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ABSTRACT

The problem of network representation learning, also known as
network embedding, arises in many machine learning tasks assum-
ing that there exist a small number of variabilities in the vertex
representations which can capture the “semantics” of the origi-
nal network structure. Most existing network embedding models,
with shallow or deep architectures, learn vertex representations
from the sampled vertex sequences such that the low-dimensional
embeddings preserve the locality property and/or global reconstruc-
tion capability. The resultant representations, however, are difficult
for model generalization due to the intrinsic sparsity of sampled
sequences from the input network. As such, an ideal approach to ad-
dress the problem is to generate vertex representations by learning a
probability density function over the sampled sequences. However,
in many cases, such a distribution in a low-dimensional manifold
may not always have an analytic form. In this study, we propose to
learn the network representations with adversarially regularized
autoencoders (NetRA). NetRA learns smoothly regularized vertex
representations that well capture the network structure through
jointly considering both locality-preserving and global reconstruc-
tion constraints. The joint inference is encapsulated in a generative
adversarial training process to circumvent the requirement of an
explicit prior distribution, and thus obtains better generalization
performance. We demonstrate empirically how well key proper-
ties of the network structure are captured and the effectiveness
of NetRA on a variety of tasks, including network reconstruction,
link prediction, and multi-label classification.
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1 INTRODUCTION

Network analysis has been attracting many research interests with
its enormous potential in mining useful information which ben-
efits the downstream tasks such as link prediction, community
detection and anomaly detection on social network [34], biological
networks [31] and language networks [28], to name a few.

To analyze network data, one fundamental problem is to learn a
low-dimensional vector representation for each vertex, such that
the network structure is preserved in the learned vector space [23].
For this problem, there are two major challenges: (1) preservation
of complex structure property. The objective of network embedding
is to train a model to “fit” the training networks, that is, to preserve
the structure property of networks [23, 26]. However, the latent
structure of the network is too complex to be portrayed by an ex-
plicit form of probability density which can capture both the local
network neighborhood information and global network structure.
(2) sparsity of network sampling. Current research on network em-
bedding employs network sampling techniques, including random
walk sampling, breadth-first search etc., to derive vertex sequences
as training datasets. However the sampled data represent only a
small proportion of all the vertex sequences. An alternative ap-
proach is to encode these discrete structures in a continuous code
space [37]. Unfortunately, learning continues latent representations
of discrete networks remains a challenging problem since in many
cases, the prior distribution may not exist in a low dimensional
manifold [26].

Recent work on network embedding has shown fruitful progress
in learning vertex representations of complex networks [23, 26, 37].
These representations employ nonlinear transformations to capture
the “semantics” of the original networks. Most existing methods
first employ a random walk technique to sample a bunch of vertex
sequences from the input network, then feed a learning model with
these sequences to infer the optimal low-dimensional vertex embed-
dings. However, the sampling strategy suffers from the data sparsity
problem since the total amount of vertex sequences is usually very
large in real networks and it is often intractable to enumerate all.
Subsequently, learning on a sparse sample set tends to produce
an overly complex model to explain the sampled dataset, which
eventually causes overfitting. Though autoencoders are adopted to
encode the inputs into continuous latent representations [37], reg-
ularizations are still desirable to force the learned representations
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Figure 1: Illustration of the deep network embedding archi-

tecture with adversarially regularized autoencoders

remain on the latent manifold. Ideally we could generate the contin-
uous vertex representations with a prior distribution. However, in
many cases, it is difficult, if not impossible, to pre-define an explicit
form of the prior distribution in a low-dimensional manifold. For
example, Dai et al. [6] proposed to train a discriminator to distin-
guish samples generated from a fixed prior distribution and the
input encoding, and thereby pushing the embedding distribution
to match the fixed prior. While this gives more flexibility, it suffers
from the mode-collapse problem [16]. Moreover, most network em-
bedding models with deep architectures usually do not consider the
order of the vertices in the sampled vertex sequences [37]. Thus,
the information of proximity orders cannot be well considered.

