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Abstract
Graph representation learning serves as the core
of important prediction tasks, ranging from prod-
uct recommendation to fraud detection. Real-
life graphs usually have complex information
in the local neighborhood, where each node is
described by a rich set of features and con-
nects to dozens or even hundreds of neighbors.
Despite the success of neighborhood aggrega-
tion in graph neural networks, task-irrelevant in-
formation is mixed into nodes’ neighborhood,
making learned models suffer from sub-optimal
generalization performance. In this paper, we
present NeuralSparse, a supervised graph spar-
sification technique that improves generaliza-
tion power by learning to remove potentially
task-irrelevant edges from input graphs. Our
method takes both structural and non-structural
information as input, utilizes deep neural net-
works to parameterize sparsification processes,
and optimizes the parameters by feedback sig-
nals from downstream tasks. Under the Neu-
ralSparse framework, supervised graph sparsi-
fication could seamlessly connect with existing
graph neural networks for more robust perfor-
mance. Experimental results on both benchmark
and private datasets show that NeuralSparse can
yield up to 7.2% improvement in testing accu-
racy when working with existing graph neural
networks on node classification tasks.

1. Introduction
Representation learning has been in the center of many ma-
chine learning tasks on graphs, such as name disambigua-
tion in citation networks (Zhang et al., 2018), spam detec-
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tion in social networks (Akoglu et al., 2015), recommen-
dations in online marketing (Ying et al., 2018), and many
others (Yu et al., 2018; Li et al., 2018). As a class of mod-
els that can simultaneously utilize non-structural (e.g., node
and edge features) and structural information in graphs,
Graph Neural Networks (GNNs) construct effective rep-
resentations for downstream tasks by iteratively aggregat-
ing neighborhood information (Li et al., 2016; Hamilton
et al., 2017; Kipf & Welling, 2017). Such methods have
demonstrated state-of-the-art performance in classification
and prediction tasks on graph data (Veličković et al., 2018;
Chen et al., 2018; Xu et al., 2019; Ying et al., 2019).

Meanwhile, the underlying motivation why two nodes get
connected may have no relation to a target downstream
task, and such task-irrelevant edges could hurt neighbor-
hood aggregation as well as the performance of GNNs.
Consider the following example shown in Figure 1. Blue
and Red are two classes of nodes, whose two-dimensional
features are generated following two independent Gaussian
distributions, respectively. As shown in Figure 1(a), the
overlap between their feature distributions makes it diffi-
cult to find a good boundary that well separates the Blue
and Red nodes by node features only. Blue and Red nodes
are also inter-connected forming a graph. For each node
(either Blue or Red), it randomly selects 10 nodes as its
one-hop neighbors, and the resulting edges may not be re-
lated to node labels. On such a graph, we train a two-layer
GCN (Kipf & Welling, 2017), and the node representations
output from the two-layer GCN is illustrated in Figure 1(b).
When task-irrelevant edges are mixed into neighborhood
aggregation, the trained GCN fails to learn better repre-
sentations, and it becomes difficult to learn a subsequent
classifier with strong generalization power.

In this paper, we study how to utilize supervision signals
to remove task-irrelevant edges in an inductive manner to
achieve robust graph representation learning. Conventional
methods, such as graph sparsification (Liu et al., 2018;
Zhang & Patone, 2017; Leskovec & Faloutsos, 2006; Sad-
hanala et al., 2016; Voudigari et al., 2016), are unsuper-
vised such that the resulting sparsified graphs may not favor
downstream tasks. Several works focus on downsampling
under predefined distributions (Zeng et al., 2020; Hamilton
et al., 2017; Chen et al., 2018). As the predefined distribu-
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(a) Node Features (b) With Task-irrelevant Edges (d) By NeuralSparse(c) By DropEdge

Figure 1. Top row: Small samples of (sparsified) graphs for illustration. Bottom row: Visualization of (learned) node representations.
(a) Node representations are input two-dimensional node features. (b) Node representations are learned from a two-layer GCN on top of
graphs with task irrelevant edges. (c) Node representations are learned from DropEdge (with a two-layer GCN). (d) Node representations
are learned from NeuralSparse (with a two-layer GCN).

tions may not well adapt to subsequent tasks, such meth-
ods could suffer suboptimal prediction performance. Mul-
tiple recent efforts strive to make use of supervision signals
to remove noise edges (Wang et al., 2019). However, the
proposed methods are either transductive with difficulty to
scale (Franceschi et al., 2019) or of high gradient variance
bringing increased training difficulty (Rong et al., 2020).

