
Fast Structural Binary Coding
Dongjin Song⇤, Wei Liu], and David A. Meyer†

⇤Department of Electrical and Computer Engineering,University of California, San Diego
La Jolla, USA, 92093-0409. Email: dosong@ucsd.edu

] Didi Research, Didi Kuaidi, Beijing, China. Email: wliu@ee.columbia.edu
†Department of Mathematics,University of California, San Diego

La Jolla, USA, 92093-0112. Email: dmeyer@math.ucsd.edu

Abstract

Binary coding techniques, which compress origi-
nally high-dimensional data samples into short bi-
nary codes, are becoming increasingly popular due
to their efficiency for information retrieval. Lever-
aging supervised information can dramatically en-
hance the coding quality, and hence improve search
performance. There are few methods, however,
that efficiently learn coding functions that optimize
the precision at the top of the Hamming distance
ranking list while approximately preserving the ge-
ometric relationships between database examples.
In this paper, we propose a novel supervised bi-
nary coding approach, namely Fast Structural Bi-
nary Coding (FSBC), to optimize the precision at
the top of a Hamming distance ranking list and en-
sure that similar images can be returned as a whole.
The key idea is to train disciplined coding func-
tions by optimizing a lower bound of the area under
the ROC (Receiver Operating Characteristic) curve
(AUC) and penalize this objective so that the ge-
ometric relationships between database examples
in the original Euclidean space are approximately
preserved in the Hamming space. To find such a
coding function, we relax the original discrete opti-
mization objective with a continuous surrogate, and
then derive a stochastic gradient descent method to
optimize the surrogate objective efficiently. Empir-
ical studies based upon two image datasets demon-
strate that the proposed binary coding approaches
achieve superior image search performance to the
states-of-the-art.

1 Introduction
With the rapid development of massive image collection ap-
plications such as Instagram, Flickr, and Pinterest, there is
an increasing demand for finding visually relevant images
effectively and efficiently. Binary coding techniques, rather
than exhaustively searching for the most similar images with
respect to a query in a high-dimensional feature space, en-
code images with compact binary codes and conduct efficient
searches in the generated low-dimensional code space (i.e.,

Hamming space). This can reduce search time and save stor-
age space.

In particular, binary coding methods aim to learn a set
of coding functions

�
hq : Rd 7! H = {�1, 1} r

q=1
to

map data samples from a d-dimensional data space Rd to
an r-dimensional Hamming space Hr. Early binary coding
approaches, e.g., Locality-Sensitive Hashing (LSH) [Andoni
and Indyk, 2008] and Min-wise Hashing (MinHash) [Broder
et al., 1998], produce binary codes with random permu-
tations or projections. These randomized binary coding
methods, however, require long code lengths (r � 1, 000)
to meet search requirements, and usually cannot perform
well for large-scale image search [Liu et al., 2012; 2014;
Zhang et al., 2014; Wang et al., 2014; 2016] as they consider
data points independently.

In contrast to such randomized binary coding approaches,
various data-dependent binary coding methods have been in-
vented more recently. These techniques, in general, can be di-
vided into two main categories: unsupervised and supervised
(including semi-supervised) approaches. Unsupervised ap-
proaches, such as Spectral Hashing (SH) [Weiss et al., 2008],
Iterative Quantization (ITQ) [Gong et al., 2012], Isotropic
Hashing (ISOH) [Kong and Li, 2012], Discrete Graph Hash-
ing (DGH) [Liu et al., 2014]

etc., learn coding functions
by modeling the underlying data structures, distributions, or
topological information. Supervised approaches, on the con-
trary, learn coding functions by leveraging supervision infor-
mation, e.g., instance-level labels, pair-level labels, or triplet-
level ranks. Representative techniques include pointwise su-
pervised methods (e.g., Binary Reconstructive Embedding
(BRE) [Kulis and Darrell, 2009]), pairwise supervised meth-
ods (e.g., Minimal Loss Hashing (MLH) [Norouzi and Fleet,
2011] and Kernel-based Supervised Hashing (KSH) [Liu et

al., 2012]); and rank supervised approaches (e.g., Ham-
ming Distance Metric Learning (HDML) [Norouzi et al.,
2012], Ranking-based Supervised Hashing (RSH) [Wang et

al., 2013], Column Generation Hashing (CGH) [Li et al.,
2013]), Rank Preserving Hashing (RPH) [Song et al., 2015b],
and Top Rank Supervised Binary Coding (Top-RSBC) [Song
et al., 2015a].

