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ABSTRACT
Multivariate time series data are becoming increasingly common
in numerous real world applications, e.g., power plant monitoring,
health care, wearable devices, automobile, etc. As a result, multi-
variate time series retrieval, i.e., given the current multivariate time
series segment, how to obtain its relevant time series segments in
the historical data (or in the database), attracts significant amount
of interest in many fields. Building such a system, however, is chal-
lenging since it requires a compact representation of the raw time
series which can explicitly encode the temporal dynamics as well as
the correlations (interactions) between different pairs of time series
(sensors). Furthermore, it requires query efficiency and expects a
returned ranking list with high precision on the top. Despite the
fact that various approaches have been developed, few of them can
jointly resolve these two challenges. To cope with this issue, in this
paper we propose a Deep r -th root of Rank Supervised Joint Binary
Embedding (Deep r -RSJBE) to perform multivariate time series re-
trieval. Given a raw multivariate time series segment, we employ
Long Short-Term Memory (LSTM) units to encode the temporal
dynamics and utilize Convolutional Neural Networks (CNNs) to en-
code the correlations (interactions) between different pairs of time
series (sensors). Subsequently, a joint binary embedding is pursued
to incorporate both the temporal dynamics and the correlations.
Finally, we develop a novel r -th root ranking loss to optimize the
precision at the top of a Hamming distance ranking list. Thoroughly
empirical studies based upon three publicly available time series
datasets demonstrate the effectiveness and the efficiency of Deep
r -RSJBE.
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1 INTRODUCTION
In recent years, multivariate time series data is increasingly gener-
ated in numerous real world applications. For instance, in a power
plant [32], a large number of sensors can be deployed to monitor
the operation status in real time. In the field of health care [20, 21],
electroencephalography (EEG) utilizes multiple electrodes to record
and analyze brain activities. For a fitness tracking device, multiple
sensors are employed to detect a temporal sequence of actions [31],
e.g., walking for 5 minutes, running for 1 hour, and then sitting for
15 minutes. Given the huge amount of historical (multivariate) time
series data in a system, how to interpret the current status becomes
an important problem to investigate.

For this purpose, we formulate it as a supervised multivariate
time series retrieval problem. Specifically, given the current multi-
variate time series segment, i.e., a slice of multivariate time series
which lasts for a short period of time, we aim to find its most similar
time series segments in the historical data (or database). Assuming
that label information (e.g., walking, running, sitting) is available
in the historical data (or database), it will be straightforward to
interpret the current system status.

A key challenge to build such a system is to obtain a good repre-
sentation for multivariate time series segments. Previous studies
[17, 19] suggests that besides the temporal dynamics in the raw
multivariate time series segments, the correlations (interactions)
between different pairs of time series (sensors) are also essential
to characterize the system status. Therefore, a good representa-
tion refers to a compact abstraction which can explicitly encode
the temporal dynamics of the raw time series segment as well as
the correlations (interactions) between different pairs of time se-
ries (sensors). Over the past few decades, a number of approaches
have been developed to denote a time series segment, e.g., Discrete
Fourier Transform (DCT) [12, 39], Discrete Wavelet Transform
(DWT) [7], Piecewise Aggregate Approximation (PAA) [22], etc.
Most of these approaches, however, focus on univariate time series
representation and ignore the correlations between different pairs.
In addition, almost all these representations are obtained based on
human prior knowledge and hence could be suboptimal for multi-
variate time series retrieval giving the fact that their objectives and
feature extraction are decoupled.

Another critical challenge is to obtain query results efficiently
while maintain optimal precision at the top of the ranking list. Since
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Figure 1: Raw multivariate time series (with 4 sensors) and
correlationmaps (4×4) of two time series segments. Because
the system status is different at two time steps, the correla-
tion maps are also different.

both the query efficiency and the ranking precision are partially
determined by the similarity measure, a number of similarity mea-
sures have been developed. For instance, Dynamic Time Warping
(DTW) [4, 34] and Edit Distance with Real Penalty (ERP) [8] employ
dynamic programming to measure the similarity of two sequences.
Since dynamic programming requires that each element of one time
series to be compared with each element of the other, both DTW
and ERP will be slow if the length of query segment is relatively
large. To speed up the expensive similarity search, a number of
branch and bound based pruning strategies [11, 24] can be utilized
to quickly produce a superset of the desired results. These tech-
niques, however, still require a refinement step (e.g., based upon
DTW) and may not work well when the length of query segment
is relatively large. More recent advances [21, 29] suggest that hash-
ing techniques, e.g., Locality Sensitive Hashing (LSH) [1], Sketch,
Single, & Hash (SSH) [29], can be employed to further reduce the
query complexity of high-dimensional similarity search. These ap-
proaches, however, mainly focus on univariate time series and
cannot guarantee satisfied precision at the top of the ranking list
when label information is provided.

