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ABSTRACT

Deep learning is the method of choice for trajectory prediction for autonomous vehicles. Unfortu-
nately, its data-hungry nature implicitly requires the availability of sufficiently rich and high-quality
centralized datasets, which easily leads to privacy leakage. Besides, uncertainty-awareness becomes
increasingly important for safety-crucial cyber physical systems whose prediction module heavily
relies on machine learning tools. In this paper, we relax the data collection requirement and enhance
uncertainty-awareness by using Federated Learning on Connected Autonomous Vehicles with an
uncertainty-aware global objective. We name our algorithm as FLTP. We further introduce ALFLTP
which boosts FLTP via using active learning techniques in adaptatively selecting participating clients.
We consider two different metrics negative log-likelihood (NLL) and aleatoric uncertainty (AU) for
client selection. Experiments on Argoverse dataset show that FLTP significantly outperforms the
model trained on local data. In addition, ALFLTP-AU converges faster in training regression loss and
performs better in terms of NLL, minADE and MR than FLTP in most rounds, and has more stable
round-wise performance than ALFLTP-NLL.

1 Introduction

Accurate trajectory prediction of surrounding objects is crucial for autonomous driving. For example, it is important
to predict the lane merging or overtaking actions of neighboring vehicles in order to avoid collision. Recently, deep
learning has been the method of choice for trajectory prediction [1, 2, 3, 4, 5, 6]. To the best of our knowledge, due
to the data-hungry nature of deep learning, most of existing methods implicitly assume the availability of sufficiently
rich and high-quality centralized datasets [6, 4, 7, 8, 9, 10, 11, 12]. This requirement easily leads to privacy leakage
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because raw trajectory data contains sensitive information such as personal information (home and company addresses,
and driving logs) and vehicle information (vehicle types, brands, and appearances) [13]. The privacy threat quickly
deteriorates as the need to acquire useful information across cities and/or countries [14] increases.

Uncertainty-awareness becomes increasingly important for safety-crucial cyber physical systems like autonomous
vehicles whose prediction module heavily relies on machine learning tools [15, 16, 17, 3, 18, 19, 20]. In general,
there are two principal types of uncertainties. Data uncertainty (aleatoric) describes the intrinsically irreducible data
variability. Model uncertainty (epistemic) refers to the shortcoming of the observational models that can be used to
learn the underlying true mechanisms. In trajectory prediction literature, aleatoric uncertainty is often approximated
by the variance estimate contained in the model output [21, 3, 6, 18], while epistemic uncertainty is often modeled by
Monte Carlo (MC) dropout [22, 3] and ensembles [23, 20]. Nevertheless, the potential of utilizing the intermediate
uncertainty quantification in further improving trajectory prediction training is largely overlooked.

Federated Learning (FL) is a rapidly developing privacy-preserving decentralized learning framework in which a
parameter server (PS) and a collection of clients collaboratively train a common model [24, 25]. In FL, instead of
uploading data to the PS, the clients perform updates based on their own local data and periodically report their local
updates to the PS. The PS then effectively aggregates those updates to obtain a fine-grained model and broadcasts the
fine-grained model to the clients for further model updates. Contextualize FL in the connected autonomous vehicles
(CAVs) applications, each autonomous vehicle is a client which collects local data of their driving scenarios and the
parameter server can be viewed as a computing center.