Despite existing rank supervised binary coding techniques
having shown their effectiveness and efficiency for scalable
visual search tasks, few of them focus on optimizing the pre-

Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence (IJCAI-16)

2018

cision at the top of a ranking list according to Hamming dis-
tance, while considering the underlying structure of the rank-
ing list [Weston and Blitzer, 2012] appropriately (i.e., ap-
proximately preserving the geometric relationship between
database examples such that the set of similar images can
be returned as a whole). Therefore, in this paper, we pro-
pose a novel supervised binary coding approach, namely Fast
Structural Binary Coding (FSBC), to optimize the precision
at the top of a Hamming distance ranking list and approxi-
mately preserve the geometric relationships between database
examples. The core idea is to train disciplined coding func-
tions by optimizing a lower bound of the area under the ROC
(Receiver Operating Characteristic) curve (AUC) and penal-
izing the objective such that the geometric relationships be-
tween database examples in the original Euclidean space is
preserved in the Hamming space. In this way, we may avoid
producing a set of top ranked images which may be too di-
verse and include irrelevant examples (e.g., examples from
different classes). Since the objective we introduce is discrete
and the associated optimization problem is combinatorially
difficult, we relax the original discrete objective to a continu-
ous and differentiable surrogate, and then derive a stochastic
gradient descent method to optimize the surrogate objective.
We compare the proposed approach, FSBC, against various
state-of-the-art binary coding techniques through extensive
experiments conducted on two benchmark image datasets,
i.e., SUN397 [Xiao et al., 2010] and YouTube Faces [Wolf et

al., 2011]. The experimental results demonstrate that FSBC
outperforms the state-of-the-art approaches for various image
search tasks.

2 Lower Bound of AUC
In this section, we first introduce the notation used in the pa-
per. Then we introduce the concept of binary coding. Fi-
nally, we derive a lower bound of the area under the ROC
(Receiver Operating Characteristic) curve (AUC) based upon
binary codes.

2.1 Notation
Let X 2 Rd⇥n be a data matrix of n data samples with d
dimensions; we can use xj 2 Rd to represent the j-th col-
umn of X, and Xij to denote the entry in i-th row and j-th
column of X, respectively. Moreover, we use k · kF to denote
the Frobenius norm of matrices, and kxkH to represent the
Hamming norm of vector x, which is defined as the number
of nonzero entries in x, i.e., the `0 norm. We use kxk1 to rep-
resent the `1 norm of vector x, which is defined as the sum of
absolute values of the entries in x.

2.2 Binary coding
Given a data matrix X 2 Rd⇥n, we aim to learn a set of
mapping functions

�
hq(x)

 r

q=1
such that a d-dimensional

floating-point input x 2 Rd is compressed into an r-bit bi-
nary code b =

⇥
h1(x), . . . , hr(x)

⇤ 2 Hr ⌘ {1,�1}r. This
mapping, also called a coding function in the literature, is de-
fined as:

hq(x) = sgn
�
fq(x)

�
, q = 1, . . . , r, (1)

where sgn(x) is the sign function that returns 1 if x > 0
and �1 otherwise, and fq : Rd 7! R is a proper prediction
function. A variety of mathematical forms for fq (e.g., lin-
ear or nonlinear) can be taken to apply for domain specific
practical applications. In this work, we consider a linear pre-
diction function, i.e., fq(x) = w

>
q x + tq (where wq 2 Rd

and tq 2 R) for simplicity. Based upon the previous work
[Gong et al., 2012; Kong and Li, 2012; Liu et al., 2012;
Wang et al., 2013], we set the bias term tq = �w

>
q u by us-

ing the mean vector u =
Pn

i=1 xi/n, which will make each
generated binary bit

�
hq(xi)

 n

i=1
for q 2 [1 : r] be nearly

balanced and hence have maximum entropy. For brevity, we
can define a coding function h : Rd 7! Hr to comprise the
functionality of r hash functions {hq}rq=1, that is,

h(x,W) = sgn
�
W>(x� u)

�
, (2)

which is parameterized by a matrix W = [w1 · · · wr] 2
Rd⇥r. Note that Eq. 2 applies the sign function element-wise.
For convenience we write h(x) = h(x,W).