To address the aforementioned challenges, in this study, we
propose a novel model to learn the network representations with
adversarially regularized autoendoers (NetRA).NetRA jointly min-
imizes network locality-preserving loss and the reconstruction error
of autoencoder which utilizes a long short-term memory network
(LSTM) as an encoder to map the input sequences into a fixed
length representation. The joint embedding inference is encapsu-
lated in a generative adversarial training process to circumvent the
requirement of an explicit prior distribution. As visually depicted
in Figure 1, our model employs a discrete LSTM autoencoder to
learn continuous vertex representations with sampled sequences of
vertices as inputs. In this model, besides minimizing the reconstruc-
tion error in the LSTM autoencoder, the locality-preserving loss
at the hidden layer is also minimized simultaneously. Meanwhile,
the continuous space generator is also trained by constraining to
agree in distribution with the encoder. The generative adversarial
training can be regarded as a complementary regularizer to the
network embedding process.

NetRA exhibits desirable properties that a network embedding
model requires: 1) structure property preservation, NetRA lever-
ages LSTM as an encoder to capture the neighborhood information
among vertices in each sequence sampled from the network. Addi-
tionally, the model is also trained simultaneously with the locality-
preserving constraint. 2) generalization capability, the generaliza-
tion capability requires a network embedding model to generalize
well on unseen vertex sequences which follow the same distribu-
tion as the population. The generative adversarial training process

enables the proposed model to learn smoothly regularized represen-
tations without pre-defining an explicit density distribution which
overcomes the sparsity issue from the input sequences of vertices.
We present experimental results to show the embedding capability
of NetRA on a variety of tasks, including network reconstruction,
link prediction and multi-label classification. To summarize, the
main contributions of this work are as follows:
• We propose a novel deep network embedding model with ad-
versarially regularized autoencoders, NetRA, to learn vertex
representations by jointly minimizing locality-preserving
loss and global reconstruction error using generative ad-
versarial training process. The resultant representations are
robust to the sparse inputs derived from the network.
• NetRA learns an adversarially regularized LSTM encoder
that can produce useful vertex representations from discrete
inputs, without a pre-defined explicit latent-space prior.
• We conduct extensive experiments on tasks of network re-
construction, link prediction and multi-label classification
using real-world information networks. Experimental results
demonstrate the effectiveness and efficiency of NetRA.

The rest of this paper is organized as follows. In Section 2, we
review the preliminary knowledge of autoencoders, generative ad-
versarial networks and network embedding algorithms. In Section 3,
we describe NetRA framework of learning a low dimensional map-
ping with generative adversarial training process. In Section 4, we
demonstrate the performance of NetRA by adapting this joint learn-
ing framework on tasks of network reconstruction, link prediction
and multi-label classification. In Section 5, we compare NetRA
framework to other network embedding algorithms and discuss
several related work. Finally, in Section 6 we conclude this study
and mention several directions for future work.

2 PRELIMINARIES

2.1 Autoencoder Neural Networks

An autoencoder neural network is trained to set the target values
to be equal to the inputs. The network consists of two parts: an
encoder fϕ (·) that maps inputs (x ∈ Rn ) to latent low-dimensional
representations and a decoder hψ (·) that produces a reconstruc-
tion of the inputs. Specifically, given a data distribution P

data
, from

which x is drawn from, i.e., x ∼ P
data

(x), we want to learn rep-
resentations fϕ (x) such that the output hypotheses hψ ( fϕ (x)) is
approximately equal to x. The learning process is described simply
as minimizing a cost function

minEx∼Pdata (x)[dist(x,hψ ( fϕ (x)))], (1)

where dist(·) is some similarity metric in the data space. In practice,
there are many options for the distance measure. For example, if we
use ℓ2 norm to measure the reconstruction error, then the objective
function can be defined asLAE (ϕ,ψ ; x) = Ex∼Pdata (x) ∥x − hψ ( fϕ (x))∥

2.
Similarly the objective function for cross-entropy loss can be de-
fined as,

−Ex∼Pdata (x)[x loghψ ( fϕ (x)) + (1 − x) log(1 − hψ ( fϕ (x)))] (2)

The choice of encoder fϕ (·) and decoder hψ (·) may vary across
different tasks. In this paper, we use LSTM autoencoders [27] which
are capable of dealing with sequences as inputs.
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2.2 Generative Adversarial Networks

The Generative Adversarial Networks (GANs) [11] build an adver-
sarial training platform for two players, namely generator дθ (·) and
discriminator dw (·), to play a minimax game.