To resolve these two challenges, in this paper we propose a
Deep r -th root of Rank Supervised Joint Binary Embedding (Deep
r -RSJBE) to perform multivariate time series retrieval. Given a
raw multivariate time series segment, we employ Long Short-Term
Memory (LSTM) units [10, 16] to encode the temporal dynamics
and utilize Convolutional Neural Networks (CNNs) [26] to encode
the correlations (interactions) between different pairs of time series
(sensors). In this way, both temporal dynamics and the correla-
tions in the raw time series segment are explicitly represented with
two separate feature vectors. Subsequently, a joint binary embed-
ding is pursued to incorporate both the temporal dynamics and
the correlations. With this embedding, the similarity between two
multivariate time series segments can be measured in Hamming

space which could be extremely efficient based upon assembly POP-
COUNT instruction. Finally, we develop a novel r -th root ranking
loss to train the disciplined embedding functions, by which the
mistakes at the top of a Hamming-distance ranking list are penal-
ized more than those at the bottom. This ranking loss can also
enforce two misaligned (or different) segments to share similar
binary embeddings as long as they belong to the same class. To
obtain such embedding functions, we relax the original discrete
objective with a continuous surrogate, and derive a stochastic gra-
dient descent to optimize the surrogate objective. To the best of
our knowledge, Deep r -RSJBE is the first end-to-end learning based
approach for supervised multivariate time series retrieval which
explicitly encodes the temporal dynamics in the raw time series as
well as the correlations (interaction) between different pairs of time
series (sensors). To demonstrate the effectiveness of Deep r -RSJBE,
we conduct thorough empirical studies based upon three public
available datasets, i.e., EEG Eye State dataset, PAMAP2 dataset, and
Sussex-Huawei Locomotion (SHL) dataset. Our experiment results
show the effectiveness and the efficiency of the proposed Deep
r -RSJBE.

2 RELATEDWORK
This work relates to recent advances in time series representation,
time series similarity measures, and binary embedding.

Univariate time series representation is a well developed field.
Existing techniques can be divided into three main categories: tem-
poral methods, spectral methods, and learning based methods. Tem-
poral representations, e.g., extrema extraction [13], bit-level repre-
sentation [3], Piecewise Aggregate Approximation (PAA) [23, 50],
Adaptive Piecewise Constant Approximation (APCA) [22], etc.,
aim to encode the temporal structure of raw data. Spectral based
methods, e.g., Discrete Fourier Transform (DCT) [12, 39], Discrete
Wavelet Transform (DWT) [7], Mel-Frequency Cepstral Coefficients
(MFCC) [51], etc., represent the raw data with frequency informa-
tion. Learning based methods include principle component analysis
(PCA), Hidden Markov Models (HMMs) [2], etc. Although most of
these approaches can be extended to represent multivariate time
series, few of them can explicitly encode the correlations between
different pairs of time series (sensors). Furthermore, these represen-
tations are mainly obtained based upon human prior knowledge
and thus could be suboptimal for multivariate time series retrieval
since their objectives and feature extraction are decoupled.

Similarity measures between two univariate time series [4, 22,
23, 34, 37, 50] have been studied for decades. The purpose is to seek
for a measure which is robust to noise and time shifting (misalign-
ment). For this purpose, one type of methods are developed based
upon the ℓ1 and ℓ2 norms. Examples include Dynamic Time Warp-
ing (DTW) [4, 34] and Edit Distance with Real Penalty (ERP) [8].
Another type of approaches are based upon a matching thresh-
old. Examples of this class are the Longest Common Subsequence
(LCSS) [46], and the Edit Distance on Real Sequence (EDR) [9].
These methods, however, are computational expensive due to the
dynamic programming and will be slow if query segment is consists
of a long sequence. Although a number of branch and bound based
pruning strategies [11, 24] are utilized to quickly produce a superset
of the desired results, these techniques still require a refinement
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step (e.g., based upon DTW) andmay not work well when the length
of query segment is relatively large. More recent trends [21, 29]
suggest that hashing techniques, e.g., Locality Sensitive Hashing
(LSH) [1], Sketch, Single, & Hash (SSH) [29], can be employed to
further reduce the query complexity of high-dimensional similarity
search. These approaches, however, focus on univariate time series
and cannot guarantee optimal precision at the top of a ranking list
when label information is available. Our proposed Deep r -RSJBE
leverages label information to learn binary embeddings so as to
represent multivariate time series segments. In this way, even if
two time series segments are misaligned, we can still obtain similar
binary embeddings as long as they share the same label.

Our work is more closely related to binary embedding methods
which include twomain categories: data independent binary embed-
ding approaches [1, 5] and data dependent (learning based) binary
embedding techniques [15, 28, 30, 36, 41, 47]. In particular, learning
based embeddings can be further categorized into unsupervised
methods [15, 47] and supervised methods [28, 30, 36, 40, 42]. More
recently, deep binary embedding methods [6, 27, 49] are becoming
more popular since they achieve state-of-the-art performance for
image retrieval task. Compared to these techniques, our proposed
Deep r-RSJBE is unique from three perspectives: (1) rather than
focusing on image retrieval, we consider multivariate time series
retrieval problem in which it is essential to jointly consider the
temporal dynamics of raw time series segment and the correlations
between different pairs of time series; (2) a joint binary embed-
ding is pursued to encode both the temporal dynamics and the
correlations; (3) r -th root ranking loss is developed to learn the bi-
nary embedding such that the precision at the top of the Hamming
distance ranking list is optimized.