Our contributions can be summarized as follows:
(1) We relax the raw data collection requirement by tailoring FL to connected autonomous vehicles to collaboratively
train HiVT [6] – a light-weight transformer; we name the resulting algorithm as Federated Learning based Trajectory
Prediction (FLTP). To incorporate uncertainty quantification, following the literature, we adopt the popular negative log-
likelihood (NLL) of Laplace mixture distribution as the regression loss with location and scale parameters, respectively,
decode the predicted trajectories and the corresponding aleatoric uncertainty. To the best of our knowledge, we are the
first to apply FL on CAVs for collaborative trajectory prediction.
(2) It is widely observed that [24, 25] (also validated in our preliminary experimental results) that partial client
participation can speed up the convergence and improve the accuracy. To further boost the performance of FLTP, we
introduce ALFLTP which uses novel active learning techniques to carefully select the participating clients per iteration.
We respectively consider the negative log-likelihood (NLL) and aleatoric uncertainty (AU) as client selection metrics.
To the best of our knowledge, we are the first to consider using aleatoric uncertainty as a metric for client selection.
(3) Experiments on Argoverse dataset show that FLTP significantly outperforms the model trained on local data. In
addition, compared with FLTP, ALFLTP-AU converges faster in training regression loss and performs better in terms of
NLL, minADE and MR in most rounds. It also has more stable round-wise performance than ALFLTP-NLL.

2 Related Work

Trajectory Prediction for Autonomous Vehicles. The pipeline of trajectory prediction typically consists of three sub-
tasks: input representation, context aggregation, and output representation. Input representation is often created through
either rasterization [1, 2, 3] or vectorization [4, 5, 6]. Context aggregation modules are used to capture object interactions
in traffic such as vehicle-to-vehicle, vehicle-to-lane, and vehicle-to-pedestrian interactions; popular techniques include
social pooling [21, 26], attention mechanism [7, 27, 9, 6] or Graph Neural Network (GNN) [28, 4, 29]. To make
multi-modal prediction for future trajectories, output representation often relies on approaches such as regression based
approaches [21, 4, 6] and proposal based approaches [30, 31, 32, 9].

Federated Learning for Trajectory Prediction. FedAvg is the first and the most widely implemented FL algorithm
[24, 25]. Despite FL has broad prospects in distributed information processing, only a few existing works adopt FL to
tasks that are relevant to trajectory prediction for autonomous vehicles. Flow-FL [33] studies trajectory prediction for
connected robot teams. ATPFL [34] combines automated machine learning and FL to automatically design human
trajectory prediction models. To the best of our knowledge, applying FL on CAVs for trajectory prediction is not yet
explored.

Active Client Selection in Federated Learning. The idea behind active learning is to identify data samples that are
more informative for model training. Inspired by active learning, a handful existing works design active client selection
strategy and demonstrate the power of such biased client selection [35, 36, 37] with faster convergence. Specifically,
[35, 36] take local loss as the active learning metric and give clients with a higher active learning metric the priority to
be selected. [37] adopts Bayesian active learning and takes model uncertainty as the metric. However, no existing client
selection strategies use aleatoric uncertainty as a metric.
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3 Methods

3.1 Problem Formulation

As shown in Fig.1a, a driving scenario data (i.e. a data sample) can be described by a triple S = (X ,Y,M ), where X and
Y are the collections of observed and future trajectories of the involved agents (an agent can be a vehicle or a pedestrian),
and M is the map information. Let m denote the number of agents in the scenario, then X and Y can be expressed as
X = {x1, ...,xm} and Y = {y1, ...,ym}, where xi ∈ R2×Tobs and yi ∈ R2×Tpre are the two-dimensional observed and future
trajectory coordinates of agent i, with lengths Tobs and Tpre, respectively. In particular, for any given scenario S, there is
one target agent, denoted by i∗, among the m agents which the ego vehicle is most interested in. In each scenario, the
ego vehicle aims to predict the future trajectory of the target vehicle using X and M .

The system contains a server and C autonomous vehicles, each of which can collect its driving scenario data using Lidar
sensors and cameras to record the trajectories of all neighboring vehicles. We refer to each autonomous vehicle as one
ego vehicle, which serves as one client in our FL framework. Each client c ∈ C , {1, · · · ,C} has a local dataset of size

Kc, denoted as Dc = {S1,S2, ...,SKc}. Let mk
c be the number of agents in the k-th sample of client c. Let K =

C
∑

c=1
Kc

denote the total number of samples.