min
θ

max
w

E
x∼Pdata (x)

[logdw (x)] + E
z∼Pg (z)

[log (1 − dw (дθ (z)))] (3)

The generator дθ (·) tries to map the noise to the input space as
closely as the true data, while the discriminator dw (x) represents
the probability that x came from the data rather than the noise. It
aims to distinguish real data distribution P

data
(x) and fake sample

distribution Pg (z), e.g. z ∼ N (0, I). Wasserstein GANs [1] overcome
unstable training problem by replacing Jensen-Shannon divergence
with Earth-Mover (Wasserstein-1) distance, which considers solving
the problem

min
θ

max
w ∈W

E
x∼Pdata (x)

[dw (x)] − E
z∼Pg (z)

[dw (дθ (z))]. (4)

The Lipschitz constraintW on discriminator has been kept by
clipping the weights of the discriminator within a compact space
[-c, c].

2.3 Network Embedding

Network embedding approaches seek to learn representations that
encode structural information about the network. These approaches
learn amapping that embeds vertices as points into a low-dimensional
space. Given the encoded vertex set {x(1) , ..., x(n) }, finding an em-
bedding fϕ (x(i ) ) of each x(i ) can be formalized as an optimization
problem [39, 41]

min
ϕ

∑
1≤i<j≤n

L( fϕ (x
(i ) ), fϕ (x

(j ) ),φi j ), (5)

where fϕ (x) ∈ Rd is the embedding result for a given input x.
L(·) is the loss function between a pair of inputs. φi j is the weight
between x(i ) and x(j ) .

We consider the Laplacian Eigenmaps (LE) that well fits the
framework. LE enables the embedding to preserve the locality prop-
erty of network structure. Formally, the embedding can be obtained
by minimizing the following objective function

LLE (ϕ; x) =
∑

1≤i<j≤n
∥ fϕ (x

(i ) ) − fϕ (x
(j ) ∥2φi j . (6)

3 APPROACH

In this section, we present NetRA, a deep network embedding
model using adversarially regularized autoencoders, to learn smoothly
regularized vertex representations with sequences of vertices as
inputs. The resultant representations can be used in the down-
stream tasks, such as link prediction, network reconstruction and
multi-class classification.

3.1 RandomWalk Generator

Given networkG (V ,E), the randomwalk generator inDeepWalk [23]
is utilized to obtain truncated random walks (i.e. sequences of ver-
tices) rooted on each vertex v ∈ V in G (V ,E). A walk is sampled
randomly from the neighbors of the last visited vertex until the
preset maximum length is reached.

(a) Walk length (b) Vertex degree (c) Number of samples

Figure 2: Sparsity of network sampling.

The random walk sampling technique is widely adopted in net-
work embedding research [12, 23, 37]. However, it suffers from the
sparsity problem in network sampling. For each vertex in given
network, if we assume that the average node degree is d̄ , the walk
length is l and the number of samples is k , then the sampling frac-
tion of walks can be calculated by

p
frac
∝
|V | × k

|V | × d̄l
=

k

d̄l
× 100%. (7)

The effect of the sampling fraction is presented in Figure 2. In
the example, DeepWalk is used to perform link prediction task on
the UCI message network described in Section 4.1. Figure 2(a) and
Figure 2(b) show that if the walk length or the average vertex degree
increases, the performance decreases dramatically1. According to
Eq. (7), obviously, when l or d̄ increases, the sampling fraction of
walks is getting smaller. Thereby, the trained model is prone to
overfitting because of the sparse inputs. On the contrary, if the
number of samples k increases, the performance is getting better
as shown in Figure 2(c). However, more sampled walks also call for
more computing burden on model training. Therefore, it is desirable
to develop effective models with better capabilities of generalization
on sparsely sampled network walks.