Present work. We propose Neural Sparsification (Neu-
ralSparse), a general framework that simultaneously learns
to select task-relevant edges and graph representations
by feedback signals from downstream tasks. The Neu-
ralSparse consists of two major components: sparsification
network and GNN. For the sparsification network, we uti-
lize a deep neural network to parameterize the sparsifica-
tion process: how to select edges from the one-hop neigh-
borhood given a fixed budget. In the training phase, the
network learns to optimize a sparsification strategy that fa-
vors downstream tasks. In the testing phase, the network
sparsifies input graphs following the learned strategy, in-
stead of sampling subgraphs from a predefined distribution.
Unlike conventional sparsification techniques, our tech-
nique takes both structural and non-structural information
as input and optimizes the sparsification strategy by feed-
back from downstream tasks, instead of using (possibly
irrelevant) heuristics. For the GNN component, the Neu-
ralSparse feeds the sparsified graphs to GNNs and learns
graph representations for subsequent prediction tasks. Un-
der the NeuralSparse framework, by the standard stochastic
gradient descent and backpropagation techniques, we can
simultaneously optimize graph sparsification and represen-
tations. As shown in Figure 1(d), with task-irrelevant edges
automatically excluded, the node representations learned

from the NeuralSparse suggest a clearer boundary between
Blue and Red with promising generalization power, and
the sparsification learned by NeuralSparse could be more
effective than the regularization provided by layer-wise
random edge dropping (Rong et al., 2020) shown in Fig-
ure1(c).

Experimental results on both public and private datasets
demonstrate that NeuralSparse consistently provides im-
proved performance for existing GNNs on node classifi-
cation tasks, yielding up to 7.2% improvement.

2. Related Work
Our work is related to two lines of research: graph sparsi-
fication and graph representation learning.

Graph sparsification. The goal of graph sparsification
is to find small subgraphs from input large graphs that
best preserve desired properties. Existing techniques are
mainly unsupervised and deal with simple graphs without
node/edge features for preserving predefined graph met-
rics (Hübler et al., 2008), information propagation traces
(Mathioudakis et al., 2011), graph spectrum (Calandriello
et al., 2018; Chakeri et al., 2016; Adhikari et al., 2018),
node degree distribution (Eden et al., 2018; Voudigari et al.,
2016), node distance distribution (Leskovec & Faloutsos,
2006), or clustering coefficient (Maiya & Berger-Wolf,
2010). Importance based edge sampling has also been stud-
ied in a scenario where we could predefine edge importance
(Zhao, 2015; Chen et al., 2018).

Unlike existing methods that mainly work with simple
graphs without node/edge features in an unsupervised man-
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ner, our method takes node/edge features as parts of input
and optimizes graph sparsification by supervision signals
from errors made in downstream tasks.

Graph representation learning. Graph neural networks
(GNNs) are the most popular techniques that enable vec-
tor representation learning for large graphs with complex
node/edge features. All existing GNNs share a common
spirit: extracting local structural features by neighborhood
aggregation. Scarselli et al. (2009) explore how to extract
multi-hop features by iterative neighborhood aggregation.
Inspired by the success of convolutional neural networks,
multiple studies (Defferrard et al., 2016; Bruna et al., 2014)
investigate how to learn convolutional filters in the graph
spectral domain under transductive settings. To enable in-
ductive learning, convolutional filters in the graph domain
are proposed (Simonovsky & Komodakis, 2017; Niepert
et al., 2016; Kipf & Welling, 2017; Veličković et al., 2018;
Xu et al., 2018), and a few studies (Hamilton et al., 2017;
Lee et al., 2018) explore how to differentiate neighborhood
filtering by sequential models. Multiple recent works (Xu
et al., 2019; Abu-El-Haija et al., 2019) investigate the ex-
pressive power of GNNs, and Ying et al. (2019) propose
to identify critical subgraph structure with trained GNNs.
In addition, Franceschi et al. (2019) study how to sam-
ple high-quality subgraphs from a transductive setting by
learning Bernoulli variables on individual edges. Recent
efforts also attempt to sample subgraphs from predefined
distributions (Zeng et al., 2020; Hamilton et al., 2017), and
regularize graph learning by random edge dropping (Rong
et al., 2020).