3.2 HiVT: Hierarchical Vector Transformer

Hierarchical Vector Transformer (HiVT) is a centralized, lightweight, and graph-based motion prediction model [6].
Towards scalability in the number of agents in the scene, HiVT decomposes the problem into local context extraction
and global interaction modeling. HiVT achieves the state-of-the-art performance on the Argoverse motion forecasting
benchmark. In this paper, we focus on training HiVT but under the FL framework. Different from the centralized HiVT,
the local model updates at each client is done with respect to its local objective only.

Loss Function: As HiVT makes prediction for all agents in a scenario in one single forward pass, prediction results of
all agents will be used in the training loss. Nevertheless, in the inference stage only the prediction result of the target
agent is evaluated. Similarly, in Section 3.4, we do value calculation on the target agent only per driving scenario.

HiVT uses the Laplace mixture probability density function as part of its loss function with µ̂i,t, f ∈ R2 and b̂i,t, f ∈ R2,
respectively, denoting the estimated location and scale parameters for each agent i ∈ {1, ...,m} and each mixture
component f ∈ {1, ...,F} at each prediction time step t ∈ {1, ...,Tpre}. For any fixed i and t, the two estimates µ̂i,t, f and
b̂i,t, f are interpreted as trajectory prediction and corresponding uncertainty, respectively, of the f -th predicted trajectory.
The HiVT decoder also outputs predicted coefficients of the mixture model P̂i, f ∈ [0,1] for each agent i ∈ {1, ...,m} and
each mixture component f ∈ {1, ...,F}.
HiVT only optimizes the best mode of F trajectories. Specifically, the best trajectory for the ith agent is determined by
the following equation:

fbesti = argmin
f∈{1,...,F}

Tpre

∑
t=1
‖yi,t − µ̂i,t, f ‖2. (1)

The regression loss is the negative log-likelihood (NLL) of the Laplace distribution, which is shown as follows:

Lreg =
1
m

1
Tpre

m

∑
i=1

Tpre

∑
t=1

[
log(2b̂i,t, fbesti

)+
‖yi,t − µ̂i,t, fbesti

‖
1

b̂i,t, fbesti

]
(2)

The classification loss Lcls is the cross entropy loss for optimizing mixture coefficients, which is shown as follows:

Lcls =
1
m

m

∑
i=1

F

∑
f=1
−Pi, f log P̂i, f (3)

with

Pi, f =

exp(−
Tpre

∑
t=1
‖µ̂i,t, f − yi,t‖2)

F
∑
j=1

exp(−
Tpre

∑
t=1
‖µ̂i,t, j− yi,t‖2)

Then the final loss for scenario S with model weight w is:
L(S,w) = Lreg +Lcls. (4)

3
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3.3 Federated Learning Based Trajectory Prediction (FLTP)

The loss function in Section 3.2 is defined for one driving scenario data. In FL, as client can only get access to its local
data, then the local objective is defined as:

Fc(Dc,w) =
1

Kc
∑

S∈Dc

L(S,w) (5)

We formally describe our FLTP in Algorithm 1. It follows the general server-client interaction of FedAvg [24]. Departing
from the standard FedAvg, instead of stochastic gradient descent, we use AdamW as the local optimizer.

Specifically, in each global iteration:

• The parameter server first randomly chooses b f1Cc clients according to the probability vector
[K1/K, · · · ,KC/K] without replacement, where f1 ∈ (0,1] is the client sampling rate given as algorithm
input. For example, let C = 3, f1 =

2
3 , K1 = 1,K2 = 2, and K3 = 7. The probability that client 1 is chosen is

0.1+0.2× 0.1
0.8 +0.7× 0.1

0.3 .
• Then the parameter server sends the current model wr to each of the chosen client Lr to get further improvement

on their local data.
• In parallel, each of the chosen client run AdamW with respect to Eq.(5) with the specified minibatch size B for

E epochs on local dataset. Concretely, in the ClientUpdate function, θ and Σ are the weighted cumulative
first and second moments, respectively, of the mini-batch gradients observed so far with β1,β2 ∈ (0,1) as the
momentum parameters. Depending on the minibatch size B, for the first few iterations in the inner for-loop,
the smallest eigenvalues of Σ̂ could be either zero or extermely small – resulting in significant fluctuation of w.
Hence, ε > 0 is used to smooth the updates.