3.2 Embedding with Adversarially regularized

Autoencoders

In this paper, we proposeNetRA, a network embedding model with
adversarially regularized autoencoders, to address the sparsity prob-
lem. Autoencoders are popularly used for data embedding, such as
images and documents. It provides informative low dimensional
representations of input data by mapping the them to the latent
space. Unfortunately, if the encoder and decoder are allowed too
much capacity, the autoencoder can learn to perform the copying
task without extracting useful information about the distribution
of the data [10]. We proposed to use a generative adversarial train-
ing process as a complementary regularizer. The process has two
advantages. On one hand, the regularizer can guide the extraction
of useful information about data [10]. On the other hand, the gen-
erative adversarial training provides more robust discrete-space
representation learning that can well address the overfitting prob-
lem on sparsely sampled walks [19]. Specifically, in NetRA, the
discriminator updates by comparing the samples from the latent
space of the autoencoder with the fake samples from the generator,
1In Figure 2(a), the window size of DeepWalk is set to be equal to the walk length. The
reason is that, if the window size is set to a small value against a long walk length, it
turns out to be equivalent to increase the samples per vertex with a short walk length.
In Figure 2(b), we reduce the degree of the dataset by removing vertices with large
degrees [2].
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as shown in Figure 1. The latent space of autoencoder provides
optimal embedding for the vertices in the network with the simulta-
neous update of encoder and discriminator. In this study, we use the
LSTM as the encoder and decoder networks [27] because it takes
the order information of the sampled walks into consideration.

This joint architecture requires dedicated training objective for
each part. The autoencoder can be trained individually by minimiz-
ing the negative log-likelihood of reconstruction, which is indicated
by cross entropy loss in the implementation

LAE (ϕ,ψ ; x) = −Ex∼Pdata (x)[dist(x,hψ ( fϕ (x)))], (8)

where dist(x, y) = x log y+ (1−x) log(1−y). Here x is the sampled
batch from training data. fϕ (x) is embedded latent representation of
x, which is also the positive samples for discriminator, indicated by
the arrowwith “+” in Figure 1.ϕ andψ are parameters of the encoder
and decoder functions, respectively. In the training iteration of
autoencoder, not only the encoder and decoder are updated, the
locality-preserving loss (Eq. (6)) is jointly minimized.

As depicted in Figure 1, NetRA minimizes the distributions
between the learned representations from the encoder function
fϕ (x) ∼ Pϕ (x), and the representations from the continuous gen-
erator model дθ (z) ∼ Pθ (z). The dual form of the Earth Mover
distance between Pϕ (x) and Pθ (z) can be described as follows [1]

W (Pϕ (x),Pθ (z)) = sup
∥d ( ·) ∥L≤1

Ey∼Pϕ (x)[d (y)]−Ey∼Pθ (z)[d (y)] (9)

where ∥d (·)∥L≤1 is the Lipschitz continuity constraint (with Lip-
schitz constant 1). If we have a family of functions {dw (·)}w ∈W
that are all K-Lipschitz for some K , then we have

W (Pϕ (x), Pθ (z)) ∝ max
w∈W

E
x∼P

data
(x)

[dw (fϕ (x))] − E
z∼Pg (z)

[dw (дθ (z))]

(10)
We can separate the training of generator and discriminator. As

for the generator, the cost function can be defined as,

LGEN (θ ; x, z) = Ex∼P
data

(x)[dw (fϕ (x))] − Ez∼Pg (z)[dw (дθ (z))] (11)

and the cost function for discriminator is,

LDIS (w ; x, z) = −Ex∼P
data

(x)[dw (fϕ (x))] + Ez∼Pg (z)[dw (дθ (z))] (12)

NetRA learns smooth representations by jointly minimizing the
autoencoder reconstruction error and the locality-preserving loss
in an adversarial training process. Specifically, we consider solving
the joint optimization problem with objective function

LNetRA (ϕ, ψ , θ, w ) = LAE (ϕ, ψ ; x)+λ1LLE (ϕ ; x)+λ2W (Pϕ (x), Pθ (z))
(13)

Theorem 3.1. Let Pϕ (x) be any distribution. Let Pθ (z) be the
distribution of дθ (z) with z being a sample drawn from distribu-

tion Pg (z) and дθ (·) being a function satisfying the local Lipschitz

constants Ez∼Pg (z)[L(θ , z)] < +∞. Then we have

∇θLNetRA = −λ2∇θEz∼Pg (z)[dw (дθ (z))] (14)
∇wLNetRA = −λ2∇wEx∼Pdata (x)[dw ( fϕ (x))]

+λ2∇wEz∼Pg (z)[dw (дθ (z))] (15)