3 DEEP r -TH ROOT OF RANK SUPERVISED
JOINT BINARY EMBEDDING

In this section, we present Deep r -th root of Rank Supervised Joint
Binary Embedding (Deep r -RSJBE). Specifically, we first state the
problem we aim to study. Then we describe how to utilize LSTM
units to encode a raw multivariate time series segment and how
to employ CNNs to explicitly encode the correlations between
different pairs of time series. Subsequently, we pursue a joint binary
embedding to incorporate both the temporal dynamics in the raw
time series segment and the correlations between different pairs.
Finally, we present a r -th root ranking loss and introduce a detailed
optimization procedure.

3.1 Problem Statement
We introduce some main notations used in the paper. Given a multi-
variate time series segment, i.e.,n time serieswithX = (x1, · · · ,xn )⊤
= (x1, · · · ,xT ) ∈ Rn×T , where T is the length of window size, we
use xk = (xk1 ,x

k
2 , ·,x

k
T )

⊤∈ RT to represent a time series of length
T and employ xt = (x1

t ,x
2
t , · · · ,xnt )⊤ ∈ Rn to denote a vector of

n input series at time t . In addition, we use ∥ · ∥F to denote the
Frobenius norm of matrices, and ∥x ∥H to represent the Hamming
norm of a vector x , which is defined as the number of nonzero
entries in x , i.e., ℓ0 norm. We use ∥x ∥1 to represent the ℓ1 norm
of vector x , which is defined as the sum of absolute values of the
entries in x .

Given a multivariate time series segment Xq ∈ Rn×T , i.e., a slice
of n time series which lasts T time steps, we aim to find its most
similar time series segments in the historical data (or database) i.e.,
we expect to obtain:

arg min
Xp ∈D

S(Xq ,Xp ) (1)

where D = {Xp } is a collection of segments, p denotes the index
for p-th segment (∀1 ≤ p ≤ N ), N denotes the total number of
segments in the collection, and S(·) represents a similarity mea-
sure function. As long as the label information is available, it will
be straightforward to interpret the current system status in Xq
based upon the statuses of the top ranked candidates (e.g., walking,
running, sitting, etc.).

3.2 Raw Multivariate Time Series Segment
Representation

To performmultivariate time series retrieval, it is essential to obtain
a good representation for the multivariate raw time series segment
which can capture the temporal dynamics. Given a multivariate
time series segment X = (x1,x2, · · · ,xT ) with xt ∈ Rn , where n is
the number of time series, we aim to learn a mapping from X to h
with

h = F(X), (2)

where h ∈ Rm is the feature vector,m is the dimension of h, and F
is a non-linear mapping function.

In the past, LSTM units [10, 33, 44] have been widely applied to
sequence to sequence learning in natural language processing and
machine translation. The key idea of an LSTM unit is that the cell
state sums activities over time, which can overcome the problem
of vanishing gradients and better capture long-term dependencies
of time series. Therefore, we employ LSTM units as F to capture
the temporal dynamics as well as long-term dependencies in X.
In particular, each LSTM unit has a memory cell with the state st
at time t . Access to the memory cell will be controlled by three
sigmoid gates: forget gate ft , input gate it and output gate ot . The
update of an LSTM unit can be summarized as follows:

ft = σ (Wf [ht−1;xt ] + bf ) (3)

it = σ (Wi [ht−1;xt ] + bi ) (4)

ot = σ (Wo [ht−1;xt ] + bo ) (5)

st = ft ⊙ st−1 + it ⊙ tanh(Ws [ht−1;xt ] + bs ) (6)

ht = ot ⊙ tanh(st ) (7)

where [ht−1;xt ] ∈ Rm+n is a concatenation of the previous hidden
stateht−1 and the current input xt .Wf ,Wi ,Wo ,Ws ∈ Rm×(m+n),
and bf , bi , bo , bs ∈ Rm are parameters to learn. σ and ⊙ are
a logistic sigmoid function and an element-wise multiplication
operator (i.e., Hadamard product), respectively.

As shown in Figure 2, the last hidden state of LSTM units, i.e.,
hT , is employed as the representation for a raw multivariate time
series segment X since it encodes temporal dynamic information
in the entire segment.
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Figure 2: The network architecture for Deep r -RSJBE. At the bottom, a raw time series segment is encoded with LSTM units
(hT ). At the top, the correlation map of the raw time series segment is calculated and encoded via CNNs (l). After two repre-
sentations are obtained from the raw time series and the correlation map, a joint binary embedding (H(y)) is learned under
the supervision of the r -th root ranking loss.

3.3 Correlation Map Representation
Many previous studies [17, 19] suggests that besides the tempo-
ral dynamics in the raw multivariate time series segments, the
correlations (interactions) between different pairs of time series
(sensors) are also critical to characterize the system status. To rep-
resent the correlations between different pairs of time series in a
multivariate time series segment, we construct a n × n correlation
map based upon Pearson’s correlation coefficient. Given two time
series x i = (x i1,x

i
2, ·,x

i
T )

⊤∈ RT and x j = (x j1,x
j
2, ·,x

j
T )

⊤∈ RT , their
Pearson’s correlation coefficient can be calculated with:

c
j
i =

∑T
k=1(x

i
k − x̄ i )(x jk − x̄ j )√∑T

k=1(x
i
k − x̄ i )2 ∑T

k=1(x
j
k − x̄ j )2

(8)

where x̄ i and x̄ j denotes sample means of the two time series.
In order to get a compact representation of the correlation map