Our work contributes from a unique angle: by inductively
learning to select task-relevant edges from downstream su-
pervision signal, our technique can further boost general-
ization performance for existing GNNs.

3. Proposed Method: NeuralSparse
In this section, we introduce the core idea of our method.
We start with the notations that are frequently used in this
paper. We then describe the theoretical justification behind
NeuralSparse and our architecture to tackle the supervised
node classification problem.

Notations. We represent an input graph of n nodes as
G = (V,E,A): (1) V ∈ Rn×dn includes node features
with dimensionality dn; (2) E ∈ Rn×n is a binary matrix
where E(u, v) = 1 if there is an edge between node u and
node v; (3) A ∈ Rn×n×de encodes input edge features of
dimensionality de. Besides, we use Y to denote the predic-
tion target in downstream tasks (e.g., Y ∈ Rn×dl if we are
dealing with a node classification problem with dl classes).

Theoretical justification. From the perspective of statisti-
cal learning, the key of a defined prediction task is to learn

P (Y | G), where Y is the prediction target and G is an in-
put graph. Instead of directly working with original graphs,
we would like to leverage sparsified subgraphs to remove
task-irrelevant information. In other words, we are inter-
ested in the following variant,

P (Y | G) ≈
∑
g∈SG

P (Y | g)P (g | G), (1)

where g is a sparsified subgraph, and SG is a class of spar-
sified subgraphs of G.

In general, because of the combinatorial complexity in
graphs, it is intractable to enumerate all possible g as well
as estimate the exact values of P (Y | g) and P (g | G).
Therefore, we approximate the distributions by tractable
functions,∑

g∈SG

P (Y | g)P (g | G) ≈
∑
g∈SG

Qθ(Y | g)Qφ(g | G)

(2)
where Qθ and Qφ are approximation functions for P (Y |
g) and P (g | G) parameterized by θ and φ, respectively.

Moreover, to make the above graph sparsification process
differentiable, we employ reparameterization tricks (Jang
et al., 2017) to make Qφ(g | G) directly generate differen-
tiable samples, such that∑
g∈SG

Qθ(Y | g)Qφ(g | G) ∝
∑

g′∼Qφ(g|G)

Qθ(Y | g′) (3)

where g′ ∼ Qφ(g | G) means g′ is a random sample drawn
from Qφ(g | G).

To this end, the key is how to find appropriate approxima-
tion functions Qφ(g | G) and Qθ(Y | g).

Architecture. In this paper, we propose Neural Sparsifi-
cation (NeuralSparse) to implement the theoretical frame-
work discussed in Equation 3. As shown in Figure 2, Neu-
ralSparse consists of two major components: the sparsifi-
cation network and GNNs.

• The sparsification network is a multi-layer neural net-
work that implements Qφ(g | G): Taking G as input, it
generates a random sparsified subgraph of G drawn from
a learned distribution.

• GNNs implementQθ(Y | g) that takes the sparsified sub-
graph as input, extracts node representations, and makes
predictions for downstream tasks.

As the sparsified subgraph samples are differentiable, the
two components can be jointly trained using the gradient
descent based backpropagation techniques from a super-
vised loss function, as illustrated in Algorithm 1. While the
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Figure 2. The overview of NeuralSparse

Algorithm 1 Training algorithm for NeuralSparse
1: Input: graph G = (V,E,A), integer l, and training

labels Y .
2: while stop criterion is not met do
3: Generate sparsified subgraphs {g1, g2, · · · , gl} by

sparsification network (Section 4);
4: Produce prediction {Ŷ1, Ŷ2, · · · , Ŷl} by feeding

{g1, g2, · · · , gl} into GNNs;
5: Calculate loss function J ;
6: Update φ and θ by descending J
7: end while

GNNs have been widely investigated in recent works (Kipf
& Welling, 2017; Hamilton et al., 2017; Veličković et al.,
2018), we focus on the practical implementation for the
sparsification network in the remaining of this paper.