• Finally, upon reception of the local updates wc
r+1, the parameter servers aggregates those models accordingly

to their relative local data volume to obtain wr+1.

It is worth noting that the algorithm can be improved via using global stepsize. We leave this direction to future work.

3.4 Active Learning-boosted FLTP (ALFLTP)

We use active learning to carefully select the clients to participate in each iteration. Departing from existing literature
[36], instead of directly using the whole loss function as the metric, we consider two types of uncertainty-aware client
selection metrics: negative log-likelihood (NLL) and aleatoric uncertainty (AU).

In our Algorithm 2, each client has a value variable vi. In each round r (where r > 2), the parameter server samples
the clients twice. It first randomly chooses b f2Cc clients as it does in Algorithm 1. Each of the chosen clients in Qr
updates its local value v according to

Gc(Dc,w) =
1

Kc
∑

S∈Dc

G(S,w)

where

G(S,w) =


1

Tpre

Tpre

∑
t=1

[
log(2b̂i∗,t, fbesti∗

)+
‖yi,t−µ̂i∗ ,t, fbesti∗

‖
1

b̂i∗ ,t, fbesti∗

]
if NLL

1
Tpre

Tpre

∑
t=1

b̂i∗,t, fbesti∗
if AU

where µ̂i∗,t, fbesti∗
denotes prediction location of the target agent at time step t from the best mode of F trajectories and

b̂i∗,t, fbesti∗
denotes the corresponding aleatoric uncertainty. All clients that are not contained in Qr reset their values

vi = 0. If NLL is used as the selection metric, then the parameter server chooses the set Lr to be the b f1Cc clients with
highest vi; If AU is used as the metric, then the parameter server chooses Lr to contains the b f1Cc whose values vi are
closest to their median. When r = 1 (i.e., lines 2-6 in Algorithm 2), as there is no global model from the last round for
value calculation, client selection method is similar to that in FLTP.

NLL as a selection metric We choose NLL as one selction metric for the following two reasons: Since NLL is
incorporated as part of the loss function, a client has a higher NLL if the global model is not sufficiently trained with
respect to its local data. As the local data is non-iid covering different driving scenarios, by selecting clients with higher
NLL, the global model in FL is encouraged to do more local training on clients with more difficult data.

4
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Algorithm 1 FLTP

Input: initial model w0, number of clients C, client sampling rate f1 ∈ (0,1], local data volume {K1, · · · ,KC}, stepsize
η , batch size B, number of epoch E, weight decay λ , momentum parameters β1,β2 ∈ (0,1), smooth parameter ε;

Output: wR;
1: Initialization: w← w0;
2: for each round r = 1 to R do
3: Randomly sample b f1Cc clients according to the probability vector [K1/K, · · · ,KC/K] without replacement. Let

Lr denote the resulting set of clients;
4: Send wr−1 to each of the chosen client in Lr;
5: for each client c ∈Lr in parallel do
6: wc

r ← ClientUpdate(wr,η ,B,E,β1,β2,ε);
7: end for
8: wr← ∑

c∈Lr

Kc
K̃r

wc
r , where K̃r , ∑

c∈Lr

Kc;

9: end for
10: return wR;

11: ClientUpdate(w,η ,B,E,β1,β2,ε)
12: Initialization: first moment θ ← 0, second moment Σ← 0, counter t← 0;
13: for each local epoch i = 1, · · · ,E do
14: Bc← divide Dc into batches with batch size B
15: for each batch b ∈Bc do
16: t← t +1
17: g = ∇Fc(b,w)
18: w← w−ηλg
19: θ ← β1θ +(1−β1)g, Σ← β2Σ+(1−β2)gg>