2.3 Lower bound of AUC
Given a triplet (xi, xj , xs), assuming xi is a query, xj 2 P
is a similar example to xi (P is the set of similar examples),
and xs 2 N is a dissimilar example to xi (N is the set of
dissimilar examples), then the AUC for query xi is given as:

AUC =
1

|P||N |
⇣ X

xj2P

X

xs2N
I
⇣
kh(xi)� h(xj)kH <

kh(xi)� h(xs)kH
⌘⌘

(3)
where I(·) is an indicator function which is 1 if the condition
in the parenthesis is satisfied and 0 otherwise.

Since AUC counts each pairwise comparison equally, it
does not explicitly quantify the fraction of positive examples
which achieve the optimal ranking (ranked on the top of a
Hamming distance ranking list). For this purpose, we derive
a lower bound of AUC in Theorem 1.
Theorem 1. AUC is lower bounded by

AUC � 1

|P|
⇣ X

xj2P

Y

xs2N
I
⇣
kh(xi)� h(xj)kH <

kh(xi)� h(xs)kH
⌘⌘

,

(4)

with equality holding if within each product operator the con-

dition for each indicator function is jointly satisfied or jointly

not satisfied.

Theorem 1 states that the fraction of positive examples
which achieve the optimal ranking cannot be greater than
AUC. It can be proved using the fact that the arithmetic mean
is always greater than or equal to the geometric mean. Note
that the calculation of the AUC lower bound in Eq. 4 includes
all the possible pairwise comparisons, which may make the
underlying optimization problem intractable for a large scale
database. An equivalent, more tractable form, can be derived:

2019

(a) (b)

Figure 1: Given a triplet (h(xi),h(xj),h(xs)) (a) If � = 0,
h(xi) = (1, 1), h(xj) = (�1, 1), and h(xs) = (�1,�1)
could be one of the solutions for Eq. 6. (b) If � > 0, h(xi) =
(1, 1), h(xj) = (1, 1), and h(xs) = (�1,�1) will be the
optimal solution.

Proposition 1. The lower bound of AUC in Theorem 1 is

equivalent to

1

|P|
⇣ X

xj2P
I
⇣
kh(xi)� h(xj)kH <

min
xs2N

�kh(xi)� h(xs)kH
�⌘⌘

,

(5)

which can be calculated in linear time.

Proposition 1 suggests that instead of exhaustively search-
ing for the pairwise comparisons which are jointly satisfied,
we only need to compare with the minimum Hamming dis-
tance over the set N . Proposition 1 also quantifies the frac-
tion of positive examples which are ranked on top of all the
negative examples (i.e., on top of the ranking list) [Song et

al., 2015c].

3 Fast Structural Binary Coding
In this section, we first present Fast Structural Binary Cod-
ing (FSBC). Then we derive a stochastic gradient method to
produce binary codes by optimizing the FSBC objective.

3.1 Model
FSBC aims to optimize the precision at the top of a Ham-
ming distance ranking list and approximately preserve the ge-
ometric relationship between database examples based upon
a linear mapping W. Given a triplet (xi, xj , xs), as-
suming xi is a query, xj is a similar example, and xs =
argmin

x2N kh(xi)�h(x)kH is a dissimilar example which
is closest to xi in Hamming space within the set N , the ob-
jective of FSBC can be given as:

O(W) = I
⇣
kh(xi)� h(xj)kH < kh(xi)� h(xs)kH

�

+
�

2

⇣
kh(xi)� h(xs)k22 + kh(xj)� h(xs)k22

� kh(xi)� h(xj)k22
⌘
� µ

2
kW k2F ,

(6)
where the first term encodes the lower bound of AUC in
Proposition 1. The second term approximately preserves the

(a) (b)

Figure 2: Relaxation of the objective function. (a) tanh(x) is
a relaxation of sgn(x); (b) sigmoid loss G(x) = 1

