1

i },vt+1,zt+1,{λt+1
l },{θti})− L̃p({xt+1

i },{yt+1
i },vt+1,zt+1,{λtl},{θti})

≤
|Pt|∑
l=1

〈
∇λl

L̃p({xt+1
i },{yt+1

i },vt+1,zt+1,{λtl},{θti}), λ
t+1
l − λtl

〉
≤

|Pt|∑
l=1

(
〈
∇λl

L̃p({xt+1
i },{yt+1

i },vt+1,zt+1,{λtl},{θti})−∇λl
L̃p({xt

i},{yt
i},vt,zt,{λ

t−1
l },{θt−1

i }), λt+1
l −λtl

〉
+ 1

ηλ

〈
λtl − λt−1

l , λt+1
l − λtl

〉
).

(81)

Denoting vt+1
1,l = λt+1

l − λtl − (λtl − λt−1
l ), we can get the following equality,

|Pt|∑
l=1

〈
∇λl

L̃p({xt+1
i },{yt+1

i },vt+1,zt+1,{λtl},{θti})−∇λl
L̃p({xt

i},{yt
i},vt,zt,{λ

t−1
l },{θt−1

i }), λt+1
l −λtl

〉
=

|Pt|∑
l=1

〈
∇λl

L̃p({xt+1
i },{yt+1

i },vt+1,zt+1,{λtl},{θti})−∇λl
L̃p({xt

i},{yt
i},vt,zt,{λtl},{θti})), λ

t+1
l −λtl

〉
(1a)

+
|Pt|∑
l=1

〈
∇λl

L̃p({xt
i},{yt

i},vt,zt,{λtl},{θti})−∇λl
L̃p({xt

i},{yt
i},vt,zt,{λ

t−1
l },{θt−1

i }),vt+1
1,l

〉
(1b)

+
|Pt|∑
l=1

〈
∇λl

L̃p({xt
i},{yt

i},vt,zt,{λtl},{θti})−∇λl
L̃p({xt

i},{yt
i},vt,zt,{λ

t−1
l },{θt−1

i }), λtl−λ
t−1
l

〉
(1c).

(82)
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First, we put attention on the (1a) in Eq. (82), (1a) can be expressed as follows,〈
∇λl

L̃p({xt+1
i },{yt+1

i },vt+1,zt+1,{λtl},{θti})−∇λl
L̃p({xt

i},{yt
i},vt,zt,{λtl},{θti}), λ

t+1
l −λtl

〉
=
〈
∇λl

Lp({xt+1
i },{yt+1

i },vt+1,zt+1,{λtl},{θti})−∇λl
Lp({xt

i},{yt
i},vt,zt,{λtl},{θti}), λ

t+1
l −λtl

〉
+

ct−1
1 −ct1

2 (||λt+1
l ||2−||λtl ||2)−

ct−1
1 −ct1

2 ||λt+1
l −λtl ||2.

(83)

Combining Cauchy-Schwarz inequality with Assumption 1, we can obtain,〈
∇λl

Lp({xt+1
i },{yt+1

i },vt+1,zt+1,{λtl},{θti})−∇λl
Lp({xt

i},{yt
i},vt,zt,{λtl},{θti}), λ

t+1
l − λtl

〉
≤ L2

2a1
(
N∑
i=1

(||xt+1
i −xt

i||2 + ||yt+1
i −yt

i ||2)+||vt+1−vt||2+||zt+1−zt||2)+ a1

2 ||λt+1
l − λtl ||2,

(84)
where a1 > 0 is a constant. Combining Eq. (83) with Eq. (84), we can obtain that,

|Pt|∑
l=1

〈
∇λl

L̃p({xt+1
i },{yt+1

i },vt+1,zt+1,{λtl},{θti})−∇λl
L̃p({xt

i},{yt
i},vt,zt,{λtl},{θti}), λ

t+1
l −λtl

〉
≤

|Pt|∑
l=1

( L2

2a1
(
N∑
i=1

(||xt+1
i −xt

i||2 + ||yt+1
i −yt

i ||2)+||vt+1−vt||2+||zt+1−zt||2)+ a1

2 ||λt+1
l − λtl ||2

+
ct−1
1 −ct1

2 (||λt+1
l ||2−||λtl ||2)−

ct−1
1 −ct1

2 ||λt+1
l −λtl ||2).

(85)

Then, we focus on the (1b) in Eq. (82). According to Cauchy-Schwarz inequality, (1b) can be
expressed as follows,

|Pt|∑
l=1

〈
∇λl

L̃p({xt
i},{yt

i},vt,zt,{λtl},{θti})−∇λl
L̃p({xt

i},{yt
i},vt,zt,{λ

t−1
l },{θt−1

i }),vt+1
1,l

〉
≤

|Pt|∑
l=1

(a2

2 ||∇λl
L̃p({xt

i},{yt
i},vt,zt,{λtl},{θti})−∇λl

L̃p({xt
i},{yt

i},vt,zt,{λ
t−1
l },{θt−1

i })||2

+ 1
2a2

||vt+1
1,l ||2),

(86)
where a2 > 0 is a constant. Next, we focus on the (1c) in Eq. (82). Defining L1

′ = L + c01,
according to Assumption 1 and the trigonometric inequality, ∀λl, we have,

||∇λl
L̃p({xt

i},{yt
i},vt,zt,{λtl},{θti})−∇λl

L̃p({xt
i},{yt

i},vt,zt,{λ
t−1
l },{θt−1

i })||

= ||∇λl
Lp({xt

i},{yt
i},vt,zt,{λtl},{θti})−∇λl

Lp({xt
i},{yt

i},vt,zt,{λ
t−1
l },{θti})−c

t−1
1 (λtl−λ

t−1
l )||

≤(L+ ct−1
1 )||λtl−λ

t−1
l ||

≤ L1
′||λtl−λ

t−1
l ||.

(87)

Following from Eq. (87) and the strong concavity of L̃p({xi},{yi},v,z,{λl},{θi}) w.r.t λl (Nes-
terov, 2003; Xu et al., 2020), we can obtain that,

|Pt|∑
l=1

〈
∇λl

L̃p({xt
i},{yt

i},vt,zt,{λtl},{θti})−∇λl
L̃p({xt

i},{yt
i},vt,zt,{λ

t−1
l },{θt−1

i })
〉

≤
|Pt|∑
l=1

(− 1
L1

′+ct−1
1

||∇λl
L̃p({xt

i},{yt
i},vt,zt,{λtl},{θti})−∇λl

L̃p({xt
i},{yt

i},vt,zt,{λ
t−1
l },{θt−1

i })||2

− ct−1
1 L1

′

L1
′+ct−1

1

||λtl−λ
t−1
l ||2).