4. Sparsification Network
Following the theory discussed above, the goal of the spar-
sification network is to generate sparsified subgraphs for
input graphs, serving as the approximation functionQφ(g |
G). Therefore, we need to answer the following three ques-
tions in the sparsification network. i). What is SG in Equa-
tion 1, the class of subgraphs we focus on? ii). How to
sample sparsified subgraphs? iii). How to make the sparsi-
fied subgraph sampling process differentiable for the end-
to-end training? In the following, we address the questions
one by one.

k-neighbor subgraphs. We focus on k-neighbor sub-
graphs for SG (Sadhanala et al., 2016): Given an input
graph, a k-neighbor subgraph shares the same set of nodes
with the input graph, and each node in the subgraph can
select no more than k edges from its one-hop neighbor-
hood. Although the concept of the sparsification network
is not limited to a specific class of subgraphs, we choose

k-neighbor subgraphs for the following reasons.

• We are able to adjust the estimation on the amount of
task-relevant graph data by tuning the hyper-parameter
k. Intuitively, when k is an under-estimate, the amount
of task-relevant graph data accessed by GNNs could be
inadequate, leading to inferior performance. When k is
an over-estimate, the downstream GNNs may overfit the
introduced noise or irrelevant graph data, resulting in sub-
optimal performance. It could be difficult to set a golden
hyper-parameter that works all the time, but one has the
freedom to choose the k that is the best fit for a specific
task.

• k-neighbor subgraphs are friendly to parallel computa-
tion. As each node selects its edges independently from
its neighborhood, we can utilize tensor operations in
existing deep learning frameworks, such as tensorflow
(Abadi et al., 2016), to speed up the sparsification pro-
cess for k-neighbor subgraphs.

Sampling k-neighbor subgraphs. Given k and an input
graph G = (V,E,A), we obtain a k-neighbor subgraph
by repeatedly sampling edges for each node in the original
graph. Without loss of generality, we sketch this sampling
process by focusing on a specific node u in graph G. Let
Nu be the set of one-hop neighbors of the node u.

1. v ∼ fφ(V (u), V (Nu),A(u)), where fφ(·) is a function
that generates a one-hop neighbor v from the learned
distribution based on the node u’s attributes, node at-
tributes of u’s neighbors V (Nu), and their edge at-
tributes A(u). In particular, the learned distribution is
encoded by parameters φ.

2. Edge E(u, v) is selected for the node u.

3. The above two steps are repeated k times.
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Note that the above process performs sampling without re-
placement. Given a node u, each of its adjacent edges is
selected at most once. Moreover, the sampling function
fφ(·) is shared among nodes; therefore, the number of pa-
rameters φ is independent of the input graph size.

Making samples differentiable. While conventional
methods are able to generate discrete samples (Sadhanala
et al., 2016), these samples are not differentiable such that
it is difficult to utilize them to optimize sample generation.
To make samples differentiable, we propose a Gumbel-
Softmax based multi-layer neural network to implement the
sampling function fφ(·) discussed above.

To make the discussion self-contained, we briefly discuss
the idea of Gumbel-Softmax. Gumbel-Softmax is a repa-
rameterization trick used to generate differentiable discrete
samples (Jang et al., 2017; Maddison et al., 2017). Under
appropriate hyper-parameter settings, Gumbel-Softmax is
able to generate continuous vectors that are as ”sharp” as
one-hot vectors widely used to encode discrete data.

Without loss of generality, we focus on a specific node u
in a graph G = (V,E,A). Let Nu be the set of one-hop
neighbors of the node u. We implement fφ(·) as follows.

1. ∀v ∈ Nu,

zu,v = MLPφ(V (u), V (v),A(u, v)), (4)

where MLPφ is a multi-layer neural network with pa-
rameters φ.