∇ϕLNetRA = λ1∇ϕ
∑

1≤i<j≤n
∥ fϕ (x

(i ) ) − fϕ (x
(j ) )∥2φi j

−∇ϕEx∼Pdata (x)[dist(x,hψ ( fϕ (x)))]
+λ2∇ϕEx∼Pdata (x)[dw ( fϕ (x))] (16)

∇ψLNetRA = −∇ψ Ex∼Pdata (x)[dist(x,hψ ( fϕ (x)))] (17)

Proof. Let X ⊆ Rn be a compact set, and

V (d̃,θ ) = Ey∼Pϕ (x)[d̃ (y)] − Ey∼Pθ (z)[d̃ (y)]

= Ey∼Pϕ (x)[d̃ (y)] − Ez∼Pg (z)[d̃ (дθ (z))] (18)

where d̃ lies inD = {d̃ : X → R, d̃ is continuous and bounded, ∥d̃ ∥ ≤
1}. Since X is compact, we know by the Kantorovich-Rubinstein
duality [1] that there exists a d ∈ D that attains the value

W (Pϕ (x),Pθ (z)) = sup
d̃ ∈D

V (d̃,θ ) = V (d,θ ) (19)

and D∗ (θ ) = {d ∈ D : V (d,θ ) = W (Pϕ (x),Pθ (z))} is non-empty.
According to the envelope theorem [21], we have

∇θW (Pϕ (x),Pθ (z)) = ∇θV (d,θ ) (20)

for any d ∈ D∗ (θ ). Then we get

∇θW (Pϕ (x),Pθ (z)) = ∇θV (d,θ )

= ∇θEy∼Pϕ (x)[d (y)] − Ez∼Pg (z)[d (дθ (z))]
= −∇θEz∼Pg (z)[dw (дθ (z))] (21)

Therefore, we have ∇θLNetRA = −λ2∇θEz∼Pg (z)[dw (дθ (z))].
Eq.(15)-(17) are straightforward applications of the derivative

definition. □

We now have all the derivatives needed. To train the model, we
use a block coordinate descent to alternate between optimizing
different parts of the model: (1) locality-preserving loss and autoen-
coder reconstruction error (update ϕ andψ ), (2) the discriminator
in the adversarial training process (updatew), and (3) the generator
(update θ ). Pseudocode of the full approach is given in Algorithm 1.

The training process of NetRA consists of the following steps:
Firstly, given a network G (V ,E), we run random walk generator
acquiring random walks of length l . Then, one hot representa-
tion x(i ) of each vertex is taken as input to LSTM cells. We pass
the random walks through encoding layers and obtain the vector
representations of vertices. After the decoder network, the ver-
tex representations will be transformed back into n dimensions.
Cross-entropy loss is calculated between the inputs and outputs
by minimizing the reconstruction error in autoencoder operation.
Meanwhile, locality-preserving constraint ensures that the adjacent
vertices are in close proximity (Step 2-7 in Algorithm 1). The latent
representation of encoder and the output of generator will be fed
into discriminator to get adversarial loss (Step 10-17). Additionally,
the generator transforms Gaussian noise into the latent space as
closely as the true data, by passing through multilayer perceptron
(Step 20-23). After the training of NetRA, we obtain the vertex
representations fϕ (x) of the network by passing the input walks
through the encoder function.

Optimality Analysis. NetRA, as illustrated in Figure 1, can be
interpreted asminimizing the divergence between two distributions,
namely Pϕ (x) and Pθ (z). We provide the following proposition
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Algorithm 1 NetRA Model Training
Require: the walks generated from input graph, maximum training epoch nepoch , the

number of discriminator training per generator iteration nD .
1: for epoch = 0; epoch < nepoch do

2: Minimizing LLE (ϕ ; x) with autoencoder LAE (ϕ, ψ ; x)
3: Sample {x(i ) }Bi=1 ∼ Pdata (x) a batch from the walks
4: Compute latent representation fϕ (x(i ) )
5: Compute reconstruction output hψ (fϕ (x(i ) ))
6: Compute LAE (ϕ, ψ ) and LLE (ϕ ) using Eq.(8) and Eq.(6)
7: Backpropagate loss and update ϕ andψ using Eq.(16)-(17)
8:
9: Discriminator training