C ∈ Rn×n , we adopt Convolutional Neural Networks (CNNs) which
have similar architecture as AlexNet [26]. As shown in Figure 2, the
CNNs in Deep r -RSJBE contain 4 convolutional layers (conv1-conv4
with 3 × 3 × 16, 3 × 3 × 32, 3 × 3 × 64, and 3 × 3 × 64 filters; as
well as 1 × 1, 2 × 2, 2 × 2, and 1 × 1 strikes, respectively) and 2
fully connected layers (fc5-fc6). Each convolutional layer is a three-
dimensional array of size h×w ×d followed by batch normalization
and rectifier linear units (ReLU), i.e., max(0,x), where h andw are
spatial dimensions, and d is the feature or channel dimension. Fully
connected layers (fc5-fc6) transforms convolutional feature maps
to a vector and project it to a fixed dimensionm. Note that more
sophisticated networks, e.g., VGGNet [38] or ResNet [18], could be
used when dealing with more complex tasks.

As shown in Figure 2, the output of fc6, i.e., l ∈ Rm , is used to
encode the correlations between different pairs of time series in a
multivariate time series segment.

3.4 Jointly Binary Embedding
Given the representation for a raw multivariate time series seg-
ment (hT ) as well as the representation for the correlations be-
tween different pairs of time series in the same segment (l), we
concatenate them together as y = [hT ; l] ∈ R2m and aim to
learn a joint binary embedding which comprises a group of map-
ping functions

{
Hc (y)

}v
c=1 such that a 2m-dimensional floating-

point input y ∈ R2m is compressed into an v-bit binary code[
H1(y), · · · ,Hv (y)

]⊤ ∈ Hv ≡ {1,−1}v . This mapping, known
as binary embedding or hash function in the literature, is formu-
lated by

Hc (y) = sgn
(
Fc (y)

)
, c = 1, · · · ,v, (9)

where sgn(·) is the sign function that returns 1 if input variable is
greater than 0 and -1 otherwise, and Fc : R2m 7→ R is a proper
prediction function. A variety of mathematical forms for Fc (e.g.,
linear or nonlinear) can be utilized to serve to specific data domains
and practical applications. In this work, we focus on using a linear
prediction function, that is, Fc (y) = w⊤

c y+bc (wherewc ∈ R2m and
bc ∈ R) for simplicity. Following the previous work [15, 28], we set
the bias term bc = −w⊤

c u by using the mean vector u =
∑n
i=1yi/n,

which will make each generated binary bit
{
Hc (yi )

}v
c=1 for c ∈

[1 : v] be nearly balanced and thus exhibit maximum entropy. For
brevity, we further define the whole binary embedding function
H : R2m 7→ Hv to comprise the functionality ofv individual binary
embedding functions {Hc }vc=1, that is,

H(y,W) = sgn
(
W⊤(y −u)

)
, (10)
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which is parameterized by a matrix W = [w1, · · · ,wv ] ∈ R2m×v .
Note that Eq. (10) applies the sign function sgn(·) in the element-
wise way. For simplicity, we will abbreviate W and use H(y) =
H(y,W) in the following description.

3.5 r -th Root Ranking Loss
To pursue such a binary embedding function H(·), rather than
considering pairwise similarities (i.e., pair-level labels) as in [27, 28],
we leverage relative segment similarities in the form of triplets
DTriplet =

{
(Xq , Xi , Xj )

}
, in which the segment pair (Xq , Xi ) is

more similar than the segment pair (Xq ,Xj ) (e.g.,Xq andXi belong
to the same class while Xq and Xj belong to different classes).
Intuitively, we would expect that these relative similar relationships
revealed by DTriplet can be preserved within the Hamming space
by the virtue of a good binary embedding function H(·), which
makes the Hamming distance between the embeddings H(yq ) and
H(yi ) smaller than that between the embeddingsH(yq ) andH(yj ).
Suppose that yq denotes a query segment, yi denotes its similar
segment, and yj represents its dissimilar segment. Then the “rank"
of yi with respect to the query yq can be defined as the number of
dissimilar segmentsyj (when j varies) which are more closer to the
query yq than yi within the projected Hamming space. Therefore,
the “rank" can be defined as:

R(yq ,yi ) =
∑
j
I
(H(yq ) − H(yj )


H ≤

H(yq ) − H(yi )


H

)
,

(11)
where I(·) is an indicator function which returns 1 if the condition
in the parenthesis is satisfied and returns 0 otherwise. Intuitively,
the function R(yq ,yi ) explicitly measures the number of the incor-
rectly ranked dissimilar segmentsyj ’s which are closer to the query
yq than the similar segment yi in terms of Hamming distance and
therefore indicates the position of yi in a Hamming distance rank-
ing list with respect to the query yq . In order to explicitly optimize
the search precision at top positions of a ranking list, we introduce
the r -th root ranking loss as:

L
(
R(yq ,yi )

)
= r
√

R(yq ,yi ) = R
1
r (yq ,yi ), (12)

where r > 1. This loss penalizes the segments (i.e., qj ’s) that are
incorrectly ranked at the top of a Hamming-distance ranking list
more than those at the bottom. This is because the increment of
L
(
R) gradually decays as R increases linearly. The detailed prop-

erties of the ranking loss are shown in Figure 3. As we can notice
in Figure 3(a), L(R) is a one to one monotonic increasing function
with first order derivative L′(R) large than zero and second order
derivative L′′(R) smaller than zero. Since L(R) can be seen as an
integral of its gradient, intuitively, L′(R) > 0 preserves the rank
by penalizing the “rank" (i.e., R) we defined more severe at the top
(i.e., when R is small) than at the bottom (i.e., when R is large).

