
Efficient Latent Link Recommendation in
Signed Networks

Dongjin Song
Department of ECE,

University of California,
San Diego

9500 Gilman Dr., La Jolla,
CA, 92093-0409, USA
dosong@ucsd.edu

David A. Meyer
Department of Mathematics,

University of California,
San Diego

9500 Gilman Dr., La Jolla,
CA, 92093-0112, USA

dmeyer@math.ucsd.edu

Dacheng Tao
Centre for Quantum Comp. &

Intelligent Sys.
Faculty of Engineering and IT

University of Technology,
Sydney

81 Broadway Street, Ultimo,
NSW 2007, Australia.

dacheng.tao@uts.edu.au

ABSTRACT
Signed networks, in which the relationship between two nodes
can be either positive (indicating a relationship such as trust)
or negative (indicating a relationship such as distrust), are
becoming increasingly common. A plausible model for user
behavior analytics in signed networks can be based upon
the assumption that more extreme positive and negative re-
lationships are explored and exploited before less extreme
ones. Such a model implies that a personalized ranking list
of latent links should place positive links on the top, negative
links at the bottom, and unknown status links in between.
Traditional ranking metrics, e.g., area under the receiver op-
erating characteristic curve (AUC), are however not suitable
for quantifying such a ranking list which includes positive,
negative, and unknown status links. To address this issue, a
generalized AUC (GAUC) which can measure both the head
and tail of a ranking list has been introduced. Since GAUC
weights each pairwise comparison equally and the calcula-
tion of GAUC requires quadratic time, we derive two lower
bounds of GAUC which can be computed in linear time and
put more emphasis on ranking positive links on the top and
negative links at the bottom of a ranking list. Next, we
develop two efficient latent link recommendation (ELLR)
algorithms in order to recommend links by directly optimiz-
ing these two lower bounds, respectively. Finally, we com-
pare these two ELLR algorithms with top-performing base-
line methods over four benchmark datasets, among which
the largest network has more than 100 thousand nodes and
seven million entries. Thorough empirical studies demon-
strate that the proposed ELLR algorithms outperform state-
of-the-art approaches for link recommendation in signed net-
works at no cost in efficiency.
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1. INTRODUCTION
In the past few years, social networking websites, e.g.,

Facebook, Twitter, LinkedIn, etc., as well as online E-com-
merce websites such as Amazon and Ebay, have become in-
creasingly common in people’s daily life and have dramati-
cally reshaped people’s social behavior as well as their con-
sumption habits. Thus a considerable amount of effort has
been devoted to investigating their underlying social mech-
anisms so as to enhance user experience [17, 20, 29]. For
example, link prediction [17, 18] and recommendation [2]
are two fundamental problems which can help users con-
nect to entities (e.g., people, items, etc.) in which they are
interested.

Specifically, given a set of potential links, link prediction
is essentially a binary classification problem which aims to
indicate the presence or absence of these links using either
explicit network topological structure [1, 10, 17] (e.g., com-
mon friends) or latent features [21, 18, 14]. Link recommen-
dation, which treats the same problem as a personalized
ranking problem, aims to suggest a list of people (or items)
to each user with whom the user might create new connec-
tions; in the ranked list, people (or items) are recommended
in decreasing order of ranking scores (which estimate the
user’s preferences).

Recently, signed networks, i.e., networks in which the re-
lationship between two nodes can be either positive (indi-
cating a relation such as trust) or negative (indicating a
relation such as distrust), have become increasingly com-
mon. For instance, in Epinions [7], which is a product re-
view website with an active user community, users can in-
dicate whether they trust or distrust each other based upon
their reviews; in Slashdot [3, 13], a technology related news
website, users can tag each other as “friend” or “foe” based
upon their comments. A plausible model for user behav-
ior in signed networks can be based upon the assumption



that more extreme positive and negative relationships are
explored and exploited before less extreme relations. Such a
model implies that a personalized ranking list of latent links
should place positive links on the top, negative links at the
bottom, and unknown status links in between.

Traditional ranking measures, e.g., area under the ROC
curve (AUC) [8], are not suitable to quantify such a ranking
list in signed networks since they only apply to the binary
case, rather than to the triplet (positive, negative, and un-
known). Although a generalized AUC (GAUC) [26] which
can measure both the head and tail of a ranking list has
been introduced, it does not explicitly enforce that the links
ranked on the top are all positive and the links ranked at
the bottom are all negative. Moreover, the calculation of
GAUC requires quadratic time, which is computationally
intractable for large-scale networks.

In this paper, we aim to tackle both issues. The contribu-
tions include:

• we derive two lower bounds for GAUC which can be
computed in linear time. The first quantifies the frac-
tion of positive and negative links which are ranked
at the optimal positions (i.e., positive links on the top
and negative links at the bottom); the second is more
strict and it measures whether all the positive links are
ranked on the top and whether all the negative links
are ranked at the bottom of a ranking list.

• we develop two linear time probabilistic models, enti-
tled efficient latent link recommendation (ELLR) al-
gorithms, to infer personalized ranking lists of latent
links by directly optimizing these two lower bounds,
respectively.