(88)

In addition, the following inequality can be obtained,

1
ηλ

〈
λtl − λt−1

l , λt+1
l − λtl

〉
≤ 1

2ηλ
||λt+1

l − λtl ||2 − 1
2ηλ

||vt+1
1,l ||2 + 1

2ηλ
||λtl − λt−1

l ||2. (89)
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Combining Eq. (81), (82), (85), (86), (88), (89), ηλ

2 ≤ 1
L1

′+c01
, and setting a2 = ηλ, we have:

Lp({xt+1
i },{yt+1

i },vt+1,zt+1,{λt+1
l },{θti})− Lp({xt+1

i },{yt+1
i },vt+1,zt+1,{λtl},{θti})

≤ |Pt|L2

2a1
(
N∑
i=1

(||xt+1
i −xt

i||2 + ||yt+1
i −yt

i ||2)+||vt+1−vt||2+||zt+1−zt||2)

+(a1

2 − ct−1
1 −ct1

2 + 1
2ηλ

)
|Pt|∑
l=1

||λt+1
l −λtl ||2+

ct−1
1

2

|Pt|∑
l=1

(||λt+1
l ||2−||λtl ||2) + 1

2ηλ

|Pt|∑
l=1

||λtl−λ
t−1
l ||2.

(90)

According to Eq. (20), in (t+ 1)th iteration, ∀θ ∈ Θ, it follows that,〈
θt+1
i −θti − ηθ∇θi

L̃p({xt+1
i },{yt+1

i },vt+1,zt+1,{λt+1
l },{θti}),θ−θt+1

i

〉
= 0. (91)

Choosing θ = θti , we can obtain,〈
∇θi

L̃p({xt+1
i },{yt+1

i },vt+1,zt+1,{λt+1
l },{θti})−

1

ηθ
(θt+1

i −θti),θti−θt+1
i

〉
= 0. (92)

Likewise, in tth iteration, we have,〈
∇θi

L̃p({xt
i},{yt

i},vt,zt,{λtl},{θt−1
i })− 1

ηθ
(θti−θt−1

i ),θt+1
i −θti

〉
= 0. (93)

Since L̃p({xi},{yi},v,z,{λl},{θi}) is concave with respect to θi and follows from Eq. (93):

L̃p({xt+1
i },{yt+1

i },vt+1,zt+1,{λt+1
l },{θt+1

i })−L̃p({xt+1
i },{yt+1

i },vt+1,zt+1,{λt+1
l },{θti})

≤
N∑
i=1

〈
∇θi

L̃p({xt+1
i },{yt+1

i },vt+1,zt+1,{λt+1
l },{θti}),θ

t+1
i −θti

〉
≤

N∑
i=1

(
〈
∇θi

L̃p({xt+1
i },{yt+1

i },vt+1,zt+1,{λt+1
l },{θti})−∇θi

L̃p({xt
i},{yt

i},vt,zt,{λtl},{θ
t−1
i }),θt+1

i −θti
〉

+ 1
ηθ

〈
θti−θ

t−1
i ,θt+1

i −θti
〉
).

(94)

Denoting vt+1
2,l = θt+1

i − θti − (θti − θ
t−1
i ), we have that,

N∑
i=1

〈
∇θi

L̃p({xt+1
i },{yt+1

i },vt+1,zt+1,{λt+1
l },{θti})−∇θi

L̃p({xt
i},{yt

i},vt,zt,{λtl},{θ
t−1
i }),θt+1

i −θti
〉

=
N∑
i=1

〈
∇θi

L̃p({xt+1
i },{yt+1

i },vt+1,zt+1,{λt+1
l },{θti})−∇θi

L̃p({xt
i},{yt

i},vt,zt,{λtl},{θti}),θ
t+1
i −θti

〉
(2a)

+
N∑
i=1

〈
∇θi

L̃p({xt
i},{yt

i},vt,zt,{λtl},{θti})−∇θi
L̃p({xt

i},{yt
i},vt,zt,{λtl},{θ

t−1
i }),vt+1

2,l

〉
(2b)

+
N∑
i=1

〈
∇θi

L̃p({xt
i},{yt

i},vt,zt,{λtl},{θti})−∇θi
L̃p({xt

i},{yt
i},vt,zt,{λtl},{θ

t−1
i }),θti−θ

t−1
i

〉
(2c).

(95)

We firstly focus on the (2a) in Eq. (95), we can write the (2a) as,〈
∇θi

L̃p({xt+1
i },{yt+1

i },vt+1,zt+1,{λt+1
l },{θti})−∇θi

L̃p({xt
i},{yt

i},vt,zt,{λtl},{θti}),θ
t+1
i −θti

〉
=
〈
∇θiLp({xt+1

i },{yt+1
i },vt+1,zt+1,{λt+1

l },{θti})−∇θiLp({xt
i},{yt

i},vt,zt,{λtl},{θti}),θ
t+1
i −θti

〉
+

ct−1
2 −ct2

2 (||θt+1
i ||2−||θti ||2)−

ct−1
2 −ct2

2 ||θt+1
i −θti ||2).

(96)
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And combining the Cauchy-Schwarz inequality with Assumption 1, we can obtain,〈
∇θiLp({xt+1

i },{yt+1
i },vt+1,zt+1,{λt+1

l },{θti})−∇θiLp({xt
i},{yt

i},vt,zt,{λtl},{θti}),θ
t+1
i −θti

〉
=
〈
∇θi

Lp({xt+1
i },{yt+1

i },vt+1,zt+1,{λtl},{θti})−∇θi
Lp({xt

i},{yt
i},vt,zt,{λtl},{θti}),θ

t+1
i −θti

〉
≤ L2

2a3
(
N∑
i=1

(||xt+1
i −xt

i||2 + ||yt+1
i −yt

i ||2)+||vt+1−vt||2+||zt+1−zt||2) + a3

2 ||θt+1
i −θti ||2,

(97)

where a3 > 0 is a constant. Thus, we can get the upper bound of (2a) by combining Eq. (96) with
Eq. (97), that is,

N∑
i=1

〈
∇θi

L̃p({xt+1
i },{yt+1

i },vt+1,zt+1,{λt+1
l },{θti})−∇θi

L̃p({xt
i},{yt

i},vt,zt,{λtl},{θti}),θ
t+1
i −θti

〉
≤

∑
i∈Qt+1

( L2

2a3
(
N∑
i=1

(||xt+1
i −xt

i||2 + ||yt+1
i −yt

i ||2)+||vt+1−vt||2+||zt+1−zt||2)+ a3

2 ||θt+1
i −θti ||2

+
ct−1
2 −ct2

2 (||θt+1
i ||2−||θti ||2)−

ct−1
2 −ct2

2 ||θt+1
i −θti ||2).

