
At the Speed of Sound: Efficient Audio Scene Classification

Bo Dong∗§, Cristian Lumezanu∗, Yuncong Chen∗, Dongjin Song∗, Takehiko Mizoguchi∗
Haifeng Chen∗, Latifur Khan§

NEC Laboratories America∗ University of Texas at Dallas§

ABSTRACT
Efficient audio scene classification is essential for smart sensing
platforms such as robots, medical monitoring, surveillance, or au-
tonomous vehicles. We propose a retrieval-based scene classifi-
cation architecture that combines recurrent neural networks and
attention to compute embeddings for short audio segments. We
train our framework using a custom audio loss function that cap-
tures both the relevance of audio segments within a scene and that
of sound events within a segment. Using experiments on real audio
scenes, we show that we can discriminate audio scenes with high
accuracy after listening in for less than a second. This preserves 93%
of the detection accuracy obtained after hearing the entire scene.
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1 INTRODUCTION
Smart sensing platforms continually monitor their environment
through cameras, microphones, or dedicated sensors (e.g., temper-
ature, humidity). To ensure safety and security, they must detect
and react to ambient changes, such as new objects in the video
frame, new sound events, or unusual sensor values [6]. While most
smart sensing platforms primarily analyze video and sensor time
series [23], recent studies demonstrate the benefit of audio clas-
sification not only as a complement but also as a replacement for
video classification [1, 8].

We study audio scene classification (ASC)—the task of identify-
ing the category of the surrounding environment using acoustic
signals. Traditional audio scene classification methods train ma-
chine learning classifiers (e.g., Gaussian Mixture Models, SVM) on
low-level audio features (e.g., MFCCs [24] or filter banks [10]), ex-
tracted with signal processing techniques [3]. More recently, deep
learning architectures encode high-level features (or embeddings)
that discriminate audio scenes [7, 14, 15].

Although they perform well, existing learning-based approaches
require long audio sequences (10 to 30s) to be accurate; their perfor-
mance drops as the duration of a scene decreases [15]. In many real
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life scenarios, there are not sufficient resources or time to “process”
the acoustic environment thoroughly and it is critical to classify
the category of a scene or audio event as efficiently as possible [1].
For example, self-driving cars must react quickly to the sound of
police sirens, even when the police car is out of sight [21]; medical
monitoring devices must raise alerts when they hear suspicious
breathing sounds [8]; low battery IoT devices must be able to detect
acoustic scenes locally without consuming too much energy [4].

To achieve efficient classification, our insight is to formulate
ASC as a retrieval problem. We split the audio data into short seg-
ments (of less than a second), learn embeddings for each segment,
and use the embeddings to classify each segment as soon as we
“hear” it. Given a query segment (e.g., short sound from the envi-
ronment), we classify it in the class of the most similar historical
segment, according to an embedding similarity function, such as
the Euclidean distance. If we can accurately identify an audio scene
after processing only a few such short audio segments, then we
can issue faster alerts and save system resources by forgoing the
processing of subsequent segments.

A natural question is how we can find embeddings that enable
accurate retrieval of short audio segments. First, good embeddings
must preserve similarity: segments part of the same audio scene
should have similar embeddings. Second, they must capture the
importance of each segment within a scene. For example, in a play-
ground scene, the segments containing children laughter are more
relevant for the scene; in contrast, silence or noise segments are less
important since they can be found in many other types of scenes.

We present a deep learning framework to accurately classify
audio environment after listening for less than a second. Our frame-
work relies on recurrent neural networks and attention to learn
embeddings for each audio segment. Key to the learning process is
an optimization mechanism that minimizes an audio loss function.
We construct this function to encourage embeddings to preserve
segment similarity (through a distance-based component) and pe-
nalize nondescript segments while capturing the importance of the
more relevant ones (with an importance-based component).

We use real world audio scenes [11] to demonstrate that listening
to the first 300ms of a 10s audio scene is sufficient to detect its cate-
gory (out of 15 possibilities) with high accuracy (around 70%). Our
framework loses only around 7% of the accuracy obtained when
listening to the entire scene. Furthermore, the classification accu-
racy increases to over 95% when the number of possible categories
decreases.

Our contributions towards efficient audio scene classification
are two fold. First, we break down the audio into short duration
segments and classify them using nearest neighbor based retrieval.
Then, to make retrieval faster, we construct a deep learning ar-
chitecture to encode the audio segments by combining LSTM and
attention. We train the encoder by optimizing a custom built audio
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loss function that captures the importance of each segment in a
scene and of each time step in a segment.