• we compare these two ELLR algorithms with top per-
forming baseline approaches over four benchmark data-
sets, among which the largest network has more than
100 thousand nodes and seven million entries. The
experimental results demonstrate that the proposed
ELLR algorithms outperform state-of-the-art methods
for link recommendation in signed networks with no
loss of efficiency.

The rest of this paper is organized as follows. In Section
2, we summarize related work. In Section 3, we introduce
GAUC and derive its two lower bounds. In Section 4, we
present two efficient latent link recommendation (ELLR) al-
gorithms and introduce the optimization procedure. In Sec-
tion 5, we conduct experiments to demonstrate the effec-
tiveness and efficiency of ELLR algorithms. In Section 6,
we draw some conclusions.

1.1 Notation
Let X ∈ R

n×m be an n by m matrix; we use Xj ∈ R
n

to represent its j-th column, which is a n dimensional vec-
tor, and use Xij to denote the entry in its i-th row and

j-th column. ‖X‖F =
√

Tr(XXT ) denotes the Frobenius

norm of the matrix X, where Tr(XXT ) =
∑n

i=1

∑m

j=1 X2
ij

represents the trace of an n by n square matrix XXT .

2. RELATED WORK
Various approaches have been developed to recommend

links in social networks. In general, these approaches fall

into two main categories: network topology-based approaches
and latent feature-based approaches.

2.1 Network topology-based approaches
Network topology-based approaches can be further di-

vided into two sub-categories: neighbor-based approaches
and path-based approaches. Neighbor-based approaches,
e.g., common neighbors, Jaccard’s coefficient [23], Adamic
and Adar [1], etc., recommend links based upon their neigh-
borhood structure. Path-based methods produce ranking
scores by considering the ensemble of all paths between two
nodes. For instance, Katz [10] computes the sum over all
paths, of their lengths, exponentially damped to count short
paths more heavily, i.e.,

f(i, j) =

∞∑

l=1

βl|X〈l〉
i,j |, (1)

where X ∈ {0, 1}n×n is the adjacency matrix, X
〈l〉
i,j denotes

the set of all length l paths from i to j, and 0 < β < 1
is a parameter which controls the damping. Other exam-
ples include PageRank [17], supervised random walks [2],
the model of consistent node types [25], etc.

These approaches, however, may not perform well when
little topological information is available for nodes (i.e., for
example, when a node has few direct connections or high-
order connections to other nodes). To handle this situation,
latent feature-based approaches have been developed.

2.2 Latent feature-based approaches
Latent feature-based approaches aim to learn a low rank

model which can recover the values, or the relative ordering
of the values, of entries in the (weighted) adjacency matrix
associated to a network. These approaches can be further
divided into pointwise methods, pairwise methods, and list-
wise methods.

2.2.1 Pointwise methods
Pointwise methods [21, 22, 11, 12, 6, 9] treat link recom-

mendation as a matrix completion problem and reconstruct
the adjacency matrix of a partially observed social network
from a low rank model. It has been shown that pointwise
methods can outperform various neighborhood models as
well as the SVD++ [11] for collaborative filtering and can be
employed to perform top-k recommendation. Specifically, in
a matrix factorization model [12][27], all the observed entries
in the adjacency matrix X ∈ {0, 1}n×n are reconstructed
with

X̂ = UT V + B, (2)

where X̂ ∈ R
n×n is the approximated adjacency matrix, U ∈

R
r×n, V ∈ R

r×n, r ≪ n is the rank, and B ∈ R
n×n is the

offset. This model learns the latent features (parameters)
by minimizing the squared error:
∑

i

∑

j

Mij(Xij − X̂ij)
2 + λ(‖U‖2

F + ‖V ‖2
F + ‖B‖2

F ), (3)

where λ > 0 is a regularization parameter and M is a mask
which is 1 if Xij > 0 and is 0 otherwise.

Although pointwise methods have shown their effective-

ness for collaborative filtering and X̂ can be employed to
perform link recommendation, they do not explicitly model



the relative order of the values in the adjacency matrix and
thus may not perform well for link recommendation.

2.2.2 Pairwise methods
Pairwise methods [20, 18, 14] treat link recommendation

as a learning to rank problem based upon pairwise compar-
isons. Most of them aim to optimize AUC, which is given
by:

AUC(i) =
1

|P||N |

∑

(i,j)∈P

∑

(i,s)∈N

I(X̂ij > X̂is) (4)

where X̂ij and X̂is are predicted ranking scores for the i-th
user, P and N are the sets of positive and negative, respec-
tively, links in a ranking list, and | · | denotes set cardinality.
I(·) is an indicator function which is 1 if the condition in
the parenthesis is satisfied and is 0 otherwise. For instance,
Rendle et al. [20] employ a smooth approximation of the in-
dicator function to perform personalized recommendation;
Menon and Elkan [18] employ a hinge loss to relax the indi-
cator in (4) and recommend links. Lee et. al. [14] employ the
local structures of the networks as well as surrogate losses
to perform the recommendation task.

The AUC, however, is not suitable for quantifying a rank-
ing list in signed networks which include positive, negative,
and unknown status links since it only applies to the binary
case.

2.2.3 Listwise methods
Listwise methods [5, 31, 24] aim to learn a ranking func-

tion by taking individual lists as instances and minimizing
a loss function defined on the predicted list and the ground
truth list. For instance, listMLE [31] employs the likeli-
hood loss to perform information retrieval, which could be
adapted to perform link recommendation; listwise learning
to rank with matrix factorization (List+MF) [24] employs
the cross entropy loss to perform collaborative filtering and
item recommendation.