1+exp(�x)

is a good approximation for indicator function I(x > 0).

geometric relationship of the triplet in the original Euclidean
space (i.e., the distance of dissimilar pairs (h(xj),h(xs))
and (h(xi),h(xs)) should be large, and the distance of sim-
ilar pair (h(xi),h(xj)) should be small). This term is nec-
essary because (1) it resolves the degeneracy problem shown
in Figure 1; (2) it imposes a constraint over the dissimilar
pair (h(xj),h(xs)) to ensure the distance between them is
also large; (3) it also explicitly states that the distances be-
tween (h(xi),h(xs)) and between (h(xi),h(xj)) should be
large/small respectively, while the first term only cares about
their difference. The last term is a regularization term to pre-
vent the model from overfitting. � > 0 and µ > 0 are two
hyper-parameters to control the balance of the three terms.

3.2 Relaxation and approximation
The proposed model in Eq. 6 is difficult to optimize because
(1) the coding function in Eq. 2 is a discrete mapping; (2) the
Hamming norm lies in a discrete space; and (3) the indicator
function in Eq. 6 is non-differentiable. Thus the objective in
Eq. 6 is discrete, and combinatorially difficult to optimize.

To address these issues we relax the original discrete ob-
jective to a continuous and differentiable surrogate. We
first approximate the original coding function h(x,W) =
sgn

�
W>(x� u)

�
by

h(x,W) = tanh
�
W>(x� u)

�
, (7)

which is continuous and differentiable as shown in Figure
2(a). For convenience we write h(xi) = h(xi,W).

Second, we relax the Hamming norm in Eq. 6 to the `1
norm which is convex and robust to outliers. Finally, we ap-
proximate the indicator function in Eq. 6 with the sigmoid
function, G(x) = 1

1+exp(�x) , as shown in Figure 2(b), i.e.,

I
⇣
kh(xi)� h(xj)k1 < kh(xi)� h(xs)k1

⌘

⇡G
⇣
kh(xi)� h(xs)k1 � kh(xi)� h(xj)k1

⌘
.

(8)

The basic idea is that if h(xi) is closer to h(xj) than h(xs)
in the `1 norm, then the value of this objective should be close
to 1.

With these relaxations/approximations, the original objec-

2020

Algorithm 1 Fast Structural Binary Coding
1: Input: D = {xi,xj ,xs}, ↵, W, �, and µ
2: Output: W 2 Rd⇥k

3: Repeat
4: Randomly pick up a sample xi.
5: Fix xi and randomly select a similar sample xj .
6: Fix xi and xj , randomly draw p dissimilar sample

xs when s varies to form {xi,xj ,xs}ps=1.
7: Determine s by mins2(1,...,p)

�kh(xi)� h(xs)k1
�
.

8: If kh(xi)� h(xs)k1 < ✏+ kh(xi)� h(xj)k1
9: Calculate @O(W)

@W based upon Eq. 10, 11, 12.
10: Make a gradient ascent based upon Eq. 13.
11: End if
12: Until mean average precision does not improve or

maximum iteration number is achieved.

tive in Eq. 6 can be fomulated as:

O(W) = G
⇣
kh(xi)� h(xs)k1 � kh(xi)� h(xj)k1

⌘

+
�

2

⇣
kh(xi)� h(xs)k22 + kh(xj)� h(xs)k22

� kh(xi)� h(xj)k22
⌘
� µ

2
kWk2F ,

(9)
where s is the index of the dissimilar example closest to xi

in Hamming space, deefined by xs = argmin
x2N kh(xi)�

h(x)k1.

3.3 Optimization
To optimize the approximated objective in Eq. 9, in each iter-
ation we first randomly select a query xi, a similar exam-
ple xj , and a set N of p dissimilar examples. After de-
termining xs as argmin

x2N
�kh(xi) � h(x)k1

�
, then if

kh(xi) � h(xs)k1 < ✏ + kh(xi) � h(xj)k1 with ✏ > 0,
we can calculate the gradient in Eq. 9 with:

@O(W)

@W
= G

⇣
His �Hij

⌘
·G

⇣
�His +Hij

⌘
·

(
@His

@W
� @Hij

@W
) + �

⇣@Tis

W
+

@Tjs

W
� @Tij

W

⌘
� µW

(10)
where Hab = kha � hbk1 and Tab = kha � hbk22, @Hab

@W is
given by:

@Hab

@W
=(xa � u)[sgn(ha � hb)� (1� h

2

a)]
>�

(xb � u)[sgn(ha � hb)� (1� h
2

b)]
>,

(11)

where � represents Hadamard product (i.e., element-wise
product).