(98)

Next we focus on the (2b) in Eq. (95). According to Cauchy-Schwarz inequality we can write (2b)
as,

N∑
i=1

〈
∇θiL̃p({xt

i},{yt
i},vt,zt,{λtl},{θti})−∇θiL̃p({xt

i},{yt
i},vt,zt,{λtl},{θ

t−1
i }),vt+1

2,l

〉
≤

N∑
i=1

(a4

2 ||∇θi
L̃p({xt

i},{yt
i},vt,zt,{λtl},{θti})−∇θi

L̃p({xt
i},{yt

i},vt,zt,{λtl},{θ
t−1
i })||2

+ 1
2a4

||vt+1
2,l ||2),

(99)

where a4 > 0 is a constant. Then, we focus on the (2c) in Eq. (95). Defining L2
′ = L + c02,

according to Assumption 1 and the trigonometric inequality, we have,

||∇θiL̃p({xt
i},{yt

i},vt,zt,{λtl},{θti})−∇θiL̃p({xt
i},{yt

i},vt,zt,{λtl},{θ
t−1
i })||

≤ L2
′||θti−θ

t−1
i ||.

(100)

Following Eq. (100) and the strong concavity of L̃p({xi},{yi},v,z,{λl},{θi}) w.r.t θi, the upper
bound of (2c) can be obtained, that is,

N∑
i=1

〈
∇θi

L̃p({xt
i},{yt

i},vt,zt,{λtl},{θti})−∇θi
L̃p({xt

i},{yt
i},vt,zt,{λtl},{θ

t−1
i }),θti−θ

t−1
i

〉
≤

N∑
i=1

(− 1
L2

′+ct−1
2

||∇θi
L̃p({xt

i},{yt
i},vt,zt,{λtl},{θti})−∇θi

L̃p({xt
i},{yt

i},vt,zt,{λtl},{θ
t−1
i })||2

− ct−1
2 L2

′

L2
′+ct−1

2

||θti−θ
t−1
i ||2).

(101)

In addition, the following inequality can also be obtained,
N∑
i=1

1
ηθ

〈
θti−θ

t−1
i ,θt+1

i −θti
〉
≤

N∑
i=1

( 1
2ηθ

||θt+1
i −θti ||2 − 1

2ηθ
||vt+1

2,l ||2 + 1
2ηθ

||θti − θ
t−1
i ||2).

(102)

Combining Eq. (94), (95), (98), (99), (101), (102), ηθ

2 ≤ 1
L2

′+c02
, and setting a4 = ηθ, we have,

Lp({xt+1
i },{yt+1

i },vt+1,zt+1,{λt+1
l },{θt+1

i })−Lp({xt+1
i },{yt+1

i },vt+1,zt+1,{λt+1
l },{θti})

≤ |Qt+1|L2

2a3
(
N∑
i=1

(||xt+1
i −xt

i||2 + ||yt+1
i −yt

i ||2)+||vt+1−vt||2+||zt+1−zt||2)

+(a3

2 − ct−1
2 −ct2

2 + 1
2ηθ

)
N∑
i=1

||θt+1
i −θti ||2+

ct−1
2

2

N∑
i=1

(||θt+1
i ||2−||θti ||2)+ 1

2ηθ

N∑
i=1

||θti−θ
t−1
i ||2.

(103)
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By combining Lemma 1 with Eq. (90) and Eq. (103), we conclude the proof of Lemma 2.

Lemma 3 Firstly, we denote St+1
1 , St+1

2 and F t+1 as,

St+1
1 =

4

ηλ2c
t+1
1

|Pt|∑
l=1

||λt+1
l −λtl ||2−

4

ηλ
(
ct−1
1

ct1
−1)

|Pt|∑
l=1

||λt+1
l ||2, (104)

St+1
2 =

4

ηθ2c
t+1
2

N∑
i=1

||θt+1
i −θti ||2−

4

ηθ
(
ct−1
2

ct2
−1)

N∑
i=1

||θt+1
i ||2, (105)

F t+1 = Lp({xt+1
i }, {yt+1

i }, zt+1, ht+1, {λt+1
l }, {θt+1

i }) + St+1
1 + St+1

2

− 7
2ηλ

|Pt|∑
l=1

||λt+1
l −λtl ||2−

ct1
2

|Pt|∑
l=1

||λt+1
l ||2− 7

2ηθ

N∑
i=1

||θt+1
i −θti ||2−

ct2
2

N∑
i=1

||θt+1
i ||2.

(106)
Defining a5 = max{1, 1 + L2, 6τk1NL

2}, ∀t ≥ T1, we have,

F t+1−F t

≤(L+a5

2 − 1
ηt
x
+ ηλ|Pt|L2

2 + ηθ|Qt+1|L2

2 + 8|Pt|L2

ηλ(ct1)
2 +

8NL2

ηθ(ct2)
2 )

N∑
i=1

||xt+1
i −xt

i||2

+(L+a5

2 − 1
ηt
y
+ ηλ|Pt|L2

2 + ηθ|Qt+1|L2

2 + 8|Pt|L2

ηλ(ct1)
2 +

8NL2

ηθ(ct2)
2 )

N∑
i=1

||yt+1
i −yt

i ||2

+(L+a5

2 − 1
ηt
v
+ ηλ|Pt|L2

2 + ηθ|Qt+1|L2

2 + 8|Pt|L2

ηλ(ct1)
2 +

8NL2

ηθ(ct2)
2 )||vt+1−vt||2

+(L+a5

2 − 1
ηt
z
+ ηλ|Pt|L2

2 + ηθ|Qt+1|L2

2 + 8|Pt|L2

ηλ(ct1)
2 +

8NL2

ηθ(ct2)
2 )||zt+1−zt||2

−( 1
10ηλ

− 6τk1NL2

2 )
|Pt|∑
l=1

||λt+1
l −λtl ||2− 1

10ηθ

N∑
i=1

||θt+1
i −θti ||2+

ct−1
1 −ct1

2

|Pt|∑
l=1

||λt+1
l ||2

+
ct−1
2 −ct2

2

N∑
i=1

||θt+1
i ||2+ 4

ηλ
(
ct−2
1

ct−1
1

− ct−1
1

ct1
)
|Pt|∑
l=1

||λtl ||2+ 4
ηθ
(
ct−2
2

ct−1
2

− ct−1
2

ct2
)

N∑
i=1

||θti ||2.