Although most existing approaches can be adapted or di-
rectly employed to recommend latent links in signed net-
works by treating positive links as positive samples and the
others (including negative links and unknown status links)
as negative samples, they may not perform well because their
objectives conflate types of links. The goal of latent link rec-
ommendation should be to order a list of latent links (pos-
itive, negative, and unknown status) so that positive links
are on the top and negative links are at the bottom. Tra-
ditional measures, e.g., area under the ROC curve (AUC),
which are useful for binary rankings, cannot handle this situ-
ation properly because they are not sensitive to the position
of negative links in the ranking. Therefore, a generalized
AUC (GAUC), which can measure both the head and tail of
a ranking list, has been introduced [26]. Although directly
optimizing GAUC with hinge loss has shown its effectiveness
for positive link recommendation in signed networks [26], we
note that GAUC does not explicitly enforce that the links
ranked on the top are all positive and the links ranked at
the bottom are all negative. Furthermore, the calculation
of GAUC requires quadratic time which is computationally
intractable for large-scale networks. Therefore, this paper
presents two lower bounds for GAUC to address these is-
sues and shows that they can be optimized in linear time to

achieve state-of-the-art latent link recommendation perfor-
mance in signed networks.

3. GAUC AND ITS LOWER BOUNDS
In this section, we first introduce the generalized AUC for

measuring the performance of latent link recommendation
in signed networks. Then we derive two lower bounds for
GAUC which can be calculated in linear time and explicitly
put more emphasis on ranking the positive links on the top
and negative links at the bottom of a ranking list.

3.1 Generalized AUC
Given a set of latent links which includes potential pos-

itive, negative, and unknown status links, an ideal person-
alized ranking list in a signed network ranks positive links
(indicating a relationship such as trust) on the top, nega-
tive links (indicating a relationship such as distrust) at the
bottom, and unknown status links in the middle. Tradi-
tional ranking measures, e.g., AUC cannot completely quan-
tify closeness to such a ranking list because they only handle
two types. One could use the AUC, treating positive links
as positive samples and the other links as negative samples,
but then it would be insensitive to the positions of nega-
tive links and thus would not quantify the ranking quality
of negative links. Although mean average precision (MAP)
and normalized discounted cumulative gain (NDCG) can be
used in signed networks, they may not perform well since
they tend to overestimate the positive links on the top and
thus cannot quantify the negative links at the bottom of a
ranking list appropriately. To solve this problem, a general-
ized AUC (GAUC) was introduced as follows [26]:

Definition 1. Assuming X ∈ {1,−1, ?}n×m is a par-
tially observed signed network, given a ranking list for user
i, 1 denotes an observed positive link in set P, −1 represents
an observed negative link belong to set N , ? denotes an un-
known status link within set O. Then the GAUC for user i
is defined as:

GAUC(i) =
1

|P| + |N |
·

(
1

|O| + |N |

∑

(i,j)∈P

∑

(i,s)∈O
⋃

N

I
(
X̂ij > X̂is

)

+
1

|O| + |P|

∑

(i,j)∈N

∑

(i,t)∈O
⋃

P

I
(
X̂ij < X̂it

)
)

,

(5)

where X̂ij , X̂is, and X̂it are predicted ranking scores for
the i-th user. The first term and the second term quantify
the ranking performance of positive links and negative links,
respectively.

As is AUC, GAUC is 1 for a perfect ranking list and is
0.5 for a randomly ordered ranking list. The main difference
between them is that GAUC jointly quantifies the ranking
quality over positive links and negative links, in the pres-
ence of unknown status links. GAUC also differs from other
variants of AUC [19, 16] by focusing on the head and tail of
a ranking list.

Although GAUC has shown its effectiveness for positive
link recommendation in signed networks [26], we note that
GAUC does not explicitly enforce that the links ranked on
the top are all positive and the links ranked at the bottom



are all negative. Furthermore, the calculation of GAUC
requires quadratic time which may make the underlying
optimization problem intractable for large-scale networks.
Therefore, two lower bounds of GAUC are derived to re-
solve these issues.

3.2 Lower Bound-I
Since GAUC considers each pairwise comparison equally,

it does not explicitly quantify the fraction of positive and
negative links which achieve the optimal ranking (positive
links on the top and negative links at the bottom) in a rank-
ing list; for this purpose, we derive a lower bound of GAUC.

Theorem 1. GAUC for user i is lower bounded by:

GAUC(i) ≥
1

|P| + |N |

(
∑

(i,j)∈P

∏

(i,s)∈O
⋃

N

I
(
X̂ij > X̂is

)

+
∑

(i,j)∈N

∏

(i,t)∈O
⋃

P

I
(
X̂ij < X̂it

)
)

.

(6)

with equality holding if within each product operator the con-
dition for each indicator function is jointly satisfied or jointly
not satisfied.

Theorem 1 states that the fraction of positive and negative
links which achieve the optimal ranking cannot be greater
than GAUC. It can be proved using the fact that the arith-
metic mean is always greater than the geometric mean.