2. ∀v ∈ Nu, we employ a softmax function to compute
the probability to sample the edge,

πu,v =
exp(zu,v)∑

w∈Nu exp(zu,w)
(5)

3. Using Gumbel-Softmax, we generate differentiable
samples

xu,v =
exp((log(πu,v) + εv)/τ)∑

w∈Nu exp((log(πu,w) + εw)/τ)
(6)

where xu,v is a scalar, εv = − log(− log(s)) with s
randomly drawn from Uniform(0, 1), and τ is a hyper-
parameter called temperature which controls the inter-
polation between the discrete distribution and continu-
ous categorical densities.

Note that when we sample k edges, the computation for
zu,v and πu,v only needs to be performed once. For the
hyper-parameter τ , we discuss how to tune it as follows.

Discussion on temperature tuning. The behavior of
Gumbel-Softmax is governed by a hyper-parameter τ

called temperature. In general, when τ is small, the
Gumbel-Softmax distribution resembles the discrete dis-
tribution, which induces strong sparsity; however, small τ
also introduces high-variance gradients that block effective
backpropagation. A high value of τ cannot produce ex-
pected sparsification effect. Following the practice in (Jang
et al., 2017), we adopt the strategy by starting the training
with a high temperature and anneal to a small value with a
guided schedule.

Sparsification algorithm and its complexity. As shown
in Algorithm 2, given hyper-parameter k, the sparsification
network visits each node’s one-hop neighbors k times. Let
m be the total number of edges in the graph. The complex-
ity of sampling subgraphs by the sparsification network is
O(km). When k is small in practice, the overall complex-
ity is O(m).

Algorithm 2 Sampling subgraphs by sparsification net-
work

1: Input: graph G = (V,E,A) and integer k.
2: Edge set H = ∅
3: for u ∈ V do
4: for v ∈ Nu do
5: zu,v ← MLPφ(V (u), V (v),A(u, v))
6: end for
7: for v ∈ Nu do
8: πu,v ← exp(zu,v)/

∑
w∈Nu exp(zu,w)

9: end for
10: for j = 1, · · · , k do
11: for v ∈ Nu do
12: xu,v ← exp((log(πu,v)+εv)/τ)∑

w∈Nu exp((log(πu,w)+εw)/τ)

13: end for
14: Add the edge represented by vector [xu,v] into H
15: end for
16: end for

Comparison with multiple related methods. Unlike
FastGCN (Chen et al., 2018), GraphSAINT (Zeng et al.,
2020) and DropEdge (Rong et al., 2020) that incorpo-
rate layer-wise node samplers to reduce the complexity of
GNNs, NeuralSparse samples subgraphs before applying
GNNs. As for the computation complexity, the sparsifi-
cation in NeuralSparse is more friendly to parallel com-
putation than the layer-conditioned approaches such as
AS-GCN. Compared with the graph attentional models
(Veličković et al., 2018), the NeuralSparse can produce
sparser neighborhoods, which effectively remove task-
irrelevant information on original graphs. Unlike LDS
(Franceschi et al., 2019), NeuralSparse learns graph spar-
sification under inductive setting, and its graph sampling is
constrained by input graph topology.
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Table 1. Dataset statistics
Reddit PPI Transaction Cora Citeseer

Task Inductive Inductive Inductive Transductive Transductive
Nodes 232,965 56,944 95,544 2,708 3,327
Edges 11,606,919 818,716 963,468 5,429 4,732

Features 602 50 120 1,433 3,703
Classes 41 121 2 7 6

Training Nodes 152,410 44,906 47,772 140 120
Validation Nodes 23,699 6,514 9,554 500 500

Testing Nodes 55,334 5,524 38,218 1,000 1,000

5. Experimental Study
In this section, we evaluate our proposed NeuralSparse on
the node classification task with both inductive and trans-
ductive settings. The experimental results demonstrate that
NeuralSparse achieves superior classification performance
over state-of-the-art GNN models. Moreover, we provide
a case study to demonstrate how the sparsified subgraphs
generated by NeuralSparse could improve classification
compared against other sparsification baselines. The sup-
plementary material contains more experimental details.