Our Deep r -th RSJBE makes use of the above ranking loss and
the learning objective is formulated as follows:

O(DTriplet,W) =
∑
q

∑
i

R
1
r (yq ,yi ) +

λ

2
∥W∥2

F , (13)

where the first term is the proposed ranking loss, the second term
enforces regularization, and λ > 0 is a positive parameter control-
ling the trade-off between the ranking loss and the regularization

(a) (b)

Figure 3: Properties of the r -th root ranking loss. (a) Loss
function L(R), its gradient L′(R), and L′′(R) when r = 2. (b)
L(R) vs r when 1

r = {0.1, 0.3, 0.5, 0.7, 0.9}.

term. The parameter r > 1 determines to what degree the penal-
ization should be put on top of the ranking list (when r becomes
larger, the penalization becomes more severe). By optimizing this
objective with respect toW, we expect to optimize precision at top
positions of a Hamming distance ranking list.

We are aware that similar idea of our ranking loss in Eq. (12)
was previously used for information retrieval [41, 45], link predic-
tion [43] and image annotation [48]. Our work differs from them
because (1) the relative similarity of the triplets are measured with
Hamming distance which is discrete and discontinuous; (2) r -th
ranking loss is continuous differentiable with respect to the “rank"
while most of the previous ones are discrete and difficult to op-
timize; (3) r is a hyper-parameter which controls the degree of
penalization over the top of the ranking list and makes the loss
function more flexible compared to existing works.

3.6 Optimization
Although the ranking loss in Eq. (12) is continuous and differen-
tiable with respect to R, our objective in Eq. (13) is still difficult
to optimize. This is because: (a) the binary embedding function is
a discrete mapping; and (b) the Hamming norm lies in a discrete
space. Therefore, the proposed Deep r -RSJBE objective is discrete in
nature and the associated optimization problem is combinatorially
difficult.

To tackle this issue, we need relax the original discrete objective
to a continuous and differentiable surrogate.

Specifically, the target binary embedding function
H(y) = sgn

(
W⊤(y −u)

)
can be relaxed as:

H(y) = tanh
(
W⊤(y −u)

)
, (14)

which is continuous and differentiable. tanh(·) is a good approxi-
mation for sgn(·) function because it transforms the value in the
parenthesis to be in between of −1 and +1. Next, the Hamming
norm in Eq. (11) is relaxed to ℓ1 norm which is convex. Finally,
we relax the indicator function in Eq. (11) with sigmoid function.
Accordingly, Eq. (11) can be can be approximated with:

I
(H(yq ) − H(yj )


1 ≤

H(xq ) − H(xi )


1

)
≈σ

(H(yq ) − H(yi )


1 −
H(yq ) − H(yj )


1

) (15)

where σ (z) = 1
1+exp(−z) is the sigmoid function.
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Based upon these relaxations, the objective in Eq. (13) can be
approximated with:

O(DTriplet,W) =
∑
q

∑
i

R
1
r (yq ,yi ) +

λ

2
∥W∥2

F (16)

where R(yq ,yi ) is a soft-approximated rank of yi with respect to
the query yq which can be given by:

R(yq ,yi ) =
∑
j
σ
(
Vqi − Vqj

)
, (17)

where Vqi is written as

Vqi =
H(yq ) − H(yi )


1, (18)

and Vqj is denoted as

Vqj =
H(yq ) − H(yj )


1. (19)

Although sub-gradient descent approach can be derived to op-
timize Eq. (16), it may converge slowly or even will be infeasible
because of the expensive computation for the full gradient at each
iteration. Therefore, a stochastic gradient descent method is derived
to resolve this issue.

To optimize r -th root ranking loss with stochastic gradient de-
scent algorithm, given a collection of triplets DTriplet, we first ran-
domly select a queryXq and its similar segmentXi . Then we fixXq
and Xi , and randomly draw s (s ≤ M) different Xj ’s when j varies
to form a set of triplets {Xq ,Xi ,Xj }sj=1. Note that M is the total
number of possible choices of j. Assuming that the violated exam-
ples are uniformly distributed, then R(yq ,yi ) can be approximated
with ⌊Ms ⌋ ·

∑s
j=1 σ

(
Vqi − Vqj

)
where ⌊·⌋ is the floor function.