Note that the calculation of the GAUC lower bound in
Theorem 1 still requires quadratic time, which may make
the underlying optimization problem intractable for large-
scale networks. An equivalent, more tractable, form can be
derived.

Proposition 1. GAUC’s lower bound in Theorem 1 is
equivalent to

1

|P| + |N |

(
∑

(i,j)∈P

I
(
X̂ij > max

(i,s)∈O
⋃

N
(X̂is)

)

+
∑

(i,j)∈N

I
(
X̂ij < min

(i,t)∈O
⋃

P
(X̂it)

)
)

,

(7)

which can be calculated in linear time.

Proposition 1 suggests that instead of exhaustively search-
ing for the pairwise comparisons which are jointly satisfied,
we only need to compare with the maximum or minimum
ranking score over the set O

⋃
N or O

⋃
P , respectively.

Therefore, the complexity of computing (7) mainly depends
on searching for the maximum and the minimum over O

⋃
N

and O
⋃

P , respectively, and the pairwise comparisons be-
tween P and O

⋃
N as well as between N and O

⋃
P .

3.3 Lower Bound-II
In order to quantify whether all the positive links are

ranked on the top and all the negative links are ranked at the
bottom of a ranking list, a stricter lower bound for GAUC
can be derived.

A U C G A U C B o u n d 	 I B o u n d 	 I I1 1 1 12 / 3 1 1 / 1 7 1 / 3 03 / 4 3 / 4 0 03 / 4 5 / 8 0 0
Figure 1: Comparisons of AUC, GAUC, lower bound-I, and
lower bound-II over four different ranking lists, listed from
top (left) to bottom (right). Note that GAUC is sensitive to
the positions of the positive and negative links while AUC is
only sensitive to the positions of positive links here; Lower
Bound-I aims to quantify the fraction of positive and nega-
tive links which are ranked on the top or bottom of a ranking
list; Lower Bound-II indicates whether all the positive links
or negative links in the ranking list are all ranked on the top
or at the bottom of a ranking list. “+” denotes a positive
link, “0” denotes an unknown status link, and “−” denotes a
negative link.

Theorem 2. GAUC and its lower bound in Proposition
1 can be further bounded by:

GAUC(i) ≥
|P|

|P| + |N |

∏

(i,j)∈P

I
(
X̂ij > max

(i,s)∈O
⋃

N
(X̂is)

)

+
|N |

|P| + |N |

∏

(i,j)∈N

I
(
X̂ij < min

(i,t)∈O
⋃

P
(X̂it)

)
,

(8)

with equality holding if within each product operator the con-
dition for each indicator function is jointly satisfied.

Although the calculation of this lower bound takes only
linear time, an equivalent form can be derived to further
simplify it.

Proposition 2. GAUC’s lower bound in Theorem 2 is
equivalent to

|P|

|P| + |N |
I
(

min
(i,j)∈P

(X̂ij) > max
(i,s)∈O

⋃
N

(X̂is)
)

+
|N |

|P| + |N |
I
(

max
(i,j)∈N

(X̂ij) < min
(i,t)∈O

⋃
P

(X̂it)
)
,

(9)

which can be calculated in linear time.

The complexity of computing (9) depends on searching for
the maxima and minima over the four different sets.

Although GAUC is a good measure in signed networks
since it can quantify both the head and tail of a ranking list
which includes positive, negative, and unknown status links,
we note that directly optimizing GAUC may not achieve sat-
isfactory link recommendation performance (especially for
top-k link recommendation performance) because it is com-
putationally inefficient and does not explicitly put emphasis
on ranking positive links on the top, and negative links at
the bottom, of a ranking list. Therefore, in this paper we
develop two efficient and effective latent link recommenda-
tion algorithms by optimizing the two lower bounds (7) and
(9), respectively.
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4. EFFICIENT LATENT LINK RECOM-
MENDATION ALGORITHMS

In this section, we first state the problem we aim to study.
Then we develop two probabilistic models: efficient latent
link recommendation-I (ELLR-I) and efficient latent link
recommendation-II (ELLR-II), based upon the two lower
bounds for GAUC given by (7) and (9), respectively, to do
personalized latent link recommendation in signed networks.
Finally, we describe the optimization procedure for these two
algorithms.

4.1 Problem Statement
Let X ∈ {1,−1, ?}n×m be a partially observed signed net-

work in which ±1 denote an observed positive/negative link
and ? denotes an unknown status link which could be either.
In the training stage, we study the underlying mechanism
for ranking observed positive links on the top, observed neg-
ative links at the bottom, and unknown status links in be-
tween. In the test phase, we evaluate how these latent (i.e.,
unknown status) links are ranked based upon the positions
of potential positive and negative links.

In particular, we aim to learn a function f(X, i, j) = X̂ij

which can produce a ranking score (X̂ij) for each entry of X
in the training stage. In many real world applications X will
be a sparse matrix which has low rank structure. Therefore,
X can be approximated with two low rank matrices U ∈
R

r×n and V ∈ R
r×m and our aim can be recast as learning

the following ranking function:

f(U, V, i, j) = fij(U,V ) = UT
i Vj , (10)

such that the ranking lists can be optimized in the sense
of lower bounds for GAUC. Note that Ui and Vj denote
two latent user feature vectors, respectively. r ≪ min(m, n)
is the rank. When X is a symmetric signed network, i.e.,
X = XT , we can set U = V for simplicity.