(107)

Proof of Lemma 3:

Let a1 = 1
ηλ

, a3 = 1
ηθ

and substitute them into the Lemma 2, ∀t ≥ T1, we have,

Lp({xt+1
i },{yt+1

i },vt+1, zt+1,{λt+1
l },{θt+1

i })−Lp({xt
i},{yt

i},vt, zt,{λtl},{θti})

≤ (L+L2+1
2 − 1

ηt
x
+ ηλ|Pt|L2+ηθ|Qt+1|L2

2 )
N∑
i=1

||xt+1
i −xt

i||2

+(L+1
2 − 1

ηt
y
+ ηλ|Pt|L2+ηθ|Qt+1|L2

2 )
N∑
i=1

||yt+1
i −yt

i ||2

+(L+6τk1NL2

2 − 1
ηt
v
+ ηλ|Pt|L2+ηθ|Qt+1|L2

2 )||vt+1−vt||2+ 1
2ηλ

|Pt|∑
l=1

||λtl−λ
t−1
l ||2

+(L+6τk1NL2

2 − 1
ηt
z
+ ηλ|Pt|L2+ηθ|Qt+1|L2

2 )||zt+1−zt||2+ 1
2ηθ

N∑
i=1

||θti−θ
t−1
i ||2

+( 6τk1NL2

2 − ct−1
1 −ct1

2 + 1
ηλ

)
|Pt|∑
l=1

||λt+1
l −λtl ||2+( 1

ηθ
− ct−1

2 −ct2
2 )

N∑
i=1

||θt+1
i −θti ||2

+
ct−1
1

2

|Pt|∑
l=1

(||λt+1
l ||2−||λtl ||2)+

ct−1
2

2

N∑
i=1

(||θt+1
i ||2−||θti ||2).

(108)

According to Eq. (19), in (t+ 1)th iteration, it follows that:〈
λt+1
l −λtl−ηλ∇λl

L̃p({xt+1
i },{yt+1

i },vt+1,zt+1,{λtl},{θti}), λtl−λt+1
l

〉
= 0. (109)

Similar to Eq. (109), in tth iteration, we have,〈
λtl−λt−1

l −ηλ∇λl
L̃p({xt

i},{yt
i},vt,zt,{λt−1

l },{θt−1
i }), λt+1

l −λtl
〉
= 0. (110)
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Thus, ∀t ≥ T1, by combining Eq. (109) with Eq. (110), we can obtain that,

1
ηλ

〈
vt+1
1,l , λ

t+1
l −λtl

〉
=
〈
∇λl

L̃p({xt+1
i },{yt+1

i },vt+1,zt+1,{λtl},{θti})−∇λl
L̃p({xt

i},{yt
i},vt,zt,{λ

t−1
l },{θt−1

i }), λt+1
l −λtl

〉
=
〈
∇λl

L̃p({xt+1
i },{yt+1

i },vt+1,zt+1,{λtl},{θti})−∇λl
L̃p({xt

i},{yt
i},vt,zt,{λtl},{θti}), λ

t+1
l −λtl

〉
+
〈
∇λl

L̃p({xt
i},{yt

i},vt,zt,{λtl},{θti})−∇λl
L̃p({xt

i},{yt
i},vt,zt,{λ

t−1
l },{θt−1

i }),vt+1
1,l

〉
+
〈
∇λl

L̃p({xt
i},{yt

i},vt,zt,{λtl},{θti})−∇λl
L̃p({xt

i},{yt
i},vt,zt,{λ

t−1
l }, {θt−1

i }), λtl−λ
t−1
l

〉
.

(111)

Since we have that,

1
ηλ

〈
vt+1
1,l , λ

t+1
l −λtl

〉
= 1

2ηλ
||λt+1

l −λtl ||2+ 1
2ηλ

||vt+1
1,l ||2 − 1

2ηλ
||λtl − λt−1

l ||2, (112)

it follows from Eq. (111) and Eq. (112) that,

1
2ηλ

||λt+1
l −λtl ||2+ 1

2ηλ
||vt+1

1,l ||2− 1
2ηλ

||λtl−λ
t−1
l ||2

= L2

2bt1
(
N∑
i=1

(||xt+1
i −xt

i||2 + ||yt+1
i −yt

i ||2)+||vt+1−vt||2+||zt+1−zt||2)+ bt1
2 ||λ

t+1
l −λtl ||2

+
ct−1
1 −ct1

2 (||λt+1
l ||2−||λtl ||2)−

ct−1
1 −ct1

2 ||λt+1
l −λtl ||2

+ηλ

2 ||∇λl
L̃p({xt

i},{yt
i},vt,zt,{λtl},{θti})−∇λl

L̃p({xt
i},{yt

i},vt,zt,{λ
t−1
l },{θt−1

i })||2+ 1
2ηλ

||vt+1
1,l ||2

− 1
L1

′+ct−1
1

||∇λl
L̃p({xt

i},{yt
i},vt,zt,{λtl},{θti})−∇λl

L̃p({xt
i},{yt

i},vt,zt,{λ
t−1
l },{θt−1

i })||2

− ct−1
1 L1

′

L1
′+ct−1

1

||λtl−λ
t−1
l ||2,

(113)

where bt1 > 0. According to the setting that c01 ≤ L1
′, we have − ct−1

1 L1
′

L1
′+ct−1

1

≤ − ct−1
1 L1

′

2L1
′ = − ct−1

1

2 ≤

− ct1
2 . Multiplying both sides of Eq. (113) by 8

ηλct1
, we have,

4
ηλ

2ct1
||λt+1

l − λtl ||2 − 4
ηλ

(
ct−1
1 −ct1

ct1
)||λt+1

l ||2

≤ 4
ηλ

2ct1
||λtl − λt−1

l ||2 − 4
ηλ

(
ct−1
1 −ct1

ct1
)||λtl ||2 +

4bt1
ηλct1

||λt+1
l − λtl ||2 − 4

ηλ
||λtl − λt−1

l ||2

+ 4L2

ηλct1b
t
1
(
N∑
i=1

(||xt+1
i −xt

i||2 + ||yt+1
i −yt

i ||2)+||vt+1−vt||2+||zt+1−zt||2).