In this way, the objective of in Eq. (16) can be further approxi-
mated with:

O(DTriplet,W)

=
( ⌊M

s

⌋
·

s∑
j=1

σ
(
Vqi − Vqj

)) 1
r
+
λ

2
∥W∥2

F ,
(20)

and its associated gradient is given by:

∂O(DTriplet,W)
∂W

= λW+

1
r

⌊M
s

⌋ [ s∑
j=1

σ
(
Vqi − Vqj

)] 1
r −1

s∑
j=1

σ
(
Vqi − Vqj

)
σ
(
− Vqi + Vqj

)
·{

(yq −u)
[
sgn

(
H(yq ) − H(yi )

)
⊙
(
1 −H2(yq )

)]⊤
−(yi −u)

[
sgn

(
H(yq ) − H(yi )

)
⊙
(
1 −H2(yi )

)]⊤
−(yq −u)

[
sgn

(
H(yq ) − H(yj )

)
⊙
(
1 −H2(yq )

)]⊤
+(yj −u)

[
sgn

(
H(yq ) − H(yj )

)
⊙
(
1 −H2(yj )

)]⊤}
,

(21)
where the ⊙ denotes Hadamard product (i.e., elementwise product).

Based upon this gradient, we can easily perform backpropagation
over the entire network based upon minibatch stochastic gradient
descent together with Adam optimizer [25] to optimize the network
parameters of Deep r -RSJBE.

Algorithm 1: Optimization for Deep r-RSJBE
Input: DTriplet =

{
(Xq , Xi , Xj )

}
, λ,m, r , v , max_iter

Output: Network parameters
for iteration=1→max_iter do:

Randomly pick up a query Xq ;
Randomly select a similar sample Xi ;
Fixing Xq and Xi , randomly select s ≤ M dissimilar
samples Xj to form a batch of triplets {Xq ,Xi ,Xj }sj=1 ;
Calculate the gradient in Eq. (21) and perform
back-propagation on the entire network;

end

Table 1: The statistics of three multivariate time series
datasets.

Dataset # of time series Length # of classes
EEG Eye State 14 14,980 2

PAMAP2 52 376,416 13
SHL 22 1,048,575 6

Although the ideal case is that within these s sampled triplets
{Xq ,Xi ,Xj }sj=1 at least one violation (i.e., the ℓ1 distance between
H(yq ) andH(yj ) is smaller than that betweenH(yq ) andH(yi ))
exists, in practical applications we find that stochastic gradient
descent works well even when none violation exists in these s
triplets. This is because R(yq ,yi ) is a soft-approximated rank of
yi with respect to the query yq and making a gradient update can
still increase the margin in R(·). Therefore, it is flexible to set the
batch size in Deep r -RSJBE. The detailed optimization procedure
for Deep r -RSJBE is shown in Algorithm 1.

4 EXPERIMENTS
In this section, we first describe the three datasets we used for
empirical studies. Then, we introduce the evaluation metrics and
the parameter settings of Deep r -RSJBE. Finally, we compare the
proposed Deep r -RSJBE against Euclidean distance and six different
baseline methods, study its efficiency and parameter sensitivity.

4.1 Dataset
We consider three real world multivariate time series datasets as
shown in Table 1, i.e., EEG Eye State dataset, PAMAP2 dataset, and
Sussex-Huawei Locomotion (SHL) dataset. In these three datasets,
a discrete label is provided for each time step.

EEG Eye State dataset 1 is collected with the Emotiv EEG Neu-
roheadset. The eye state is detected via a camera during the EEG
measurement. ‘1’ indicates the eye-closed and ‘0’ denotes the eye-
open state. In our experiment, we uniformly sample 7,490 segments
of length 5 and overlap 2. Among them, we randomly select 6,490
segments as the database for training, 500 segments as the valida-
tion set, and 500 segments as the test set.

1https://archive.ics.uci.edu/ml/datasets/EEG+Eye+State
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Table 2: Multivariate time series retrieval performance (MAP) on EEG Eye State, PAMAP2, and SHL when v = 32, 64, and 128.
The best MAP is displayed in bold-face type.

Algorithms EEG Eye State PAMAP2 SHL
♯ Bits v =32 v =64 v =128 v = 32 v = 64 v = 128 v = 32 v = 64 v = 128
LSH [1] 0.5326 0.5335 0.5355 0.3354 0.3684 0.4030 0.4109 0.4319 0.4423
ITQ [15] 0.5435 0.5425 0.5439 0.3870 0.3849 0.4087 0.4200 0.4249 0.4316

HDML [30] 0.5646 0.5716 0.5714 0.5552 0.5919 0.6191 0.4619 0.4562 0.4578
TopRSBC [41] 0.5803 0.5832 0.5876 0.5758 0.6036 0.6149 0.4716 0.4724 0.4709

CNNs+Pairwise loss [27] 0.9567 0.9551 0.9569 0.6416 0.6327 0.6261 0.9008 0.9004 0.8928
LSTM+Triplet loss [10] 0.9570 0.9464 0.9433 0.6409 0.6662 0.6280 0.8892 0.8895 0.8451

LSTM+r -th root ranking loss 0.9805 0.9849 0.9663 0.6588 0.6779 0.6506 0.8986 0.8957 0.8652
Deep r -RSJBE 0.9869 0.9855 0.9796 0.8381 0.8102 0.7948 0.9169 0.9369 0.9027

The PAMAP2 is a physical activity monitoring dataset 2 [35]
which contains data of various different physical activities (such
as walking, cycling, playing soccer, etc.), performed by 9 subjects
wearing 3 inertial measurement units (IMU) and a heart rate moni-
tor. The sampling frequency for IMUs is 100Hz. In our study, we
employ the raw data from Subject101 which contains 52 time se-
ries of 376,416 time steps. For this subject, the types of physical
activities include: ‘lying’, ‘sitting’, ‘standing’, ‘walking’, ‘running’,
‘cycling’, ‘Nordic walking’, ‘ascending stairs’, ‘descending stairs’,
‘vacuum cleaning’, ‘ironing’, ‘rope jumping’, and ‘others’. We uni-
formly select 75,283 segments with length 10 and overlap 5. Then
we randomly pick up 71,528 segments as the database for training,
2,000 segments for validation, and 2,000 segments for test.