4.2 Efficient Latent Link Recommendation-I
We propose a probabilistic model to perform efficient la-

tent link recommendation in signed networks based upon
lower bound-I for GAUC. Efficient latent link recommenda-
tion-I (ELLR-I) is formulated as a Bayesian model aiming
to produce the correct personalized ranking lists based upon
pairwise comparisons between positive links and the latent
or negative link which has the largest ranking score, as well
as between negative links and the latent or positive link
which has the smallest ranking score. Specifically, ELLR-I

maximizes the following posterior distribution,

P (U, V | >f , X) ∝ P (>f , X|U, V )P (U)P (V ), (11)

where >f denotes the orderings on {fij | 1 ≤ j ≤ n} de-
termined by X, using the conditions that the positive links
have higher scores than the other links and the negative links
have lower scores than the other links. Assuming that each
user is acting independently and each pair of users’ (or user
and item’s) ranking scores is compared independently, the
right hand side of (11) becomes:

P (>f , X|U, V )P (U)P (V )

=ΠiΠ(i,j)∈P∪NΠ(i,s)∈Ci,j,s
P (>f , Xij , Xis|Ui, Vj , Vs)P (Ui)P (Vj)

=ΠiΠ(i,j)∈P

(
Π(i,s)∈O∪NP (>f , Xij = 1, Xis 6= 1|Ui, Vj , Vs)

)
·

ΠiΠ(i,j)∈N

(
Π(i,s)∈O∪PP (>f , Xij = −1, Xis 6= −1|Ui, Vj , Vs)

)
·

P (Ui)P (Vj)
(12)

where Ci,j,s = {(i, s) | Xij ∈ P and Xis ∈ O ∪N} ∪ {(i, s) |
Xij ∈ N and Xis ∈ O∪P}. P and N are the set of positive
and that of negative links for user i.

To achieve the objective of ELLR-I,
∏

(i,s) P (>f , Xij =

1, Xis 6= 1|Ui, Vj , Vs) should contribute to the first term of
(7) via the exponent I(UT

i Vj > max(i,s)∈O
⋃

N UT
i Vs), i.e.,

this probability should be close to 1 when the difference be-
tween UT

i Vj and the maximum value of UT
i Vs is large and

should be close to 0 when this difference is small. Similarly,∏
(i,s) P (>f , Xij = −1, Xis 6= −1|Ui, Vj , Vs) should con-

tribute to the second term of (7) via its exponent I(UT
i Vj <

min(i,s)∈O
⋃

P UT
i Vs), i.e., this probability should be close to

1 when the difference between UT
i Vj and minimum value of

UT
i Vs is small and should be close to 0 when this difference

is large. Previous work such as that of Rendle et al. [20] has
shown that the sigmoid function σ(z) = 1/(1 + exp(−z)) is
an ideal smooth version of 0/1 loss (as shown in Figure 2);
thus Π(i,s)∈O∪NP (>f , Xij = 1, Xis 6= 1|Ui, Vj , Vs) can be
defined as:

Π(i,s)∈O∪NP (>f , Xij = 1, Xis 6= 1|Ui, Vj , Vs)

= σ(UT
i Vj − max

(i,s)∈O
⋃

N
UT

i Vs),
(13)

and Π(i,s)∈O∪PP (>f , Xij = −1, Xis 6= −1|Ui, Vj , Vs) should
be written as:

Π(i,s)∈O∪PP (>f , Xij = −1, Xis 6= −1|Ui, Vj , Vs)

= σ(−UT
i Vj + min

(i,s)∈O
⋃

P
UT

i Vs),
(14)

where the max(·) and min(·) are evaluated over s.
We also put two zero-mean spherical Gaussian priors over

user i’s and user j’s feature vectors, respectively, i.e.,

P (Ui) = N (Ui|0, σ2
U ), (15)

and

P (Vj) = N (Vj |0, σ2
V ), (16)

where σ2
U and σ2

V are variances for U and V , respectively.



Therefore, the log-likelihood of ELLR-I is given by:

LELLR−I(U, V )

= log P (U,V | >f , X)

=
n∑

i=1

∑

(i,j)∈P

log
(
σ(UT

i Vj − max
(i,s)∈O

⋃
N

UT
i Vs)

)

+
n∑

i=1

∑

(i,j)∈N

log
(
σ(−UT

i Vj + min
(i,s)∈O

⋃
P

UT
i Vs)

)

−
λU

2

n∑

i=1

UT
i Ui −

λV

2

n∑

j=1

V T
j Vj + c,

(17)
where c is a constant which is independent of U and V , and
λU = 1/σ2

U , λV = 1/σ2
V are parameters for controlling the

trade-off between the first two terms and the two regular-
ization terms.

In practical applications, simply considering the maxi-
mum ranking score in O∪N (or the minimum ranking score
in O∪P) may make the gradient for (17) unstable when the
most extreme example is an outlier. To address this issue,
instead of using the maximum ranking score (or the mini-
mum ranking score), we can utilize the mean of a number of
(e.g., p = 30 or 50) largest ranking scores in O ∪N (or the
mean of a number of smallest ranking scores in O ∪ P). In
this way, the gradient of (17) becomes more reliable. A lo-
cal maximum of the objective function given by (17) can be
found by performing gradient ascent in U and V iteratively.
The details are omitted here due to space limitations.