20: θ̂ ← θ

1−β t
1
, Σ̂← Σ

1−β t
2

21: w← w−η
(
Σ̂1/2 + εI

)−1
θ̂

22: end for
23: end for
24: return w

AU as a selection metric This metric is inspired by [38], where incremental active learning is adopted for human
trajectory prediction to evaluate candidate data samples and then select more valuable samples. Specifically, both
noisy and redundant trajectory candidate data samples are removed and the model trained on filtered data samples
achieves better performance. In our ALFLTP, we exploit aleatoric uncertainty to measure the degree of data noise. High
aleatoric uncertainty means data are very noisy, while low aleatoric uncertainty means data are easy and the model is
certain about them. As a result, we prefer clients with median aleatoric uncertainty, as data on these clients are both
representative and less noisy.

Relaxing full client participation in updating v. For ease of exposition, in lines 10-15 of Algorithm 2, we let every client
participate in updating vc. In practice, it suffices to have the clients in Qr do the value updates only. Since the value
update does not rely on any previous value of vc, the updated values are only used in the sorting at the PS, and the PS
knows the Qr, the PS can treat vc = 0 for all c /∈Qr.

4 Experiments

4.1 Experimental Setup

Dataset: We use Argoverse Motion Forecasting v1.1 dataset for training and evaluation. In order to simulate distributed
trajectory data for federated learning, we distribute the training set to 100 clients based on the city label of each data
sample (driving scenario), where 95521 samples are from Pittsburgh and 110421 samples are from Miami. More
specifically, the samples from the two cites, are evenly distributed to 50 clients, with each client denoting an autonomous
vehicle that can collect and process traffic data in its area. The validation set contains 39472 samples. All training and
validation scenarios consist of trajectories of 5 seconds sampled at 10 Hz and map information. The Argoverse Motion

5
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(a) The Framework of FLTP
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(b) The Framework of ALFLTP

Figure 1: Frameworks of FLTP and ALFLTP. Each gray oval represents a client (i.e., an ego vehicle) in FL. Each
client collects its local driving scenario data using its sensors and cameras, does local updates, and communicates
model weights with the central server. For each scenario, the ego vehicle aims to predict the future trajectory of the
target vehicle (starred) based on past trajectories of agents in the scenario and map information. In ALFLTP, clients
are actively selected for computation of each round based on values of candidate clients measured by NLL or AU.
Specifically, if we use NLL as the metric, clients with m highest values are selected, while for using AU as the metric,
clients with m median values are selected.

Forecasting challenge is to predict future trajectories of 3 seconds of focal agents with past trajectories of 2 seconds as
inputs.

Model and Training Parameters: We use HiVT [6] with 64 hidden dimensions as our trajectory prediction model,
which is a light-weight transformer based model. We use similar parameter settings for local HiVT models in FLTP and
ALFLTP as the centralized HiVT. Specifically, for each local model in FLTP, learning rate η , weight decay, dropout rate,
local batchsize B, local epochs E and local optimizer are set to be 5×10−4, 1×10−4, 0.1, 32, 4 and AdamW. We train
FLTP and ALFLTP for 250 rounds. Fraction of clients selected for communication in each round f1 is set to be 0.1.

Evaluation Metrics: We use NLL, Minimum Average Displacement Error (minADE), Minimum Final Displacement
Error (minFDE) and Miss Rate (MR) to evaluate model performance quantitatively. minADE measures the average L2
distance between the best predicted trajectory (the trajectory with the minimum error at the endpoint) and the ground
truth. minFDE measures the endpoint L2 distance between the best predicted trajectory and the ground truth. MR

6
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Algorithm 2 ALFLTP

Input: initial model w0, stepsize η , number of epoch E, client sampling rate f1 ∈ (0,1], candidate sampling rate
f2 ∈ (0,1], local data volume {K1, · · · ,KC}, weight decay λ , momentum parameters β1,β2 ∈ (0,1), smooth
parameter ε;

Output: wR
1: Initialization w← w0
2: The PS randomly samples b f1Cc clients according to the probability vector [K1/K, · · · ,KC/K] without replacement.