@Tab
@W is given by

@Tab

@W
=(xa � u)[(ha � hb)� (1� h

2

a)]
>�

(xb � u)[(ha � hb)� (1� h
2

b)]
>.

(12)

Table 1: The detailed statistics of two datasets.

Datasets SUN397 YouTube Faces
] Queries 1,800 6,500
] Database samples 106,953 614,626
] Classes 397 1,595
] Dimensions 1,600 1,770

With the gradient in Eq. 10, we can conduct stochastic gra-
dient ascent as following:

W = W + ↵
@O(W)

@W
(13)

where ↵ is the learning rate. The detailed optimization pro-
cedure is provided in Algorithm 1. ✏ is set to be 1 in all our
experiments.

Note that our optimization procedure in Algorithm 1 is
similar to standard stochastic gradient descent (SGD). The
difference is that in each iteration, either than randomly se-
lecting a subset of training examples, we only select the most
extreme example from a subset of training examples for op-
timization. It is very plausible that this approach will work
and the empirical results confirm our intuition that this should
give good results. We are aware that the theoretical guaran-
tees for standard SGD do not apply directly. It will be an
interesting problem to provide theoretical guarantees for Al-
gorithm 1.

4 Experiment
In this section, we first describe two datasets and the setting
for our empirical study. Then we introduce the three eval-
uation metrics used in our experiments. Finally we com-
pare the proposed Fast Structural Binary Coding (FSBC)
against several state-of-the-art binary coding and hashing al-
gorithms to demonstrate its effectiveness for large scale im-
age search. Among these baseline approaches, four are unsu-
pervised approaches, including one randomized method, Lo-
cality Sensitive Hashing (LSH) [Andoni and Indyk, 2008],
one spectral approach, Spectral Hashing (SH) [Weiss et al.,
2008], and two linear projection techniques, Iterative Quan-
tization (ITQ) [Gong et al., 2012] and Isotropic Hashing
(ISOH) [Kong and Li, 2012]. The other three are supervised
approaches which use triplets to encode the label information
(similar to our setting); they are Hamming Distance Metric
Learning (HDML) [Norouzi et al., 2012], Column Genera-
tion Hashing (CGH) [Li et al., 2013], and Ranking-based Su-
pervised Hashing (RSH) [Wang et al., 2013].

4.1 Datasets and setup
In the experiments, we perform image search over two differ-
ent datasets, i.e., SUN397 [Xiao et al., 2010] and YouTube
Faces [Wolf et al., 2011]. SUN397 consists of about 108K
images from 397 scene categories. In SUN397, each im-
age is represented by a 1,600-dimensional feature vector ex-
tracted by principle component analysis (PCA) from 12,288-
dimensional Deep Convolutional Activation Features [Gong
et al., 2014]. The YouTube Faces dataset contains 614,626
face images of 1,595 different people. In YouTube Faces,

2021

(a) MAP vs. r on SUN397 (b) Precision@k on SUN397 (c) Recall@k on SUN397

Figure 3: (a) MAP vs. a varying number of binary bits (r = {32, 64, 96, 128, 160, 192, 224, 256}) for different binary coding
and hashing algorithms on SUN397. (b) Precision@k on SUN397 when r = 256. (c) Recall@k on SUN397 when r = 256.

(a) MAP vs. r on YouTube Faces (b) Precision@k on YouTube Faces (c) Recall@k on YouTube Faces

Figure 4: (a) MAP vs. a varying number of binary bits (r = {32, 64, 96, 128, 160, 192, 224, 256}) for different binary coding
and hashing algorithms on YouTube Faces. (b) Precision@k on YouTube Faces when r = 256. (c) Recall@k on YouTube
Faces when r = 256.

each face image is represented by a 1,770-dimensional LBP
feature vector [Ahonen et al., 2006]. The detailed statistics of
these two datasets are shown in Table 1.