5.1. Datasets

We employ five datasets from various domains and con-
duct the node classification task following the settings as
described in Hamilton et al. (2017) and Kipf & Welling
(2017). The dataset statistics are summarized in Table 1.

Inductive datasets. We utilize the Reddit and PPI datasets
and follow the same setting in Hamilton et al. (2017). The
Reddit dataset contains a post-to-post graph with word vec-
tors as node features. The node labels represent which
community Reddit posts belong to. The protein-protein
interaction (PPI) dataset contains graphs corresponding to
different human tissues. The node features are positional
gene sets, motif gene sets, and immunological signatures.
The nodes are multi-labeled by gene ontology.

Graphs in the Transaction dataset contains real transactions
between organizations in two years, with the first year for
training and the second year for validation/testing. Each
node represents an organization and each edge indicates a
transaction between two organizations. Node attributes are
side information about the organizations such as account
balance, cash reserve, etc. On this dataset, the objective is
to classify organizations into two categories: promising or
others for investment in the near future. More details on
the Transaction dataset can be found in Supplementary S1.

In the inductive setting, models can only access training
nodes’ attributes, edges, and labels during training. In the

PPI and Transaction datasets, the models have to generalize
to completely unseen graphs.

Transductive datasets. We use two citation benchmark
datasets in Yang et al. (2016) and Kipf & Welling (2017)
with the transductive experimental setting. The citation
graphs contain nodes corresponding to documents and
edges as citations. Node features are the sparse bag-of-
words representations of the documents and node labels
indicate the topic class of the documents. In transductive
learning, the training methods have access to all node fea-
tures and edges, with a limited subset of node labels.

5.2. Experimental Setup

Baseline models. We incorporate four state-of-the-art
methods as the base GNN components, including GCN
(Kipf & Welling, 2017), GraphSAGE (Hamilton et al.,
2017), GAT (Veličković et al., 2018), and GIN (Xu et al.,
2019). Besides evaluating the effectiveness and efficiency
of NeuralSparse against base GNNs, we leverage three
other categories of methods in the experiments: (1) We in-
corporate the two unsupervised graph sparsification mod-
els, the spectral sparsifier (SS, Sadhanala et al., 2016) and
the Rank Degree (RD, Voudigari et al., 2016). The in-
put graphs are sparsified before sent to the base GNNs for
node classification. (2) We compare against the random
layer-wise sampler DropEdge (Rong et al., 2020). Similar
to the Dropout trick (Hinton et al., 2012), DropEdge ran-
domly removes connections among node neighborhood in
each GNN layer. (3) We also incorporate LDS (Franceschi
et al., 2019), which works under a transductive setting and
learns Bernoulli variables associated with individual edges.

Temperature tuning. We anneal the temperature with the
schedule τ = max(0.05, exp(−rp)), where p is the train-
ing epoch and r ∈ 10{−5,−4,−3,−2,−1}. τ is updated every
N steps and N ∈ {50, 100, ..., 500}. Compared with the
MNIST VAE model in Jang et al. (2017), smaller hyper-
parameter τ fits NeuralSparse better in practice. More de-
tails on the experimental settings and implementation can
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Table 2. Node classification performance

Sparsifier Method Reddit PPI Transaction Cora Citeseer

Micro-F1 Micro-F1 AUC Accuracy Accuracy

N/A

GCN 0.922 ± 0.041 0.532 ± 0.024 0.564 ± 0.018 0.810 ± 0.027 0.694 ± 0.020
GraphSAGE 0.938 ± 0.029 0.600 ± 0.027 0.574 ± 0.029 0.825 ± 0.033 0.710 ± 0.020

GAT - 0.973 ± 0.030 0.616 ± 0.022 0.821 ± 0.043 0.721 ± 0.037
GIN 0.928 ± 0.022 0.703 ± 0.028 0.607 ± 0.031 0.816 ± 0.020 0.709 ± 0.037