10: for n = 0, n < nD do

11: Sample {x(i ) }Bi=1 ∼ Pdata (x) a batch from the walks
12: Sample {z(i ) }Bi=1 ∼ Pg (z) a batch from the noise
13: Compute representations fϕ (x(i ) ) and дθ (z (i ) )
14: Compute LDIS (w ) using Eq.(12)
15: Backpropagate loss and updatew using Eq.(15)
16: clip the weightw within [−c, c]
17: end for

18:
19: Generator training

20: Sample {z(i ) }Bi=1 ∼ Pg (z) a batch from the noise
21: Compute the representation дθ (z(i ) )
22: Compute LGEN (θ ) using Eq.(11)
23: Backpropagate loss and update θ using Eq.(14)
24: end for

which shows that under our parameter settings, if the Wasserstein
distance converges, the encoder distribution fϕ (x) ∼ Pϕ (x) con-
verges to the generator distribution дθ (z) ∼ Pθ (z).

Proposition 3.2. Let P be a distribution on a compact set X, and

(Pn )∈N be a sequence of distributions onX. ConsideringW (Pn ,P) →
0 as n → ∞, the following statements are equivalent:

(1) Pn
D
⇝ P where

D
⇝ represents convergence in distribution for

random variables.

(2) Ex∼Pn [F (x)] → Ex∼P[F (x)], where F (x) = Πn
i=1x

pi
i , x ∈

Rn ,
∑n
i=1 pi = k,k > 1,k ∈ N.

Proof. (1) As shown in [36], Pn converges to P is equivalent to
W (Pn ,P) → 0.

(2) According to the Portmanteau Theorem [36], Ex∼Pn [F (x)]→
Ex∼P[F (x)] holds if F : Rn → R is a bounded continuous function.
Our encoder fϕ (·) is bounded as the inputs are normalized to lie
on the unit sphere, and our generator дθ (·) is also bounded to lie in
(−1, 1)n by tanh function. Therefore, F (x) = Πn

i=1x
pi
i is a bounded

continuous function for all pi > 0, and

Ex∼Pn [Πn
i=1x

pi
i ]→ Ex∼P[Πn

i=1x
pi
i ] (22)

such that ∑ni=1 pi = k,∀k > 1,k ∈ N. □

Computational Analysis. Given a network G (V ,E), where
|V | = n, |E | = m, according to the definition in Eq.(6), the over-
all complexity of Laplacian Eigenmaps embedding is O (n2). In our
implementation, we only consider the vertex pairs (x(i ) , x(j ) ) that
have edges between them, thus the size of the sampled pairs is
O (m), which is much smaller thanO (n2) because real networks are
sparse in real settings.

The computational complexity of learning LSTM autoencoders
is proportional to the number of parameters |ϕ | and |ψ | in each
iteration. Therefore, the learning computational complexity for

Table 1: Statistics of the real-world network datasets

Dataset |V | |E | Avg. degree #label Type

UCI 1,899 27,676 14.57 - Directed
JDK 6,434 53,892 8.38 - Directed
BLOG 10,312 333,983 32.96 - Undirected
DBLP 180,768 382,732 4.23 - Undirected
PPI 3,890 76,584 19.69 50 Directed
WIKI 4,777 184,812 38.69 40 Directed

LSTM autoencoders is O (n
epoch

× ( |ϕ | + |ψ |)). Similarly, for the
generator and discriminator, each invocation of backpropagation
is typically linear in the number of parameters O ( |θ |) and O ( |w |).
Thus the computational complexity for generator and discriminator
is O (n

epoch
× (nD × |w | + |θ |)). It is basically quadratic if the input

and hidden layers are of roughly the same size. However, if we set
the size of embedding layers much less than that of the inputs, the
time complexity reduces to O (n).

4 EVALUATION

We evaluate the performance of our model with extensive experi-
ments on tasks including network reconstruction, link prediction
and multi-label classification, using a variety of network datasets.