Let Lr denote the resulting set of clients;
3: for each client c ∈L1 in parallel do
4: wc

1← ClientUpdate(w,η ,B,E,β1,β2,ε)
5: end for
6: w1← ∑

c∈L1

Kc
K̃1

wc
1, where K̃1 , ∑

c∈L1

Kc

7: for each round r = 2 to R do
8: The PS selects b f2Cc clients randomly as in line 2. Let Qr denote the resulting client set;
9: The PS broadcasts wr−1 to each client in Qr;

10: for each client c in parallel do
11: if c ∈Qr then
12: vc← Gc(Dc,wr−1);
13: else
14: vc← 0
15: end if

Reports vc to the PS;
16: end for
17: The PS sorts {vc}c∈C
18: if u = NLL then
19: The PS selects b f1Cc clients with highest values vi, denoting the resulting set as Lr;
20: else
21: The PS selects b f1Cc clients with values that closest to the median values vi, denoting the resulting set as Lr;
22: end if
23: for each client c ∈Lr in parallel do
24: wc

r ← ClientUpdate(w,η ,B,E,β1,β2,ε)
25: end for
26: wr← ∑

c∈Lr

Kc
K̃r

wc
r−1, where K̃r , ∑

c∈Lr

Kc.

27: end for

measures the fraction of the number of scenarios where endpoint errors of all predicted trajectories are larger than 2
meters.

4.2 FLTP v.s. training on local data

We quantitatively compare the global model of FLTP and the local model of an arbitrarily chosen client when it does not
participate in communication and only updates using its local data. Here we have chosen the client 0; selecting any other
client would yield the same result. As is shown in Fig. 2 and Table 1, FLTP significantly outperforms the client without
FL, demonstrating the effectiveness of FLTP exploiting multi-source traffic data though it does not explicitly access raw
local data. Specifically, after about 50 rounds, the local model of client 0 begins to exhibit worse performance as the
number of training rounds increases, indicating the local model without FL has poor generalization.

4.3 Comparison between FLTP and ALFLTP

In this section, ALFLTP frameworks using two active client selection metrics together with different degrees of bias are
compared with FLTP. From Fig. 3 and Fig. 4 we can see that:

• Convergence speed of training loss: Regression loss of both ALFLTP-NLL and ALFLTP-AU with f2 = 0.30
converge faster than with f2 = 0.15 and FLTP.

• Round-wise validation performance: ALFLTP-NLL and ALFLTP-AU with both f2 = 0.15 and f2 = 0.30
perform better than FLTP in terms of MR. As MR measures the fraction of scenarios with endpoint errors

7
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Figure 2: Round-wise comparison between FLTP and the local model of client 0 without FL. Fraction of clients selected
for communication in each round f1 is set to be 0.1.
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Figure 3: Round-wise comparison between FLTP and ALFLTP-NLL

larger than 2 meters, lower MR demonstrates that ALFLTP-NLL and ALFLTP-AU are more robust to various
traffic scenarios in the inference stage.

• Impact of biased selection-NLL: After around 100 rounds, FLTP surpasses the performance of ALFLTP-
NLL with both f2 = 0.15 and f2 = 0.30 in terms of minADE and minFDE due to biased selection. Notably,
ALFLTP-NLL with f2 = 0.30 performs worse than it with f2 = 0.15, because the former introduces more bias.

• Impact of biased selection-AU: Compared to ALFLTP-NLL with f2 = 0.15 and f2 = 0.30 and ALFLTP-AU
with f2 = 0.15, ALFLTP-AU with f2 = 0.30 achieves comparable minADE and minFDE to FLTP while does
better in terms of MR in most rounds, indicating that a larger f2 helps ALFLTP-AU to find clients with more
representative data.