In SUN397, 100 images are randomly sampled from each
of the 18 largest scene categories to form a test set of 1,800
query images. For unsupervised approaches, all the database
samples are used for training. For supervised methods, we
randomly choose 200 images from each of the 18 scene cat-
egories to form a training set of 3,600 images; an additional
50 images from each of these 18 scene categories are ran-
domly selected to form a validation set of 900 query images.
All the rest of the images in the 397 categories are then used
as the database samples. In YouTube Faces, 100 face images
from each of the 65 largest face classes are randomly sampled
to form a test set of 6,500 query images. For unsupervised
learning, all the database images are used for training. For
supervised learning, 1,000 images from each of the 65 face
classes are randomly draw to form a training set of 65,000
face images; an additional 50 images from each of these 65
scene categories are randomly selected to form a validation
set of 3250 query images. All the rest of the face images in
the 1,595 face classes are treated as the database samples for
retrieval.

We implement the proposed FSBC and baseline algo-
rithms using Matlab on a PC with Intel Core i7-4770K Pro-
cessor 3.5GHz and 32GB RAM. The parameters � and µ
of FSBC are determined by cross validation over the grid

{1, 10�1, 10�2, 10�3, 10�4, 10�5, 10�6}. We will discuss
the parameter sensitivity later.

To measure the effectiveness of various binary coding and
hashing techniques for image search, we consider three evalu-
ation metrics, i.e., Mean Average Precision (MAP), precision
at top-k positions (Precision@k), and recall at top-k positions
(Recall@k).

4.2 Results
We compare the proposed Fast Structural Binary Coding
(FSBC) against seven binary coding and hashing algorithms
based upon SUN397 and YouTube Faces when r varies from
32 bits to 256 bits, as shown in Figure 3(a) and 4(a), re-
spectively. We observe that with the increment of bits (r),
FSBC consistently outperforms all baseline approaches for
MAP. This is because FSBC not only optimizes the preci-
sion at the top of a Hamming distance ranking list, but also
approximately preserves the geometric relationship between
database examples in the original Euclidean space. For base-
line approaches, supervised methods, i.e., HDML, RSH, and
CGH generally outperform unsupervised techniques since
they can produce discriminative binary codes by incorporat-
ing label information appropriately. Among the unsupervised
approaches, we notice that SH, ITQ and ISOH consistently
outperform LSH. This suggests that utilizing underlying data
structures, distributions, or topological information can pro-
duce more effective codes for image search tasks. The de-

2022

Table 2: Image search performance (MAP and Precision@100) on SUN397 and YouTube Faces when r = 256. All training
times are recorded in second. The best MAP or Precision@100 is displayed in bold-face type.

Algorithms SUN397 YouTube Faces
MAP Prec@100 Training Time MAP Prec@100 Training Time

LSH [Andoni and Indyk, 2008] 0.0310 0.1042 2.03 0.0845 0.3097 3.82⇥102

SH [Weiss et al., 2008] 0.0968 0.2947 6.16⇥101 0.3422 0.6461 9.52⇥102

ITQ [Gong et al., 2012] 0.1581 0.3289 5.62⇥101 0.2976 0.5504 6.60⇥102

ISOH [Kong and Li, 2012] 0.1385 0.3078 1.16⇥101 0.3387 0.6510 2.41⇥102

HDML [Norouzi et al., 2012] 0.2814 0.4748 5.31⇥103 0.4755 0.6999 5.16⇥103

RSH [Wang et al., 2013] 0.1376 0.3049 1.07⇥103 0.3604 0.6611 1.22⇥103

CGH [Li et al., 2013] 0.2982 0.4868 4.34⇥103 0.5012 0.7090 5.95⇥103

FSBC 0.3770 0.5359 2.48⇥103 0.5579 0.7273 3.94⇥103

(a) MAP vs. µ (b) Precision@100 vs. µ

Figure 5: Parameter sensitivity study of µ =
{1, 10�1, 10�2, 10�3, 10�4, 10�5, 10�6} on SUN397
with r = 128 and � = 0.01.

tailed image search performances in terms of MAP and Pre-
cision@100 over the two datasets are provided in Table 2.