4.1 Datasets

To verify the performance of the proposed network embedding
model, we conduct experiments on a variety of networks from dif-
ferent domains including the social network, software dependency
network, biological network and language network, as summarized
in Table 1.
• UCImessage (UCI) [22] is a directed communication network
containing sentmessages (edges) between the users (vertices)
of an online community of students from the University of
California Irvine.
• JDK dependency (JDK)2 is the software class dependency
network of the JDK 1.6.0.7 framework. The network is di-
rected, with vertices representing Java classes and an edge
between two vertices indicating there exists a dependency
between the two classes.
• Blogcatalog (BLOG) [29] is an undirected social network
from BlogCatalog website which manages the bloggers and
their blogs. The vertices represent users and edges represent
friendship between users.
• DBLP3 is an undirected collaboration graph of authors from
the DBLP computer science bibliography. The vertices in
this network represent the authors, and the edges represent
the co-authorships between two authors.
• Wikipedia (WIKI) [12] is a directed word network. Vertex
labels represent the Part-of-Speech (POS) tags inferred using
the Stanford POS-Tagger [33].
• Protein-Protein Interactions (PPI) [3] is a subgraph of the
PPI network for Homo Sapiens, which is a network depict-
ing interactions between human proteins. The vertex label
indicates biological states of proteins.

2http://konect.uni-koblenz.de/networks/subelj_jdk
3http://dblp.uni-trier.de/xml
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4.2 Comparing Algorithms

To evaluate the performance of our network embedding model, the
competitors used in this paper are summarized as follows.
• Spectral Clustering (SC) [30]: SC is an approach based on
matrix factorization, generating the vertex representation
with the smallest d eigenvectors of the normalized Laplacian
matrix of the graph.
• DeepWalk [23]: DeepWalk is a skip-gram [20] based model
which learns the graph embedding with truncated random
walks.
• node2vec [12]: This approach combines the advantage of
breadth-first traversal and depth-first traversal algorithms.
The random walks generated by node2vec can better repre-
sent the structural equivalence.
• Structural Deep Network Embedding (SDNE) [37]: SDNE
is a deep learning based network embedding model which
uses autoencoder and locality-preserving constraint to learn
vertex representations that capture the highly non-linear
network structure.
• Adversarial Network Embedding (ANE) [6]:ANE proposes
to train a discriminator to push the embedding distribution
to match the fixed prior.

For fair comparison [18], we run each algorithm to generate 300
dimensional vertex representations on different datasets, unless
noted otherwise. The number of walks per vertex in DeepWalk
and node2vec is set to 10 with walk length 30, which is the same
as the random walk generation step of NetRA. The window size
of DeepWalk and node2vec is optimized to 10. node2vec is op-
timized with grid search over its return and in-out parameters
(p,q) ∈ {0.25, 0.50, 1, 2, 4}. For SDNE, we utilize the default param-
eter setting as described in [37]. For NetRA, the gradient clipping
is performed in every training iteration to avoid the gradient ex-
plosion, and we use stochastic gradient descent as the optimizer of
autoencoder networks. The multilayer perceptron (MLP) is used
in the generator and discriminator. The evaluation of different al-
gorithms is based on applying the embeddings they learned to the
downstream tasks, such as link prediction, network reconstruction,
and multi-label classification as will be illustrated in the subsequent
sections.

4.3 Visualization

In order to demonstrate how well key properties of network struc-
ture are captured by the network embedding models, we visualize
the embeddings of each compared method. We run different embed-
ding algorithms described in Section 4.2 to obtain low dimensional
representations of each vertex and map vertex vectors onto a two
dimensional space using t-SNE [35]. With vertex colored by its label,
we perform the visualization task on JDK dependency network, as
shown in Figure 3.

As observed in Figure 3, three classes are presented: red points for
org.omg, green points for org.w3c and blue points for java.beans. It
can be seen that the eigenvector-based method Spectral Clustering
cannot effectively identify different classes. Other baselines can
detect the classes to varying extents. NetRA performs best as it
can separate these three classes with large boundaries, except for a
small overlap between green and red vertices.

(a) Spectral Clustering (b) DeepWalk (c) node2vec

(d) SDNE (e) ANE (f) NetRA

Figure 3: Visualization results of the compared methods on

JDK dependency network: the red points belong to class

org.omg; the green points belong to class org.w3c; the blue

points belong to class java.beans.