2 RELATEDWORK
The first step in any audio processing framework is the extrac-
tion of low-level features. Popular features are mel frequency cep-
stral coefficients (MFCCs) [24], filter banks [10], mel scale spectro-
grams [9], or Gammatone spectrograms [16]. To augment these
features, many frameworks add first order derivatives, eliminate
background noise [12], or separate the harmonic and percussive
parts [13]. Research on how to extract features from the raw audio
is orthogonal to our work; we leave its exploration for the future.

Deep audio encoders feed low-level audio features into deep
learning architectures to learn embeddings for fixed length scenes.
Guo et al. [7] combine LSTM [18] and attention [20], while Phan et
al. [14] propose an architecture composed of convolutional, recur-
rent, and attention layers (temporal and spatial). They train the
encoder jointly with a classifier by minimizing the cross-entropy
loss.

We also use attention and LSTM, but train the encoder separately
by minimizing a custom audio loss; for detection, we use a nearest
neighbor classifier. This allows us to classify a scene faster, i.e.,
by computing embeddings for many short duration segments and
retrieving the category of only the first (few) segments, without
listening to the entire scene.

Turpault et al. also separate the training of the encoder and clas-
sifier [19]. They propose segment sampling strategies for triplet loss
optimization in semi-supervised scene classification. We focus on
building an improved loss function that can help emphasize the im-
portant audio segments in a fully supervised scenario. Although the
goal of the audio loss is similar to that of attention mechanisms [5],
note the subtle difference: attention reveals relevant time steps in a
segment, audio loss relevant segments in a scene.

3 DESIGN
We describe the three components of our audio scene classification:
raw audio processing, encoder, and loss optimization. Figure 1
presents the architecture. Our contributions lie in the encoder and
loss optimization.

3.1 Raw audio processing
We decompose each audio scene using windowed FFT and extract
20 mel frequency cepstral coefficients [24]. We add their first deriva-
tives and 12 harmonic and percussive features, known to enhance
the raw feature set [13], to obtain 52 basic audio features for each
FFT window.

Let X = (x1, x2, ..., x𝑛)T ∈ R𝑛×𝑇 represent an audio segment of
length 𝑇 (e.g., of 𝑇 consecutive FFT windows) with 𝑛 basic features
(where 𝑛=52). We associate each segment with the label of the
scene to which it belongs. Our goal is audio segment retrieval:
given a query segment, find the most similar historical segments
using a similarity function, such as the Euclidean distance. We then
classify our query segment in the same category as the most similar
historical segment.

3.2 Learning audio embeddings
To perform efficient retrieval, we learn embeddings for each audio
segment and compare the embeddings rather than the low-level
audio features. We assume that the embedding is given by the
following mapping function:

h = F (X) (1)
where X ∈ R𝑛×𝑇 is an audio segment of 𝑛 basic features over 𝑇
time steps and h ∈ R𝑑 is an embedding vector of size 𝑑 . F is a
non-linear mapping function.

We construct our mapping function to satisfy two criteria. First,
it must encourage embeddings to reflect class membership. In other
words, segments part of the same class should have similar em-
beddings, segments part of different classes different embeddings.
Second, it must identify the important segments quickly, to enable
efficient retrieval. We want to emphasize the segments that can
discriminate a scene (e.g., children laughter in a playground scene)
and underplay those that are less descriptive (e.g., noise).

We use a combination of bidirectional LSTM [18] and atten-
tion [20] to compute F . We use LSTM to capture long-term tempo-
ral dependencies and attention to emphasize the important audio
parts in a segment. As others have also shown [7, 14], recurrent
networks and attention mechanism are efficient in identifying im-
portant features in audio.

We capture correlations between audio at different time steps
in a segment by feeding all LSTM hidden states into the attention
layer. Given a segment X, denote by 𝑠𝑡 the LSTM hidden state for
timestep 𝑡 . The attention weights encode the importance of each
time step using a non-linear function 𝑎𝑡𝑡𝑛(𝑠𝑡 ) = 𝑡𝑎𝑛ℎ(𝑠𝑡V+ b) [20].
We normalize the attention weights using softmax:

𝑎𝑡 =
exp(𝑎𝑡𝑡𝑛(𝑠𝑡 ))∑𝑇
𝑡=1 exp(𝑎𝑡𝑡𝑛(𝑠𝑡 ))

(2)

and compute the similarity embedding of the segment as theweighted
average of each hidden state:

h′ =
𝑇∑
𝑡=1

𝑎𝑡ℎ𝑡 (3)

To capture the importance of each segment separately, we project
the similarity embedding using a fully connected layer and compute
the importance embedding:

h′′ = h′V′ + b′ (4)
We motivate the choice of importance embedding below when we
discuss the loss function. The final embedding of a segment is a
concatenation of h′ and h′′:

h = [h′; h′′] (5)
We learn all weights, including V, V′, and the LSTMweights, jointly
when training the mapping F . The similarity and importance em-
beddings are complementary in highlighting the discriminative
segments in an audio scene. The similarity embedding helps iden-
tify the useful time steps within a segment, while the importance
embedding the relevant segments within a scene.