(114)

Setting bt1 =
ct1
2 in Eq. (114) and using the definition of St

1, ∀t ≥ T1, we have,

St+1
1 −St

1

≤
|Pt|∑
l=1

4
ηλ

(
ct−2
1

ct−1
1

− ct−1
1

ct1
)||λtl ||2+

|Pt|∑
l=1

( 2
ηλ

+ 4
ηλ

2 (
1

ct+1
1

− 1
ct1
))||λt+1

l −λtl ||2

−
|Pt|∑
l=1

4
ηλ

||λtl−λ
t−1
l ||2+ 8|Pt|L2

ηλ(ct1)
2 (

N∑
i=1

(||xt+1
i −xt

i||2 + ||yt+1
i −yt

i ||2)+||vt+1−vt||2+||zt+1−zt||2).

(115)
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Similarly, according to Eq. (20), it follows that,

1
ηθ

〈
vt+1
2,l ,θ

t+1
i −θti

〉
=
〈
∇θiL̃p({xt+1

i },{yt+1
i },vt+1,zt+1,{λt+1

l },{θti})−∇θiL̃p({xt
i},{yt

i},vt,zt,{λtl},{θ
t−1
i }),θt+1

i −θti
〉

=
〈
∇θiL̃p({xt+1

i },{yt+1
i },vt+1,zt+1,{λt+1

l },{θti})−∇θiL̃p({xt
i},{yt

i},vt,zt,{λtl},{θti}),θ
t+1
i −θti

〉
+
〈
∇θi

L̃p({xt
i},{yt

i},vt,zt,{λtl},{θti})−∇θi
L̃p({xt

i},{yt
i},vt,zt,{λtl},{θ

t−1
i }),vt+1

2,l

〉
+
〈
∇θi

L̃p({xt
i},{yt

i},vt,zt,{λtl},{θti})−∇θi
L̃p({xt

i},{yt
i},vt,zt,{λtl},{θ

t−1
i }),θti−θ

t−1
i

〉
.

(116)

In addition, since

1
ηθ

〈
vt+1
2,l ,θ

t+1
i − θti

〉
= 1

2ηθ
||θt+1

i − θti ||2+ 1
2ηθ

||vt+1
2,l ||2 − 1

2ηθ
||θti − θ

t−1
i ||2, (117)

it follows that,

1
2ηθ

||θt+1
i −θti ||2+ 1

2ηθ
||vt+1

2,l ||2− 1
2ηθ

||θti−θ
t−1
i ||2

= L2

2bt2
(
N∑
i=1

(||xt+1
i −xt

i||2 + ||yt+1
i −yt

i ||2)+||vt+1−vt||2+||zt+1−zt||2)+ bt2
2 ||θ

t+1
i −θti ||2

+
ct−1
2 −ct2

2 (||θt+1
i ||2−||θti ||2)−

ct−1
2 −ct2

2 ||θt+1
i −θti ||2 −

ct−1
2 L′

2

L′
2+ct−1

2

||θti−θ
t−1
i ||2+ 1

2ηθ
||vt+1

2,l ||2

+ηθ

2 ||∇θiL̃p({xt
i},{yt

i},vt,zt,{λtl},{θti})−∇θiL̃p({xt
i},{yt

i},vt,zt,{λtl},{θ
t−1
i })||2

− 1
L′

2+ct−1
2

||∇θi
L̃p({xt

i},{yt
i},vt,zt,{λtl},{θti})−∇θi

L̃p({xt
i},{yt

i},vt,zt,{λtl},{θ
t−1
i })||2.

(118)

According to the setting c02 ≤ L2
′, we have − ct−1

2 L2
′

L2
′+ct−1

2

≤ − ct−1
2 L2

′

2L2
′ = − ct−1

2

2 ≤ − ct2
2 . Multiplying

both sides of Eq. (118) by 8
ηθct2

, we have,

4
ηθ

2ct2
||θt+1

i −θti ||2− 4
ηθ
(
ct−1
2 −ct2

ct2
)||θt+1

i ||2

≤ 4
ηθ

2ct2
||θti−θ

t−1
i ||2− 4

ηθ
(
ct−1
2 −ct2

ct2
)||θti ||2+

4bt2
ηθct2

||θt+1
i −θti ||2− 4

ηθ
||θti−θ

t−1
i ||2

+ 4L2

ηθct2b
t
2
(
N∑
i=1

(||xt+1
i −xt

i||2 + ||yt+1
i −yt

i ||2)+||vt+1−vt||2+||zt+1−zt||2).

(119)

Setting bt2 =
ct2
2 in Eq. (119) and utilizing the definition of St

2, we have that,

St+1
2 −St

2

≤
N∑
i=1

4
ηθ
(
ct−2
2

ct−1
2

− ct−1
2

ct2
)||θti ||2+

N∑
i=1

( 2
ηθ

+ 4
ηθ

2 (
1

ct+1
2

− 1
ct2
))||θt+1

i −θti ||2

−
N∑
i=1

4
ηθ
||θti−θ

t−1
i ||2+ 8NL2

ηθ(ct2)
2 (

N∑
i=1

(||xt+1
i −xt

i||2 + ||yt+1
i −yt

i ||2)+||vt+1−vt||2+||zt+1−zt||2).

(120)

Based on the setting of ct1 and ct2, we can obtain that ηλ

10 ≥ 1
ct+1
1

− 1
ct1
, ηθ

10 ≥ 1
ct+1
2

− 1
ct2
,∀t ≥ T1.