GCN 0.912 ± 0.022 0.521 ± 0.024 0.562 ± 0.035 0.780 ± 0.045 0.684 ± 0.033
SS/ GraphSAGE 0.907 ± 0.018 0.576 ± 0.022 0.565 ± 0.042 0.806 ± 0.032 0.701 ± 0.027
RD GAT - 0.889 ± 0.034 0.614 ± 0.044 0.807 ± 0.047 0.686 ± 0.034

GIN 0.901 ± 0.021 0.693 ± 0.019 0.593 ± 0.038 0.785 ± 0.041 0.706 ± 0.043

DropEdge

GCN 0.961 ± 0.040 0.548 ± 0.041 0.591 ± 0.040 0.828 ± 0.035 0.723 ± 0.043
GraphSAGE 0.963 ± 0.043 0.632 ± 0.031 0.598 ± 0.043 0.821 ± 0.048 0.712 ± 0.032

GAT - 0.851 ± 0.030 0.604 ± 0.043 0.789 ± 0.039 0.691 ± 0.039
GIN 0.931 ± 0.031 0.783 ± 0.037 0.625 ± 0.035 0.818 ± 0.044 0.715 ± 0.039

LDS GCN - - - 0.831 ± 0.017 0.727 ± 0.021

GCN 0.966 ± 0.020 0.651 ± 0.014 0.610 ± 0.022 0.837 ± 0.014 0.741 ± 0.014
Neural GraphSAGE 0.967 ± 0.015 0.696 ± 0.023 0.649 ± 0.018 0.841 ± 0.024 0.736 ± 0.013
Sparse GAT - 0.986 ± 0.015 0.671 ± 0.018 0.842 ± 0.015 0.736 ± 0.026

GIN 0.959 ± 0.027 0.892 ± 0.015 0.634 ± 0.023 0.838 ± 0.027 0.738 ± 0.015

be found in Supplementary S2 and S3.

Metrics. We evaluate the performance on the transduc-
tive datasets with accuracy (Kipf & Welling, 2017). For
inductive tasks on the Reddit and PPI datasets, we report
micro-averaged F1 scores (Hamilton et al., 2017). Due to
the imbalanced classes in the Transaction dataset, models
are evaluated with AUC value (Huang & Ling, 2005). The
results show the average of 10 runs.

5.3. Classification Performance

Table 2 summarizes the classification performance of Neu-
ralSparse and the baseline methods on all datasets. For
Reddit, PPI, Transaction, Cora, and Citeseer, the hyper-
parameter k is set as 30, 15, 10, 5, and 3 respectively. The
hyper-parameter l is set as 1. Note that the result of GAT
on Reddit is missing due to the out-of-memory error and
LDS only works under the transductive setting. For sim-
plicity, we only report the better performance with SS or
RD sparsifiers.

Overall, NeuralSparse is able to help GNN techniques
achieve competitive generalization performance with spar-
sified graph data. We make the following observations.
(1) Compared with basic GNN models, NeuralSparse can
enhance the generalization performance on node classi-
fication tasks by utilizing the sparsified subgraphs from
the sparsification network, especially in the inductive set-
ting. Indeed, large neighborhood size in the original graphs

could increase the chance of introducing noise into the ag-
gregation operations, leading to sub-optimal performance.
(2) With different GNN options, the NeuralSparse can
consistently achieve comparable or superior performance,
while other sparsification approaches tend to favor a cer-
tain GNN structure. (3) Compared with DropEdge, Neu-
ralSparse achieves up to 13% of improvement in terms of
accuracy with lower variance. In addition, the comparison
between NeuralSparse and DropEdge in terms of conver-
gence speed can be found in Supplementary S4. (4) In
comparison with the two NeuralSparse variants SS-GNN
and RD-GNN, NeuralSparse outperforms because it can ef-
fectively leverage the guidance from downstream tasks.