3.3 Audio Loss
We train our network by optimizing a custom audio loss function.
We construct our loss function to optimize for the two criteria used
to construct the mapping F : embeddings reflect class member-
ship and emphasize important features within a class. To achieve
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the first criteria, we use a distance-based component, such as the
triplet loss [17]. Turpault et al. showed that triplet loss is effective
in computing audio embeddings in semi-supervised audio scene
detection [19].

For a triplet of audio segments 𝑎, 𝑝 and 𝑛 sampled from the
training set, such that 𝑎 and 𝑝 have the same label and 𝑎 and 𝑛 have
different labels (𝑎 stands for anchor, 𝑝 for positive, 𝑛 for negative),
the loss is:

Lsim
𝑎,𝑝,𝑛 = max

(
∥F (𝑎) − F (𝑝)∥2 − ∥F (𝑎) − F (𝑛)∥2, 0

)
(6)

To emphasize segments with discriminative features, we aug-
ment the similarity loss to rely on the importance embeddings
computed by Equation 4. This has the effect of penalizing the less
important segments and training the network using the segments
whose features are more discriminative. The final audio loss is:

L =
∑

{𝑎,𝑝,𝑛}
(h′′a h′′p h′′n )Lsim

𝑎,𝑝,𝑛 − 𝛼 (h′′a + h′′p + h′′n ) (7)

where h′′· represents the importance embeddings. 𝛼 is a regulariza-
tion parameter with values between 0 and 1. The first term ensures
that only triplets where the three segments are simultaneously
important are used in the similarity loss computation. The second
term discourages the trivial solution that all three weights are zero.

To better understand how the loss optimization works, consider
a few examples. When we select a triplet where all segments are im-
portant in discriminating their class, the second term of Equation 7
leads to an increase in the values of their importance embeddings.
The effect of this triplet on the weights will be enhanced due to
the product from the first term of the equation. On the other hand,
when one or more segments are nondescript and do not affect the
embedding, their importance embedding will be pushed towards
0. In essence, we use the importance embedding to filter the audio
segments that we use in training the network.

Our encoder architecture is reminiscent of the neural machine
translation [2] in that it combines LSTM and attention. However,
unlike [2], we do not have a decoder and compute self attention
between the encoder hidden states rather than attention between
the decoder current state and the encoder hidden states. Unlike
other audio encoders using LSTM and attention [7, 14], we ex-
plicitly encode the importance of a segment within its class into
the segment’s embedding and use the embedding to identify the
important segments during the training process.

4 EVALUATION
In this section, we evaluate the accuracy of our audio scene classifi-
cation framework using real world audio scenes.

4.1 Data and methodology
We evaluate our architecture using three data sets extracted from
the DCASE 2016-2018 challenges [11]. The data sets contain 1,170,
4,680, and 8,640 audio scenes with lengths between 10 and 30 sec-
onds. We use only the DCASE development data and label the data
sets according to their source, scenes16, scenes17, and scenes18. There
are 15 different classes in scenes16 and scenes17, 10 in scenes18. See
the labels in Figure 2 for a complete list of all scenes.

To train our encoder, we randomly select 80% of the scenes in
each data set for training and the rest for testing. To generate audio

Figure 1: Our audio scene classification consists of three
main components: Raw audio processing uses signal pro-
cessing transforms to extract basic audio features (Sec-
tion 3.1); the encoder computes embeddings for short dura-
tion audio segments (Section 3.2); we train the encoder by
optimizing a custom audio loss function (Section 3.3).

segments, we first run FFT on windows of 25ms with 10ms overlap
in each scene and compute the low-level features for each window
(Section 3.1). An audio segment consists of 20 consecutive FFT
windows (or around 300ms of real audio). We select triplets using
semi-hard negative sampling, i.e., anchors are selected at random
and a negative sample is never closer to the anchor than the positive
sample [22]. We run the Adam optimizer with a learning rate of
0.001, batch size of 64, and audio loss regularizer of 0.1. All results
are computed on the test data and capture averages over at least
five experiments.

We measure the detection accuracy in two ways. To provide a
baseline, we compute the all segment prediction: we classify a scene
with majority voting across all its segments. Our contribution is
the first k segments prediction: we classify a scene through majority
voting only on its first 𝑘 segments. To understand the limits of
early detection, in practice we set 𝑘 to 1 to obtain the first segment
accuracy. To compute the accuracy of a single segment we use
nearest-neighbor based classification: we classify a test segment in
the same class as its nearest neighbor in embedding space.