4.3 Efficient Latent Link Recommendation-II
We propose anther probabilistic model to perform efficient

latent link recommendation in signed networks based upon
lower bound-II for GAUC. Like ELLR-I, ELLR-II can be
formulated as a Bayesian probabilistic model aiming to pro-
duce the correct personalized ranking list based upon the
fact that the positive link with the smallest ranking score
should be larger than the latent or negative link which has
the largest ranking score, and the negative link with the
largest score should be smaller than the latent or positive
link which has the smallest ranking score. Using Bayes’ rule,
the assumption that each user is acting independently, and
each pair of users’ (or user and item’s) ranking scores is com-
pared independently, we can derive (11) and (12) as we did
for ELLR-I.

To achieve the objective of ELLR-II, the probability prod-
uct

∏
(i,j)∈P

∏
(i,s) P (>f , Xij = 1, Xis 6= 1|Ui, Vj , Vs) should

contribute to the first term of (9) through the exponent
I(min(i,j)∈P UT

i Vj > max(i,s)∈O
⋃

N UT
i Vs), i.e., this proba-

bility should be close to 1 when the difference between the
minimum value of UT

i Vj and the maximum value of UT
i Vs is

large and should be close to 0 when this difference is small.
Also,

∏
(i,j)∈N

∏
(i,s) P (>f , Xij = −1, Xis 6= −1|Ui, Vj , Vs)

should contribute to the second term of (9) via its expo-
nent I(max(i,j)∈N UT

i Vj < min(i,s)∈O
⋃

P UT
i Vs), i.e., this

probability should be close to 1 when the difference be-
tween the maximum value of UT

i Vj and minimum value of
UT

i Vs is small and should be close to 0 when this differ-
ence is large. Therefore,

∏
(i,j)∈P

∏
(i,s)∈O

⋃
N P (>f , Xij =

1, Xis 6= 1|Ui, Vj , Vs) can be defined as:

σ( min
(i,j)∈P

UT
i Vj − max

(i,s)∈O
⋃

N
UT

i Vs), (18)

Table 1: Detailed statistics of the four datasets. Note that
MovieLens10M is a bipartite network with 71, 567 users and
10, 681 items.

Datasets Wikipedia Slashdot Epinions MovieLens10M

Nodes 7,118 82,144 119,217 71,567/10,681
Edges 103,747 549,202 841,372 7,643,378
+edges 78.78% 77.4% 85.0% 77.0%
−edges 21.21% 22.6% 15.0% 23.0%

and
∏

(i,j)∈N

∏
(i,s)∈O

⋃
P P (>f , Xij = −1, Xis 6= −1|Ui, Vj , Vs)

should be defined as:

σ(− max
(i,j)∈N

UT
i Vj + min

(i,s)∈O
⋃

P
UT

i Vs), (19)

In the objective of ELLR-II, P (Ui) and P (Vj) are de-
fined as in (15) and (16), respectively. Therefore, the log-
likelihood of ELLR-II is given by:

LELLR−II(U, V )

= log P (U, V | >f , X)

=

n∑
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log
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+
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−
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2
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UT
i Ui −
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2

n∑

j=1

V T
j Vj + c,

(20)
where c is a constant which is independent of U and V , and
as before λU = 1/σ2

U and λV = 1/σ2
V .

As with ELLR-I, in real world applications, simply con-
sidering the maximum ranking score in N and O ∪ N as
well as the minimum ranking score in P and O ∪ P may
make the gradient of (20) unstable when the most extreme
example is an outlier. To resolve this problem, we replace
the maximum ranking score in N (or the minimum ranking
score in P) with the mean of q (e.g., q = 5 or 10) largest
ranking scores in N (or with the mean of q smallest ranking
scores in P). We also replace the maximum ranking score
in O ∪ N (or the minimum ranking score in O ∪ P) with
the mean of p (e.g., p = 30 or 50) largest ranking scores in
O ∪ N (or with the mean of p the smallest ranking scores
in O ∪ P) as we did in ELLR-I. As with the objective of
ELLR-I in (17), a local maximum of the objective function
given by (20) can be obtained by performing gradient ascent
in U and V iteratively. The details are omitted here due to
space limitations.

4.4 Optimization
The computational complexity for a full gradient of ELLR-

I over U or V is around O(anpr) where a is the average
number of positive and negative links for each user in the
network, and r ≪ n is the rank. When a is very large,
computation of a full gradient of ELLR-I may be infeasible.
In this case, ELLR-II can be used since the computational
complexity for a full gradient of ELLR-II over U or V is only
around O(qnpr) where q ≤ a, p, and r are relatively small
and fixed. To further reduce training time of ELLR-I and
ELLR-II, we can sample a subset of unknown status links
and use stochastic gradient ascent to train these two models.
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(d) GAUC on MovieLens

Figure 3: GAUC on Wikipedia, Slashdot, Epinions, and MovieLens10M. Error bars denote standard deviations.
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(d) AUC on MovieLens

Figure 4: AUC on Wikipedia, Slashdot, Epinions, and MovieLens10M. Error bars denote standard deviations.
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(d) MAP on MovieLens

Figure 5: MAP on Wikipedia, Slashdot, Epinions, and MovieLens10M. Error bars denote standard deviations.