Defining a5 = max{1, 1 + L2, 6τk1NL
2}. Combining the definition of F t+1 with Eq. (115) and
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Eq. (120), ∀t ≥ T1, we can obtain that,

F t+1−F t

≤(L+a5

2 − 1
ηt
x
+ ηλ|Pt|L2

2 + ηθ|Qt+1|L2

2 + 8|Pt|L2

ηλ(ct1)
2 +

8NL2

ηθ(ct2)
2 )

N∑
i=1

||xt+1
i −xt

i||2

+(L+a5

2 − 1
ηt
y
+ ηλ|Pt|L2

2 + ηθ|Qt+1|L2

2 + 8|Pt|L2

ηλ(ct1)
2 +

8NL2

ηθ(ct2)
2 )

N∑
i=1

||yt+1
i −yt

i ||2

+(L+a5

2 − 1
ηt
v
+ ηλ|Pt|L2

2 + ηθ|Qt+1|L2

2 + 8|Pt|L2

ηλ(ct1)
2 +

8NL2

ηθ(ct2)
2 )||vt+1−vt||2

+(L+a5

2 − 1
ηt
z
+ ηλ|Pt|L2

2 + ηθ|Qt+1|L2

2 + 8|Pt|L2

ηλ(ct1)
2 +

8NL2

ηθ(ct2)
2 )||zt+1−zt||2

−( 1
10ηλ

− 6τk1NL2

2 )
|Pt|∑
l=1

||λt+1
l −λtl ||2− 1

10ηθ

N∑
i=1

||θt+1
i −θti ||2+

ct−1
1 −ct1

2

|Pt|∑
l=1

||λt+1
l ||2

+
ct−1
2 −ct2

2

N∑
i=1

||θt+1
i ||2+ 4

ηλ
(
ct−2
1

ct−1
1

− ct−1
1

ct1
)
|Pt|∑
l=1

||λtl ||2+ 4
ηθ
(
ct−2
2

ct−1
2

− ct−1
2

ct2
)

N∑
i=1

||θti ||2.

(121)

which concludes the proof of Lemma 3.

Proof of Theorem 1:

First, we set that,

at6 =
4|Pt|(γ − 2)L2

ηλ(ct1)
2

+
4N(γ − 2)L2

ηθ(ct2)
2

+
ηθ(N − |Qt+1|)L2

2
− a5

2
, (122)

where constant γ satisfies that γ > 2 and 4(γ−2)L2

ηλ(c01)
2 + 4N(γ−2)L2

ηθ(c02)
2 > a5

2 , thus we have that at6 > 0,∀t.
According to the setting of ηtx, ηty , ηtv , ηtz and ct1, ct2, we have,

L+a5
2

− 1

ηtx
+
ηλ|Pt|L2

2
+
ηθ|Qt+1|L2

2
+
8|Pt|L2

ηλ(ct1)
2
+

8NL2

ηθ(ct2)
2
= −at6, (123)

L+a5
2

− 1

ηty
+
ηλ|Pt|L2

2
+
ηθ|Qt+1|L2

2
+
8|Pt|L2

ηλ(ct1)
2
+

8NL2

ηθ(ct2)
2
= −at6, (124)

L+a5
2

− 1

ηtv
+
ηλ|Pt|L2

2
+
ηθ|Qt+1|L2

2
+
8|Pt|L2

ηλ(ct1)
2
+

8NL2

ηθ(ct2)
2
= −at6, (125)

L+a5
2

− 1

ηtz
+
ηλ|Pt|L2

2
+
ηθ|Qt+1|L2

2
+
8|Pt|L2

ηλ(ct1)
2
+

8NL2

ηθ(ct2)
2
= −at6. (126)

Combining Eq. (123), (124), (125), (126) with Lemma 3, ∀t ≥ T1, we can obtain that,

at6
N∑
i=1

(||xt+1
i − xt

i||2 + ||yt+1
i − yt

i ||2)+at6||vt+1 − vt||2+at6||zt+1 − zt||2

+( 1
10ηλ

− 6τk1NL2

2 )
|Pt|∑
l=1

||λt+1
l − λtl ||2+ 1

10ηθ

N∑
i=1

||θt+1
i − θti ||2

≤ F t − F t+1+
ct−1
1 −ct1

2

|Pt|∑
l=1

||λt+1
l ||2+ ct−1

2 −ct2
2

N∑
i=1

||θt+1
i ||2

+ 4
ηλ

(
ct−2
1

ct−1
1

− ct−1
1

ct1
)
|Pt|∑
l=1

||λtl ||2+ 4
ηθ
(
ct−2
2

ct−1
2

− ct−1
2

ct2
)

N∑
i=1

||θti ||2.

(127)

Utilizing the definition of (∇G̃t)xi
and combining it with trigonometric inequality, Cauchy-Schwarz

inequality and Assumption 1 and 2, we can obtain that,

||(∇G̃t)xi ||2 ≤ 2
ηx

2 ||xti
i −xt

i||2+6L2τk1(||vt+1−vt||2+||zt+1−zt||2+
|Pt|∑
l=1

||λt+1
l −λtl ||2).

(128)
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Utilizing the definition of (∇G̃t)yi
and combining it with trigonometric inequality and Cauchy-

Schwarz inequality, it follows that,

||(∇G̃t)yi ||2

≤ 2
ηy

2 ||yti
i −yt

i ||2+6L2τk1(||vt+1−vt||2+||zt+1−zt||2+
|Pt|∑
l=1

||λt+1
l −λtl ||2).

(129)

Utilizing the definition of (∇G̃t)v and combining it with trigonometric inequality and Cauchy-
Schwarz inequality, we have that,

||(∇G̃t)v||2≤2L2
N∑
i=1

(||xt+1
i − xt

i||2+||yt+1
i − yt

i ||2)+ 2
ηv

2 ||vt+1 − vt||2. (130)

Using the definition of (∇G̃t)z and combining it with trigonometric inequality and Cauchy-Schwarz
inequality, it follows that,

||(∇G̃t)z||2≤2L2

(
N∑
i=1

(||xt+1
i − xt

i||2+||yt+1
i − yt

i ||2)+||vt+1 − vt||2
)
+ 2

ηz
2 ||zt+1 − zt||2.

(131)

Using the definition of (∇G̃t)λl
and combining it with trigonometric inequality and Cauchy-

Schwarz inequality, we can obtain the following inequality,

||(∇G̃t)λl
||2≤ 3

ηλ
2 ||λt+1

l −λtl ||2 + 3((ct−1
1 )2 − (ct1)

2)||λtl ||2

+3L2

(
N∑
i=1

(||xt+1
i − xt

i||2+||yt+1
i − yt

i ||2)+||vt+1 − vt||2+||zt+1 − zt||2
)
.