We also compare FSBC with baseline methods based
upon Precision@k and Recall@k over SUN397 and YouTube
Faces (when r is fixed as 256 bits). In Figure 3(b), 3(c),
4(b), and 4(c), we notice that FSBC generally outperforms
all baseline approaches when k varies from 10 to 100 for
Precision@k and as k varies from 0 to 5000 for Recall@k.
This suggests that optimizing the objective of FSBC can sig-
nificantly improve top-k image search performance. Note
that Precision@k does not perform well when k < 30 in Fig-
ure 3(b) and 4(b). This may be because we only optimize the
objective over a small random subset (p) of training examples
in each iteration (for efficiency), not on the entire training set.
We observed that as p increases, the performance (k < 30)
will improve and may outperform baseline methods.

The training time of the proposed FSBC and baseline algo-
rithms over the two datasets are provided in Tables 1. We ob-
serve that the offline training time of FSBC is less than those
of HDML and CGH which all use label information in the
form of triplet-level ranks. This is because FSBC is only op-
timized over the most extreme triplet while HDML and CGH
weigh each triplet equally. For binary code generation, the
main computational cost of FSBC depends on the linear pro-
jection and binarization operations. Hence, the test time of
FSBC is 1.94⇥10�5 second for SUN397 and 2.26⇥10�5 sec-
ond for YouTube Faces which is as efficient as typical linear
binary coding or hashing algorithms.

(a) MAP vs. � (b) Precision@100 vs. �

Figure 6: Parameter sensitivity study of � =
{1, 10�1, 10�2, 10�3, 10�4, 10�5, 10�6} on SUN397
with r = 128 and µ = 10�5.

We study the parameter sensitivity for FSBC (when r =
128) in Figure 5 and 6. In Figure 5, we observe that when �
is fixed at 0.01, the performance (MAP and Precision@100)
of FSBC is relatively stable when µ varies from 10�3 to 10�6.
In Figure 6, we notice that when µ is fixed as 10�5, the
Precision@100 of FSBC is relatively robust when � varies
from 1 to 10�6 but MAP decreases as � decreases from 10�2

to 10�6. These results justify the effectiveness of the regular-
ization term being used for preserving the geometric relation-
ship between the database examples in the original Euclidean
space.

5 Conclusion
In this paper, we proposed Fast Structural Binary Coding
(FSBC) to explicitly optimize the precision at the top of a
Hamming distance ranking list and approximately preserve
the geometric relationship between the database examples in
the original Euclidean space. The key idea is to train dis-
ciplined coding functions by optimizing a lower bound of
AUC and penalize this objective such that similar database
examples in the original Euclidean space can be returned as
a whole in the Hamming distance ranking list. To find such
a coding function, we relaxed the original discrete optimiza-
tion objective with a continuous surrogate, and then derived a
stochastic gradient descent method to optimize the surrogate
objective. Empirical studies based upon two image datasets
demonstrated that the proposed FSBC can outperform the
state-of-the-arts for large scale image search.

2023

References
[Ahonen et al., 2006] T. Ahonen, A. Hadid, and

M. Pietikainen. Face description with local binary
patterns: Application to face recognition. IEEE Trans. on

Pattern Analysis and Machine Intelligence, 28(12):2037–
2041, 2006.

[Andoni and Indyk, 2008] A. Andoni and P. Indyk. Near-
optimal hashing algorithms for approximate nearest neigh-
bor in high dimensions. Communications of the ACM,
51(1):117–122, 2008.

[Broder et al., 1998] A. Z. Broder, M. Charikar, A. M.
Frieze, and M. Mitzenmacher. Min-wise independent per-
muations. In Proceedings of ACM Symposium on Theory

of Computing, 1998.
[Gong et al., 2012] Y. Gong, S. Lazebnik, A. Gordo, and

F. Perronnin. Iterative quantization: a procrustean ap-
proach to learning binary codes for large-scale image re-
trieval. IEEE Trans. on Pattern Analysis and Machine In-

telligence, 2012.
[Gong et al., 2014] Y. Gong, L. Wang, R. Guo, and S. Lazeb-

nik. Multi-scale orderless pooling of deep convolutional
activation features. In Proceedings of European Confer-