Table 1 shows detailed global model performance of specific rounds, where we can see that:

• In the 50th round, ALFLTP-AU with f2 = 0.30 outperforms other frameworks in NLL, minADE and minFDE.

• In the 150th round, ALFLTP-AU with f2 = 0.15 and f2 = 0.30 outperform other frameworks in terms of
minADE.

• In the 250th round, where global models finish training, ALFLTP-AU with f2 = 0.30 outperforms other
frameworks in terms of NLL, minADE and MR.

• Although FLTP based HiVT models in the 250th round perform slightly worse than the centralized HiVT, it
protects the privacy of the human-driven vehicles by avoiding the data exchange with the server.

In a word, ALFLTP-AU converges faster in regression loss and has better performance in terms of NLL, minADE and
MR than FLTP in most rounds. Moreover, ALFLTP-AU shows better and more stable round-wise performance than
ALFLTP-NLL.

5 Conclusion

In this paper, we propose a privacy-preserving and uncertainty-aware trajectory prediction framework for connected
autonomous vehicles using federated learning with a uncertainty-aware global objective. We term this framework as
FLTP, where we relax the requirement of collecting raw data of driving scenarios to form a large centralized dataset and
let CAVs collect local traffic data and collaboratively train trajectory prediction models without explicit data exchange,
thus preserving privacy of traffic participants. We further introduce Active Learning-boosted FLTP (ALFLTP) for
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Figure 4: Round-wise comparison between FLTP and ALFLTP-AU

Model Round NLL(↓) minADE(↓) minFDE(↓) MR(↓)
Centralized HiVT [6] - 0.467 0.685 1.028 0.104
Client 0 w/o FL 50 0.897 0.992 1.732 0.207
FLTP 50 0.629 0.818 1.318 0.140
ALFLTP-NLL( f2=0.15) 50 0.634 0.821 1.318 0.138
ALFLTP-NLL( f2=0.30) 50 0.636 0.816 1.319 0.141
ALFLTP-AU( f2=0.15) 50 0.629 0.819 1.325 0.139
ALFLTP-AU( f2=0.30) 50 0.625 0.813 1.318 0.141
Client 0 w/o FL 150 1.098 1.026 1.822 0.229
FLTP 150 0.551 0.751 1.170 0.123
ALFLTP-NLL( f2=0.15) 150 0.552 0.750 1.179 0.122
ALFLTP-NLL( f2=0.30) 150 0.564 0.753 1.170 0.120
ALFLTP-AU( f2=0.15) 150 0.555 0.753 1.177 0.119
ALFLTP-AU( f2=0.30) 150 0.554 0.752 1.170 0.119
Client 0 w/o FL 250 1.259 1.059 1.896 0.245
FLTP 250 0.527 0.730 1.122 0.114
ALFLTP-NLL( f2=0.15) 250 0.532 0.732 1.139 0.116
ALFLTP-NLL( f2=0.30) 250 0.536 0.733 1.126 0.114
ALFLTP-AU( f2=0.15) 250 0.531 0.731 1.131 0.115
ALFLTP-AU( f2=0.30) 250 0.526 0.729 1.126 0.114

Table 1: Performance on Argoverse Validation Set. Fraction of clients selected for communication in each round f1 is
set to be 0.1.

client selection in FLTP, where we adopt two uncertainty-aware metrics, negative log-likelihood (NLL) and aleatoric
uncertainty (AU) to actively select clients for partial client participation in FLTP. Experiments on Argoverse dataset
demonstrate that FLTP significantly outperforms the model trained on local data. In addition, ALFLTP-AU has a faster
convergence speed in training regression loss and performs better in terms of NLL, minADE and MR than FLTP in
most rounds, and has more stable round-wise performance than ALFLTP-NLL.
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