(132)

Combining the definition of (∇G̃t)θi
with Cauchy-Schwarz inequality and Assumption 2, we have,

||(∇G̃t)θi
||2

≤ 3
ηθ

2 ||θtii −θti ||2+3L2

(
N∑
i=1

(||xti
i −xt

i||2+||yti
i −yt

i ||2)+||vti−vt||2
)
+3(ct̂i−12 −cti−12 )2||θti ||2

≤ 3
ηθ

2 ||θtii −θti ||2+3L2
N∑
i=1

(||xti
i −xt

i||2+||yti
i −yt

i ||2)

+3L2τk1(||vt+1−vt||2+||zt+1−zt||2+
|Pt|∑
l=1

||λt+1
l −λtl ||2) + 3((ct̂i−12 )2−(cti−12 )2)||θti ||2.

(133)

In sight of the Definition B.2 as well as Eq. (128), (129), (130), (131), (132) and Eq. (133), we can
obtain that,

||∇G̃t||2

=
N∑
i=1

(||(∇G̃t)xi
||2+||(∇G̃t)yi

||2+||(∇G̃t)θi
||2)+||(∇G̃t)v||2+||(∇G̃t)z||2+

|Pt|∑
l=1

||(∇G̃t)λl
||2

≤ ( 2
ηx

2 +3NL2)
N∑
i=1

||xti
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i||2+( 2
ηy

2 +3NL2)
N∑
i=1

||yti
i − yt

i ||2

+(4+3|Pt|L2)
N∑
i=1

||xt+1
i − xt

i||2 + (4+3|Pt|L2)
N∑
i=1

||yt+1
i − yt

i ||2

+( 2
ηv

2 +(2+15τk1N+3|Pt|)L2)||vt+1−vt||2+( 2
ηz

2 +(15τk1N+3|Pt|)L2)||zt+1−zt||2

+
|Pt|∑
l=1

( 3
ηλ

2 +15τk1NL
2)||λt+1

l − λtl ||2+
|Pt|∑
l=1

3((ct−1
1 )2 − (ct1)

2)||λtl ||2

+
N∑
i=1

3
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(134)
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Let constant a6 denote the lower bound of at6 (a6 > 0), and we set constants d1, d2, d3, d4 that,

d1 =
2kττ+(4+3M+3kττN)L2ηx

2

ηx2(a6)2
≥ 2kττ+(4+3|Pt|+3kττN)L2ηx

2

ηx2(at6)
2

, (135)

d2 =
2kττ+(4+3M+3kττN)L2ηy

2

ηy2(a6)2
≥ 2kττ+(4+3|Pt|+3kττN)L2ηy

2

ηy2(at6)
2

, (136)

d3 =
2+(2+15τk1N+3M)L2ηv

2

ηv2(a6)2
≥ 2+(2+15τk1N+3|Pt|)L2ηv

2

ηv2(at6)
2

, (137)

d4 =
2+(15τk1N+3M)L2ηz

2

ηz2(a6)2
≥ 2+(15τk1N+3|Pt|)L2ηz

2

ηz2(at6)
2

, (138)

where kτ is a positive constant. Thus, combining Eq. (134) with Eq. (135), Eq. (136), (137), (138),
we can obtain,

||∇G̃t||2≤
N∑
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d1(a
t
6)

2||xt+1
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N∑
i=1

d2(a
t
6)

2||yt+1
i − yt

i ||2

+d3(a
t
6)

2||vt+1 − vt||2+d4(at6)2||zt+1 − zt||2+
N∑
i=1

3
ηθ

2 ||θiti − θti ||2

+
|Pt|∑
l=1

( 3
ηλ

2 +15τk1NL
2)||λt+1

l −λtl ||2+
|Pt|∑
l=1

3((ct−1
1 )2−(ct1)

2)||λtl ||2

+
N∑
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(139)

Let dt5 denote a nonnegative sequence, i.e., dt5 = 1

max{d1at
6,d2at

6,d3at
6,d4at

6,
30
ηλ

+150ηλτk1NL2

1−30ηλτk1NL2 , 30τηθ
}

. We

denote the upper and lower bound of dt5 as d5 and d5, respectively. And we set the constant kτ

satisfies kτ ≥ max{
d5(

2
ηy2 +3NL2)

d5(
2

ηy2 +3NL2)
,
d5(

2
ηx2 +3NL2)

d5(
2

ηx2 +3NL2)
}, where ηx and ηy are the upper bounds of ηtx

and ηty , respectively. We can obtain the following inequality by combining Eq. (139) with the
definition of dt5:
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(140)
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Combining the definition of dt5 with Eq. (127) and according to the setting ||λtl ||2 ≤ α3, ||θti ||2 ≤ α4

and d5 ≥ dt5 ≥ d5,∀t ≥ T1, thus, we have,

dt5||∇G̃t||2
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(141)

Denoting T̃ (ϵ) as T̃ (ϵ) = min{t | ||∇G̃T1+t||2 ≤ ϵ
4 , t ≥ 2}. Summing up Eq. (141) from t = T1+2

to t = T1 + T̃ (ϵ), we have,
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(142)
where σ3=max{||λ1−λ2||}, σ4 = max{||θ1−θ2||} andL

−
=minLp({xt

i},{yt
i},vt,zt,{λtl},{θti}),

which satisfy that, ∀t ≥ T1 + 2,
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For each worker i, we have that ti − t̂i ≤ τ , thus,

T1+T̃ (ϵ)∑
t=T1+2

3d5((c
t̂i−1
2 )2 − (cti−1

2 )2)α4
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2 )2 − (c

v̂i(j+1)−1
2 )2)α4

≤ 3τd5(c
1
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(144)

Since the idle workers do not update their variables in each master iteration, for any t that satisfies
v̂i(j − 1) ≤ t < v̂i(j), we have θti = θ

v̂i(j)−1
i . And for t /∈ Vi(T ), we have ||θti − θ

t−1
i ||2 = 0.
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Combining with v̂i(j)− v̂i(j − 1) ≤ τ , we can obtain that,
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Similarly, for any t that satisfies v̂i(j−1) ≤ t < v̂i(j), we have xt
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i , yt
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i . And
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It follows from Eq. (142), (144), (145), (146) that,
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(148)

where
−
d and kd are constants. Constant d6 is given by,

d6 = max{d1, d2, d3, d4,
30
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Thus, we can obtain that,
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And it follows from Eq. (150) that,
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According to the setting of ct1, ct2, we have,
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Summing up 1
at
6

from t = T1 + 2 to t = T1 + T̃ (ϵ), it follows that,
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The second inequality in Eq. (153) is due to that ∀t ≥ T1 + 2, we have,
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The last inequality in Eq. (153) follows from the fact that
T1+T̃ (ϵ)∑
t=T1+2

1
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1
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1
2 .