5. EXPERIMENT
To demonstrate the effectiveness and efficiency of ELLR-

I and ELLR-II, we compare them against various baseline
methods based upon four publicly available datasets.

We consider three well-known signed directed social net-
works, i.e., Wikipedia [4], Slashdot [13] and Epinions [7]1.
The Wikipedia data comprise a voting network for promot-
ing candidates to the role of admin. Each voter can indicate
a positive (for supporting) or negative (for opposing) vote
with respect to the promotion of a candidate [15]. Slash-
dot is a social website focusing on technology related news.
In Slashdot Zoo, users can tag each other as friends (like)
or foes (dislike) based upon comments on articles. Epin-
ions, which is a product review website, is a trust network
in which users can indicate whether they trust or distrust
each other based upon their reviews.

We also consider a collaborative filtering dataset, i.e.,
MovieLens10M2 which includes 71,567 users, 10,681 items,
and more than 10 million ratings ranging from 1 to 5. Al-
though this dataset is originally used for movie rating pre-
diction, we preprocess it such that rating values larger than

1These datasets are available online at
http://snap.stanford.edu/data/.
2This dataset is available online at
http://grouplens.org/datasets/movielens/.

3 are treated as positive links and rating values smaller than
3 are treated as negative links.

The detailed statistics of these four datasets are provided
in Table 1.

5.1 Setup and Evaluation
Given a fully observed signed network X ∈ Rn×n in which

Xij ∈ {−1, 0, 1}, Xij = 1 denotes that the i-th user trusts
(or likes) the j-th user and Xij = −1 denotes that the i-th
user distrusts (or dislikes) the j-th user. We randomly se-
lect a fraction (e.g., 10%, 20%, 40%, 60%) of the observed
positive and negative links (as XTrain) for training, and eval-
uate over a test set (i.e., XTest) comprising the remaining
non-zero entries. The zero entries in XTrain are called latent

links since each link has the potential to either be a positive
or a negative link.

In order to evaluate the effectiveness of ELLR-I and ELLR-
II for link recommendation, we utilize GAUC (defined over
±1 and 0) in (5), AUC (defined over ±1) in (4), and mean
average precision (MAP) (defined over ±1) to quantify the
ranking performance over XTest.

To evaluate the effectiveness of these two proposed ap-
proaches for top-k link recommendation, we also report the
associated precision at top k positions (i.e., Precision@k or
P@k) and recall at top k positions (i.e., Recall@k). In par-
ticular, Precision@k is defined as:
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(c) P@k on Epinions
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(d) P@k on MovieLens

Figure 6: Precision@k on Wikipedia, Slashdot, Epinions, and MovieLens10M. Error bars represent standard deviations.
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(a) Recall@k on Wikipedia
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(c) Recall@k on Epinions
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(d) Recall@k on MovieLens

Figure 7: Recall@k for Wikipedia, Slashdot, Epinions, and MovieLens10M. Error bars represent standard deviations.

Precision@k =
♯ of positive links in the top k

♯ of positive and negative links in top k
,

and Recall@k is given as:

Recall@k =
♯ of positive links in the top k

♯ of positive links
.

5.2 Parameter Settings
There are three hyper-parameters in ELLR-I and ELLR-

II, i.e., r, λU , and λV . For simplicity, we set λU = λV , which
is optimized by searching over the grid {1, 5, 10, 50, 100, 200}.
r is optimized by searching over the grid {5, 10, 30, 50, 70, 90}.
To determine the optimal parameters for test, we conduct 5-
fold cross-validation over the training set XTrain and the pa-
rameter combination which achieves the best average GAUC
is utilized for test.

5.3 Results-I: Effectiveness
Baselines: we evaluate the effectiveness of ELLR-I and

ELLR-II by comparing them with six different baseline al-
gorithms. Among them, common neighbor (CN) [17] is a
representative network topology-based method; matrix fac-
torization (MF) [12] is a pointwise approach; maximum mar-
gin matrix factorization (MMMF) [30] and Bayesian per-
sonalized ranking based matrix factorization (BPR+MF)
[20] are pairwise methods; list-wise learning to rank with
matrix factorization (List+MF) [24] is a listwise algorithm;
and OPT+GAUC [26], which directly optimizes GAUC, is
also a pairwise approach. The hyper-parameters of these
baseline approaches (except CN) are selected as they are
for ELLR-I and ELLR-II. To ensure that our results are
reliable, we conduct all experiments 5 times; the average
GAUC/AUC/MAP and their associated standard deviations
are reported.