The Sussex-Huawei Locomotion (SHL) dataset 3[14] is a versatile
annotated dataset of modes of locomotion and transportation of
mobile users. The dataset contains multi-modal data from a body-
worn camera and from 4 smart phones, carried simultaneously at
typical body locations. In our experiment, we select one subject’s
motion data (sampled at 100 Hz) that contains 1,048,575 time steps
and 22 sensors for recording acceleration, gyroscope, magnetometer,
orientation, etc. The types of motion include: ‘null’, ‘still’, ‘walking’,
‘bike’, ‘train’, and ‘subway’. To perform multivariate time series
retrieval, we uniformly sample 209,715 segments of length 10 and
overlap 5. Among them, we randomly select 205,715 segments as
the database for training, 2,000 segments for validation, and 2,000
segments for test.

The detailed information about the partitions of these three
datasets are provided online 4.

4.2 Evaluation Metrics and Parameter Settings
To measure the effectiveness of various binary embedding tech-
niques formultivariate time series retrieval, we consider three evalu-
ationmetrics, i.e., Mean Average Precision (MAP), precision at top-k
positions (Precision@k), and recall at top-k positions (Recall@k).

Deep r -RSJBE has 5 hyper-parameters. For simplicity, we fix the
size of fc5 and fc6 in CNNs and set them as 256 on three datasets.
Meanwhile, we set the hidden size of LSTM units as 64, 256, and 256

2http://archive.ics.uci.edu/ml/datasets/pamap2+physical+activity+monitoring
3http://www.shl-dataset.org
4https://songdj.github.io

on EEG Eye State, PAMAP2, and SHL, respectively. For two hyper-
parameters in r -th root ranking loss, λ and r , they are optimized
based upon grid search over λ = {0.0001, 0.001, 0.01, 0.1, 1} and
1
r = {0.1, 0.3, 0.5, 0.7, 0.9}. To determine the optimal parameters
for test, we conduct 5 trials on each parameter combination and the
combination which achieves best average MAP on the validation set
is utilized for test. In all our experiments, we fixed the batch size as
512 for simplicity. Deep r -RSJBE is implemented with TensorFlow
and trained on a server with Intel(R) Xeon(R) CPU E5-2637 v4 @
3.50GHz and 4 NVIDIA GTX 1080 Ti graphics cards.

4.3 Multivariate Time Series Retrieval
In the experiments, we evaluate the effectiveness of the proposed
Deep r -RSJBE for multivariate time series retrieval based upon
three multivariate time series datasets.

For this purpose, we compare Deep r -RSJBE against Euclidean
distance (EU) as well as six representative binary embedding and
hashing algorithms. Among them, two are unsupervised meth-
ods, including one randomized method Locality-Sensitive Hashing
(LSH) [1] and one linear projection method Iterative Quantization
(ITQ) [15]. The other four are supervised algorithms, including two
linear algorithms, i.e., Hamming Distance Metric Learning (HDML)
[30] and Top Rank Supervised Binary Coding (TopRSBC) [41], and
two deep learning based algorithms, i.e., CNNs+Pairwise loss [27]
and LSTMs+Triplet loss [10]. For a fair comparison, the network
architecture for CNNs in CNNs+Pairwise loss and that for LSTM
in LSTM+Triplet loss are set to be exact the same as in Deep r -
RSJBE. In addition, we also report the performance of LSTM+r -th
root ranking loss to demonstrate the effectiveness of the r -th root
ranking loss. By comparing it with Deep r -RSJBE, we will know
that it is necessary to leverage the correlations between different
pairs of time series. All experiments are repeated 5 times and the
average performance (MAP, Precision@k , Recall@k) is reported
for comparison. Note that EU, LSH, ITQ, HDML, and TopRSBC
employ the vectorized raw time series segment as the input while
deep learning based approaches directly utilize the rawmultivariate
time series segment X as the input.

For EU, it achieves 0.5376, 0.4479, and 0.4406 MAP on EEG Eye
State, PAMAP2, and SHL, respectively. For all the compared binary
embedding algorithms, when the number of binary bits v varies
from 32, 64, to 128, their results are shown in Table 2. Among

Research Track Paper KDD 2018, August 19‒23, 2018, London, United Kingdom

2235 

http://archive.ics.uci.edu/ml/datasets/pamap2+physical+activity+monitoring
http://www.shl-dataset.org
https://songdj.github.io


(a) Precision@k on EEG Eye State (b) Precision@k on PAMAP2 (c) Precision@k on UHL

Figure 4: Precision@k with 32 binary bits on EEG Eye State, PAMAP2, UHL.