4.2 Results
Table 1 summarizes the accuracy results for all data sets. Focus on
the first two lines for now. The first segment prediction (i.e., 𝑘=1)
conserves much of the accuracy obtained when hearing the entire
scene: listening to the first 300ms (i.e., the duration of an audio
segment) instead of the entire scene (of at least 10s) reduces the
detection accuracy by only 7%.

Because our goal is efficient audio detection based on processing
the first few segments rather than the entire scene, a direct com-
parison to other work classifying entire scenes [7, 14, 15] is not
pertinent. Nevertheless, we note that we achieve similar results
on entire scenes in the DCASE data as Guo et al. [7] (75.01% vs
74.90% for their non-ensemble methods). They compute a single
embedding for an entire six second audio scene, which means they
must hear the whole scene before classifying it.

We also compute the accuracy when increasing the number of
segments at the beginning of a scene that we listen to. Figure 3(top)
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Figure 2: The confusion matrix for the first segment ap-
proach on the scenes16 data set.

Figure 3: Average accuracy the scenes16 data set as we vary
the number of segments we listen to at the beginning of
each scene (top) and the number of possible classes of each
scene (bottom). The duration of a segment is approximately
300ms.

presents the results for scenes16. We are able to match the all seg-
ments accuracy after hearing only the first two segments (or 1s)
of a scene. Although the first k segments accuracy drops slightly
with 𝑘 > 2, its value is still close to the all segment accuracy. We
conclude that we can reliably detect the category of a scene after
less than one second.

Figure 3(bottom) plots the detection accuracy as we vary the
total number of scene classes. To obtain these results, we randomly
select scene classes and train only on samples from these classes.
Our results show that the fewer the scenes to choose from, the
better our framework can predict the correct scene: we obtain 95%

scenes16 scenes17 scenes18
First segment 70.28 67.25 61.92
All segments 75.01 69.98 67.15
First segment (triplet) 68.83 65.26 61.27
All segments (triplet) 73.23 68.11 65.87
First segment (no attn) 65.51 63.62 61.38
All segments (no attn) 69.96 66.96 64.01

Table 1: Detection accuracy results. We compare the all seg-
ments and first segment predictions with first segment pre-
dictions when using a simple loss function, as in Equation 6
(“triplet”) and without an attention layer (“no attn”).
accuracy when looking at the first segment only and with two
scenes to choose from.

Are some scenes more accurately predicted than others? We
compute the first segment accuracy for each individual class and
present the results as a confusion matrix in Figure 2. While most
classes have a high accuracy, we notice that we cannot always
differentiate scenes with similar sounds (e.g., tram and train). This
is because embeddings of segments in these scenes are close to each
other and our nearest neighbor classifier cannot tell them apart. We
are investigating non-linear classifiers to discriminate segments in
such scenarios.

Finally, we seek to better understand the role of the audio loss
and attention in emphasizing the relevant segments in a scene.
We re-run the experiments as follows: first, by replacing the au-
dio loss with a simple triplet loss (Equation 6) (“triplet”); second,
after removing the attention layer (“no attn”). In both cases, we
also remove the importance embedding; the similarity embedding
becomes the final embedding. Table 1 presents the results. The
audio loss can improve classification even when we listen to the
entire scene. Furthermore, without audio loss or attention, the first
segment classification becomes worse: accuracy drops to 65%, com-
pared to 75% for all segments and 70% for first segment when both
attention and audio loss are present.

The improvements from attention and audio loss are higher in
the scenes16 and scenes17 than in scenes18. Since the first segment
results are similar in scenes18, it is likely that a single segment does
not have enough information to discriminate between classes that
are acoustically close. When adding more segments, the effect of
attention and audio loss is more visible, albeit not as much as for
scenes16 and scenes17. A potential reason for this is the much wider
diversity of the scenes18 data, which contains scenes recorded in
six cities, instead of the two for the other two data sets.

5 CONCLUSIONS
We introduced a deep learning based audio classification frame-
work that can detect the category of the environment with high
accuracy after listening in for at most 300ms. Our framework relies
on jointly learning embeddings for short audio segments, including
an importance embedding associated with each segment. These
embeddings help identify the relevant segments within a scene and
underplay the nondescript segments, and underline the important
time steps within a segment. Two ideas are critical to our approach:
formulating the classification problem as a short audio segment
retrieval problem and constructing a new learning optimization
objective that captures segment similarity and importance.
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