Link Recommendation: Figures 3, 4 and 5 show the
GAUC/AUC/MAP and their associated standard deviations
over four datasets when the size of training set varies from

10% to 60%. We observe that CN is generally outperformed
by other approaches since it only considers the neighbor-
hood structure of these networks. Note that CN is not re-
ported on MovieLens10M because that is a bipartite net-
work. For GAUC in Figure 3, pairwise approaches, i.e.,
MMMF and BPR+MF outperform MF which is a pointwise
approach. This may be because MF only reconstructs the
observed entries in the adjacency matrix and neglects un-
known status links. For AUC and MAP in Figure 4 and 5,
respectively, MF outperforms MMMF and BPR+MF most
of the time. This may be because they do not model nega-
tive links explicitly. OPT+GAUC generally outperforms the
other five baseline algorithms for GAUC/AUC/MAP since
it models the positive, negative, and unknown status links
in signed networks more completely. ELLR-I and ELLR-
II can further improve the performance of OPT+GAUC for
AUC/MAP because they explicitly put emphasis on ranking
positive links on the top and negative links at the bottom
of a ranking list (as shown in Proposition 1 and Proposi-
tion 2). In general, the GAUC of ELLR-II is worse than
that of ELLR-I. This is because the lower bound in Propo-
sition 2 (the objective of ELLR-II) is more loose than that
in Proposition 1 (the objective of ELLR-I) for GAUC.

Top k Link Recommendation: We study the effective-
ness of two proposed approaches by comparing their
Precision@k and Recall@k with baseline methods when the
size of training set is 40% for Wikipedia, Slashdot, Epin-
ions, and MovieLens10M. In Figure 6 and 7, we observe
that ELLR-I and ELLR-II consistently outperform the base-
line approaches. This indicates that emphasizing putting
positive links on the top and negative links at the bottom
of a ranking list helps to enhance top-k link recommenda-
tion performance. Note that ELLR-II generally outperforms
ELLR-I in Figure 6 and 7; this is because ELLR-II is op-
timizing a stricter bound as shown in Proposition 1 and
Proposition 2. Note that we also observe similar results over
other size of training sets; these results are omitted here due
to space limitations.
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5.4 Results-II: Efficiency
We check the efficiency of two proposed approaches, i.e.,

ELLR-I and ELLR-II, by comparing their training time with
baseline algorithms over MovieLens10M (60%) as shown in
Figure 8. For fair comparison, we use the same hyper-
parameters for all the approaches.

We observed that ELLR-I and ELLR-II require less train-
ing time than other approaches. This is because: for MF,
the computational complexity of its gradient is linearly pro-
portional to the number of observed entries in signed net-
works; for MMMF and BPR+MF, the computational com-
plexities of their gradients depend on the number of pairwise
comparisons of positive links to non-positive links (i.e., un-
known+negative links). Although a sampling technique was
used for non-positive links so as to facilitate the optimiza-
tion, MMMF and BPR+MF still consume substantial time
to calculate the gradient at each step. List+MF converges
slower than other methods since it must perform listwise
comparison for each positive link. OPT+GAUC converges
slower than MMMF and BPR+MF since it involves an ad-
ditional cost for pairwise comparisons of negative links to
non-negative links at each step. ELLR-I, however, only con-
siders the most extreme non-positive links as well as the
most extreme non-negative links and thus converges faster
than the baseline methods (Proposition 1). ELLR-II can
further reduce the time cost of ELLR-I since it only further
considers the most extreme positive and negative links at
each step (shown in Proposition 2). We also observe simi-
lar results over the other three datasets. These results are
omitted here due to space limitations.

5.5 Results-III: Parameter Sensitivity
We investigate the sensitivity of ELLR-I and ELLR-II

with respect to the regularization parameters λU = λV ∈
{1, 5, 10, 50, 100, 200} and r ∈ {5, 10, 30, 50, 70, 90} for the
Wikipedia (20%) dataset. When we vary the value of λU

or r, we keep the other parameters fixed. We plot the
GAUC/AUC/ MAP with respect to λU or r in Figure 9.
We observe that both ELLR-I and ELLR-II are very stable
and they achieve good performance when λU varies from 10
to 200 and r varies from 10 to 90.

6. CONCLUSION AND DISCUSSION
In this paper, we derived two lower bounds for GAUC

which can be computed in linear time. The first quantifies
the fraction of positive and negative links which are ranked
at the optimal positions (i.e., positive links on the top and
negative links at the bottom); the second is even stricter
and measures whether all the positive links are ranked on
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Figure 9: The parameter sensitivity of ELLR-I and ELLR-
II with respect to the regularization parameters λU =
λV ∈ {1, 5, 10, 50, 100, 200} and r ∈ {5, 10, 30, 50, 70, 90}
over Wikipedia (20%). We can observe that both ELLR-
I and ELLR-II are very stable with respect to λU (λV ) and
r.

the top and whether all the negative links are ranked at
the bottom of a ranking list. With these two lower bounds,
we developed two efficient probabilistic models, i.e., ELLR-
I and ELLR-II, to infer personalized ranking lists of latent
links by directly optimizing them. We compared ELLR-I
and ELLR-II with top-performed baseline approaches over
four benchmark datasets; our experimental results demon-
strate that the proposed ELLR algorithms outperform state-
of-the-art methods for link recommendation in signed net-
works with no loss of efficiency.

One limitation of the current approaches is that they only
consider latent features of signed networks and do not incor-
porate explicit features. It would be interesting to combine
these two types of features together to perform latent link
recommendation in the future. Furthermore, it is also in-
teresting to investigate side information of users/items and
utilize this information to improve latent link recommenda-
tion in signed networks. Finally, inferring negative links [28]
with our proposed algorithms is also a interesting problem
to study.
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