Thus, plugging Eq. (153) into Eq. (151), we can obtain:
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Let constant d7 = 4(γ − 2)L2(Mηλ +Nηθ), and according to the definition of T̃ (ϵ), we have:

T1 + T̃ (ϵ) ≥ (
4(d7 +

ηθ(N−S)L2

2 )(
−
d+kdτ(τ − 1))d6

ϵ
+ (T1 + 2)

1
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Combining the definition of ∇Gt and ∇G̃t with trigonometric inequality, we then get:

||∇Gt|| − ||∇G̃t|| ≤ ||∇Gt −∇G̃t|| ≤

√√√√|Pt|∑
l=1

||ct−1
1 λtl ||2 +

N∑
i=1

||ct−1
2 θti ||2. (157)
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Table 2: Step-sizes of all variables in the experiments.

Datasets ηx ηy ηv ηz ηλ ηθ

MNIST 0.001 0.02 0.001 0.02 0.1 0.001
Fashion MNIST 0.001 0.02 0.001 0.02 0.1 0.001
CIFAR-10 0.001 0.02 0.001 0.02 0.1 0.001
Covertype 0.01 0.02 0.01 0.02 0.1 0.01
IJCNN1 0.01 0.005 0.01 0.005 0.1 0.01
Australian 0.001 0.02 0.001 0.02 5 0.001
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2 )2 1

ϵ2 , then we have
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with Eq. (156), we can conclude that there exists a
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ϵ
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1
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(158)

such that ||∇Gt||2 ≤ ϵ, which concludes our proof.

C PROOF OF THEOREM 1

Assuming that there are cutting planes added every k iteration, i.e.,

P0 ⊇ Pk ⊇ · · · ⊇ Pnk. (159)

Let Rk denote the feasible region of problem in Eq. (12) in kth iteration, and let R′ denote the
feasible region of problem in Eq. (10), we have that,

R0 ⊇ Rk ⊇ · · · ⊇ Rnk ⊇ R′. (160)

Let F ({xk∗
i }, {yk∗

i },vk∗, zk∗) denote the optimal objective value of the problem in Eq. (12) in kth
iteration and let F ∗ denote the optimal objective value of the problem in Eq. (10). According to Eq.
(160), we have that,

F ({x0∗
i },{y0∗

i },v0∗,z0∗)≤F ({xk∗
i },{yk∗

i },vk∗,zk∗)≤· · ·≤F ({xnk∗
i },{ynk∗

i },vnk∗,znk∗).
(161)

And we can obtain that,

F ∗

F ({x0∗
i },{y0∗

i },v0∗,z0∗)
≥ F ∗

F ({xk∗
i },{yk∗

i },vk∗,zk∗)
≥· · ·≥ F ∗

F ({xnk∗
i },{ynk∗

i },vnk∗,znk∗)
≥β.

(162)

It is seen from Eq. (162) that the sequence { F∗

F ({xk∗
i },{yk∗

i },vk∗,zk∗)
} is monotonically non-

increasing. When nk → ∞, the optimal objective value of the problem in Eq. (12) monotonically
converges to β (β ≥ 1).
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D DETAILS OF EXPERIMENTS

D.1 ADDITIONAL RESULTS

In this section, additional experiment results on CIFAR-10 (Krizhevsky et al., 2009) and Australian
(Quinlan, 1987) datasets are reported in Figure 11 and Figure 12. It is seen from Figure 11 and
Figure 12 that the proposed ADBO also achieves faster convergence rate.

D.2 DETAILS OF EXPERIMENTS

In this section, we provide more details of the experimental setup in this work. In data hyper-cleaning
task, experiments are carried out on MNIST, Fashion MNIST and CIFAR-10 datasets. Following
(Ji et al., 2021), we utilize the same model in data-hypercleaning task for MNIST, Fashion MNIST
and CIFAR-10 datasets, and SGD optimizer is utilized. And the step-sizes are summarized in Table
2. In MNIST and Fashion MNIST datasets, we set N = 18, S = 9, τ = 15. And in CIFAR-10
dataset, we set N = 18, S = 9, τ = 5. We set that the (communication + computation) delays of
each worker obey log-normal distribution LN(3.5, 1).

In regularization coefficient optimization task, experiments are carried out on Covertype, IJCNN1
and Australian datasets. Following (Chen et al., 2022a), we utilize the same logistic regression
model, and SGD optimizer is used. And the step-sizes are summarized in Table 2. In Covertype
dataset, we set N = 18, S = 9, τ = 15; in IJCNN1 dataset, we set N = 24, S = 12, τ = 15;
and in Australian dataset, we set N = 4, S = 2, τ = 5. In the experiments that consider straggler
problems, three stragglers are set in the distributed system, and the mean of (communication +
computation) delay of stragglers is four times the delay of normal workers.
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Figure 11: (a) Test accuracy vs time and (b) Test loss vs time on CIFAR-10 dataset on distributed
data hyper-cleaning task.
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Figure 12: (a) Test accuracy vs time and (b) Test loss vs time on Australian dataset on distributed
regularization coefficient optimization task.

Codes are available in https://github.com/ICLR23Submission6251/adbo.
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E PARAMETER SERVER ARCHITECTURE

In this section, we give the illustration of the parameter server architecture, which is shown in Figure
13. In parameter server architecture, the communication is centralized around a set of master nodes
(or servers) that constitute the hubs of a star network, and worker nodes (or clients) pull the shared
parameters from and send their updates to the master nodes.

Masters (or Servers)

Workers 
(or Clients)

Local Data

…

…

Communication

Local variables:
1 1,x y

Local variables:
2 2,x y

Local variables:
,N Nx y

Consensus variables:
,v z

Figure 13: The illustration of parameter server architecture.
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