(a) Recall@k on EEG Eye State (b) Recall@k on PAMAP2 (c) Recall@k on UHL

Figure 5: Recall@k with 32 binary bits on EEG Eye State, PAMAP2, UHL.

those unsupervised algorithms, we observe that ITQ in general
outperforms LSH. This implies that exploring and exploiting un-
derlying data structures, distributions, or topological information
can yield more effective binary embeddings for multivariate time
series retrieval task. Among the compared algorithms, we notice
that supervised linear algorithms (e.g., HDML and TopRSBC) gener-
ally outperform unsupervised algorithms since the former leverage
label information to learn discriminative binary embedding func-
tions. The two deep learning algorithms, i.e., CNNs+Pairwise loss
and LSTM+Triplet loss outperform supervised linear methods and
unsupervised methods. This suggests that both CNNs and LSTM
can learn good representations for the raw multivariate time series
segment. We also notice that LSTM+r -th root ranking loss consis-
tently outperforms six baseline approaches on EEG Eye State as
well as PAMAP2 and achieves comparable performance to the best
baseline methods on SHL. This indicates that r -th root ranking loss
is superior to triplet loss since it optimizes the precision at the top
of a ranking list. Finally, we observe that Deep r -RSJBE consistently
achieves best MAP on these three datasets. This is because Deep
r -RSJBE not only considers the temporal dynamics in the raw time
series and the correlations between different pairs but also employs
r -th root ranking loss to optimize the precision at the top positions
of a Hamming distance ranking list.

We further investigate the effectiveness of the proposed Deep r -
RSJBE by comparing its Precision@k and Recall@k (when k varies)
to those of the competing algorithms in Figures 4 and Figure 5,
respectively. When k varies, we find that Deep r -RSJBE consistently

Table 3: The training time (seconds), embedding time (sec-
onds), and query time (seconds) for Deep r -RSJBE on three
multivariate time series datasets (v=32 bits).

Dataset training time binary embedding query time
EEG Eye State 238.41 1.72×10−5 5.05×10−4

PAMAP2 4842.54 1.46×10−5 2.60×10−3

SHL 4814.40 1.61×10−5 7.92×10−3

outperforms the other algorithms over these three datasets when
the number of bits is fixed as v = 32. This suggests that our learned
joint binary embedding and r -th root ranking loss can maintain
high precision at the top of a Hamming distance ranking list.

4.4 Efficiency
We examine the training time, embedding time, and query time of
Deep r -RSJBE in Table 3 when v = 32 bits. We can observe that
the training time for Deep r -RSJBE is generally less than 1.5 hours
for different datasets (on single GPU). Given a query segment, the
average time to obtain an binary embedding (on single GPU) is
around 1.46×10−5 to 1.72×10−5 seconds on these three datasets.
Meanwhile, with a query segment, the average query time for Deep
r -RSJBE to obtain the top 500, 5000, and 5000 relevant examples
(on CPU) is 5.05×10−4, 2.60×10−3, and 7.92×10−3 seconds on EEG
Eye State, PAMAP2, and SHL, respectively. For EU, the average
query time is 1.22×10−3, 7.05×10−3, and 2.21 × 10−2 seconds on
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(a) MAP for EEG Eye State. (b) MAP for PAMAP2. (c) MAP for SHL.

Figure 6: The parameter sensitivity of Deep r -RSJBE with respect to λ = {0.0001, 0.001, 0.01, 0.1, 1} and 1
r = {0.1, 0.3, 0.5, 0.7, 0.9}

when v = 32 bits.

these three datasets and it will linearly increase as the length of
query segment increases. While for Deep r -RSJBE, the query time
will not change as long as the size of binary embedding is fixed.

4.5 Parameter Sensitivity
We study the sensitivity of Deep r -RSJBE with respect to the param-
eters λ = {0.0001, 0.001, 0.01, 0.1, 1} and 1

r = {0.1, 0.3, 0.5, 0.7, 0.9}
for three datasets when v = 32 bits. When we vary the value of λ
or 1

r , we keep the other parameters fixed. We plot the MAP with
respect to λ and 1

r in Figure 6. We observe that the performance
of Deep r -RSJBE is relatively stable on three datasets when λ and
r varies. Furthermore, we notice that Deep r -RSJBE can achieve
relative better performance when 1

r is relatively small. This is be-
cause more penalization will be put on top of the Hamming distance
ranking list when r becomes larger.

5 CONCLUSION
We developed a Deep r -th root of Rank Supervised Joint Binary
Embedding (Deep r -RSJBE) to perform multivariate time series re-
trieval. Given a rawmultivariate time series segment, Deep r -RSJBE
employed LSTM units to encode the temporal dynamics and utilized
CNNs to explicitly encode the correlations (interactions) between
different pairs of time series (sensors). Subsequently, a joint binary
embedding was learned to incorporate both the temporal dynam-
ics and correlations. Finally, a novel r -th root ranking loss was
employed to optimize the precision at the top of a Hamming dis-
tance ranking list. Our empirical studies on EEG Eye State dataset,
PAMAP2 dataset, and UHL dataset, demonstrated the effectiveness
and the efficiency of the proposed Deep r -RSJBE.

In future, we will be interested to investigate how to perform
deep joint binary embeddingwhen label information is not available
for multivariate time series retrieval task. In addition, we are also
interested to apply Deep r -RSJBE to other applications, e.g., anomaly
detection.
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