Table 3. Node classification performance with κ-NN graphs

Dataset(κ) LDS NeuralSparse

Cora(10) 0.715 ± 0.035 0.723 ± 0.025
Cora(20) 0.703 ± 0.029 0.719 ± 0.021

Citeseer(10) 0.691 ± 0.031 0.723 ± 0.016
Citeseer(20) 0.715 ± 0.026 0.725 ± 0.019

In the following, we discuss the comparison between Neu-
ralSparse and LDS (Franceschi et al., 2019) on the Cora
and Citeseer datasets. Note that the row labeled with LDS
in Table 2 presents the classification results on original in-
put graphs. In addition, we adopt κ-nearest neighbor (κ-
NN) graphs suggested in (Franceschi et al., 2019) for more
comprehensive evaluation. In particular, κ-NN graphs are
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(a) Original

Promising Organizations
Other Organizations

(b) NeuralSparse

Promising Organizations
Other Organizations

(c) Spectral Sparsifier

Promising Organizations
Other Organizations

(d) RD Sparsifier

Figure 3. (a) Original graph from the Transaction dataset and sparsified subgraphs by (b) NeuralSparse, (c) Spectral Sparsifier, and (d)
RD Sparsifier.

constructed by connecting individual nodes with their top-
κ similar neighbors in terms of node features, and κ is se-
lected from {10, 20}. In Table 3, we summarize the clas-
sification accuracy of LDS (with GCN) and NeuralSparse
(with GCN). On both original and κ-NN graphs, Neu-
ralSparse outperforms LDS in terms of classification ac-
curacy. As each edge is associated with a Bernoulli vari-
ables, the large number of parameters for graph sparsifica-
tion could impact the generalization power in LDS. More
comparison results between NeuralSparse and LDS can be
found in Supplementary S5.

5.4. Sensitivity to Hyper-parameters and the Sparsified
Subgraphs
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Figure 4. Performance vs hyper-parameters

Figure 4(a) demonstrates how classification performance
responds when k increases on the Transaction dataset.
There exists an optimal k that delivers the best classifica-
tion AUC score. The similar trend on the validation set
is also observed, as shown in Supplementary S6. When k
is small, NeuralSparse can only make use of little relevant
structural information in feature aggregation, which leads
to inferior performance. When k increases, the aggregation
convolution involves more complex neighborhood aggre-
gation with a higher chance of overfitting noise data, which
negatively impacts the classification performance for un-
seen testing data. Figure 4(b) shows how hyper-parameter

l impacts classification performance on the Transaction
dataset. When l increases from 1 to 5, we observe a rel-
atively small improvement in classification AUC score. As
the parameters in the sparsification network are shared by
all edges in the graph, the estimation variance from random
sampling could already be mitigated to some extent by a
number of sampled edges in a sparsified subgraph. Thus,
when we increase the number of sparsified subgraphs, the
incremental gain could be small.

In Figure 3(a), we present a sample of the graph from the
Transaction dataset which consists of 38 nodes (promis-
ing organizations and other organizations) with an average
node degree 15 and node feature dimension 120. As shown
in Figure 3(b), the graph sparsified by the NeuralSparse has
lower complexity with an average node degree around 5. In
Figure 3(c, d), we also present the sparsified graphs output
by the two baseline methods, SS and RD. More quantita-
tive evaluations over sparsified graphs from different ap-
proaches can be found in Supplementary S7.

By comparing the four plots in Figure 3, we make the
following observations: First, the NeuralSparse sparsified
graph tends to select edges that connect nodes of identi-
cal labels, which favors the downstream classification task.
The observed clustering effect could further boost the con-
fidence in decision making. Second, instead of exploring
all the neighbors, we can focus on the selected connec-
tions/edges, which could make it easier for human experts
to perform model interpretation and result visualization.

6. Conclusion
In this paper, we propose Neural Sparsification (Neu-
ralSparse) to address the noise brought by the task-
irrelevant information on real-life large graphs. Neu-
ralSparse consists of two major components: (1) The
sparsification network sparsifies input graphs by sampling
edges following a learned distribution; (2) GNNs take
sparsified subgraphs as input and extract node representa-
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tions for downstream tasks. The two components in Neu-
ralSparse can be jointly trained with supervised loss, gra-
dient descent, and backpropagation techniques. The ex-
perimental study on real-life datasets shows that the Neu-
ralSparse consistently renders more robust graph represen-
tations, and yields up to 7.2% improvement in accuracy
over state-of-the-art GNN models.
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