ence on Computer Vision, 2014.
[Kong and Li, 2012] W. Kong and W.-J. Li. Istropic hash-

ing. In Proceedings of Advances in Neural Information

Processing Systems 25, 2012.
[Kulis and Darrell, 2009] B. Kulis and T. Darrell. Learning

to hash with binary reconstructive embeddings. In Pro-

ceedings of Advances in Neural Information Processing

Systems 22, 2009.
[Li et al., 2013] X. Li, G. Lin, C. Shen, A. Hengel, and

A. Dick. Learning hash functions using column genera-
tion. In Proceedings of the 30th International Conference

on Machine Learning, 2013.
[Liu et al., 2012] W. Liu, J. Wang, R. Ji, Y.-G. Jiang, and S.-

F. Chang. Supervised hashing with kernels. In Proceed-

ings of the IEEE International Conference on Computer

Vision and Pattern Recognition, 2012.
[Liu et al., 2014] W. Liu, C. Mu, S. Kumar, and S.-F. Chang.

Discrete graph hashing. In Proceedings of Advances in

Neural Information Processing Systems 27, 2014.
[Norouzi and Fleet, 2011] M. Norouzi and D. J. Fleet. Mini-

mal loss hashing for compact binary codes. In Proceedings

of the 28th International Conference on Machine Learn-

ing, 2011.
[Norouzi et al., 2012] M. Norouzi, D. J. Fleet, and

R. Salakhutdinov. Hamming distance metric learn-
ing. In Proceedings of Advances in Neural Information

Processing Systems 25, 2012.
[Song et al., 2015a] D. Song, W. Liu, R. Ji, D. A. Meyer, and

J. Smith. Top rank supervised binary coding for visual
search. In Proceedings of the IEEE International Con-

ference on Computer Vision, pages 1922–1930, Santiago,
Chile, 2015.

[Song et al., 2015b] D. Song, W. Liu, D. A. Meyer, D. Tao,
and R. Ji. Rank preserving hashing for rapid image search.
In Proceedings of Data Compression Conference, pages
353–362, Snowbird, Utah, USA, 2015.

[Song et al., 2015c] D. Song, D. A. Meyer, and D. Tao. Ef-
ficient latent link recommendation in signed networks. In
Proceedings of the 21st ACM SIGKDD International Con-

ference on Knowledge Discovery and Data Mining, pages
1105–1114, Sydney, Australia, 2015.

[Wang et al., 2013] J. Wang, W. Liu, A. X. Sun, and Y. Jiang.
Learning hash codes with listwise supervision. In Pro-

ceedings of the IEEE International Conference on Com-

puter Vision, 2013.
[Wang et al., 2014] J. Wang, H. T. Shen, J. Song, and

J. Ji. Hashing for similarity search: A survey. In
arXiv:1408.2927, 2014.

[Wang et al., 2016] J. Wang, W. Liu, S. Kumar, and S.-F.
Chang. Learning to hash for indexing big data - a sur-
vey. To appear in Proceedings of the IEEE, 104(1):34–57,
Jan 2016.

[Weiss et al., 2008] Y. Weiss, A. Torralba, and R. Fergus.
Spectral hashing. In Proceedings of Advances in Neural

Information Processing Systems 21, 2008.
[Weston and Blitzer, 2012] J. Weston and J. Blitzer. Latent

structured ranking. In Proceedings of Uncertainty in Arti-

ficial Interlligence, 2012.
[Wolf et al., 2011] L. Wolf, T. Hassner, and I. Maoz. Face

recognition in unconstrained videos with matched back-
ground similarity. In Proceedings of the IEEE Interna-

tional Conference on Computer Vision and Pattern Recog-

nition, 2011.
[Xiao et al., 2010] J. Xiao, J. Hays, K. A. Ehinger, A. Oliva,

and A. Torralba. Sun database: Large-scale scene recog-
nition from abbey to zoo. In Proceedings of the IEEE In-

ternational Conference on Computer Vision and Pattern

Recognition, 2010.
[Zhang et al., 2014] T. Zhang, C. Du, and J. Wang. Compos-

ite quantization for approximate nearest neighbor search.
In Proceedings of the 30th International Conference on

Machine Learning, 2014.

2024