Table 2: AUC score of link prediction

Method UCI JDK BLOG DBLP

SC 0.6128 0.6686 0.6014 0.5740
DeepWalk 0.6880 0.8506 0.7936 0.8605
node2vec 0.6040 0.8667 0.8105 0.8265
SDNE 0.7806 0.7226 0.6621 0.7712
ANE 0.6402 0.7409 0.7025 0.7935

NetRA 0.8879 0.8913 0.8627 0.8902

4.4 Link Prediction

The objective of link prediction task is to infer missing edges given
a network with a certain fraction of edges removed. We randomly
remove 50% of edges from the network, which serve as positive
samples, and select an equal number of vertex pairs without linkage
between them as negative samples. With vertex representation
learned by network embedding algorithms, we obtain the edge
feature from the ℓ2 norm of two vertex vectors, and use it directly
to predict missing edges. Because our focus is network embedding
model, this simple experimental setup can evaluate the performance
based on the assumption that the representations of two connected
vertices should be closer in the Euclidean space. We use the area
under curve (AUC) score for evaluation on link prediction task. The
results are shown in Table 2.

Obviously, we observe that NetRA outperforms the baseline
algorithms across all datasets by a large margin. It can be seen
that NetRA achieves 3% to 32% improvement based on the AUC
score on the four datasets. By comparing NetRA, node2vec and
DeepWalk, which all use random walks as inputs, we can see the
effectiveness of generative adversarial regularization for improv-
ing the generalization performance in NetRA model. With same
random walk sequences, NetRA can overcome the sparsity issue
from the sampled sequences of vertices.

We also plot the ROC curve of these four datasets, as shown
in Figure 4(a)-(d). The ROC curve of NetRA dominates other ap-
proaches and is very close to the (0, 1) point. We train the NetRA
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(a) ROC Curve on UCI (b) ROC Curve on JDK (c) ROC Curve on BLOG (d) ROC Curve on DBLP

(e) UCI (f) JDK (g) BLOG (h) DBLP

Figure 4: Link prediction using vertex representation. Evaluated with AUC ROC score versus training epochs.

model with different epochs for different datasets and embed the
vertices to get representations after each training epoch. The re-
sults are shown in Figure 4(e)-(h). Generally, we can observe that
NetRA converges pretty fast with high AUC score almost after the
first epoch. When comparing with Deepwalk, node2vec, SDNE and
ANE, we can clearly see the better performance of NetRA on these
datasets.

4.5 Network Reconstruction

Network embeddings are considered as effective representations
of the original network. The vertex representations learned by
networking embedding maintain the edge information for network
reconstruction. We randomly select vertex pairs as edge candidates
and calculate the Euclidean distance between the vertices. We use
the precision@k , the fraction of correct predictions in the top k
predictions, for evaluation.

precision@k =
1
k
× |E

pred
(1 : k ) ∩ E

obs
|, (23)

where E
pred

(1 : k ) represents the top k predictions and E
obs

repre-
sents observed edges in original network. In the evaluation, the UCI
message and Blogcatalog datasets have been utilized to illustrate
the performance of NetRA, with results shown in Figure 5.

As it can be seen from the precision@k curves, the NetRAmodel
achieves higher precision in the network reconstruction task. The
total number of edge candidates selected in this task is 8k for UCI
message and 300k for Blogcatalog. The reconstruction given by
NetRA is very accurate in predicting most positive samples (results
on JDK and DBLP datasets show similar trends which haven’t been
included here). DeepWalk and node2vec can give reasonable recon-
struction but the results are worse than NetRA for most k’s. By
learning smoothly regularized vertex representations using genera-
tive adversarial training process [11], our model well integrates the

(a) UCI (b) BLOG

Figure 5: Network reconstruction results on UCI message

and Blogcatalog, evaluated by precision@k .

locality-preserving and global reconstruction constraints to learn
embeddings that capture the “semantic” information.

4.6 Multi-label Classification

The task of predicting vertex labels with representations learned
by network embedding algorithms is widely used in recent studies
for performance evaluation [12, 23, 37]. An effective network em-
bedding algorithm should capture network topology and extract
most useful features for downstream machine learning tasks. In
this section, we use vertex features as input to a one-vs-rest logistic
regression using the LIBLINEAR [9] package to train the classifiers.
For the Wikipedia and PPI datasets, we randomly sample 10% to
50% of the vertex labels as the training set and use the remaining
vertices as the test set. We reportMicro-F1 [37]as evaluation metrics.
Each result is averaged by five runs, as shown in Figure 6.

It is evident from the figure that NetRA outperforms the state-
of-the-art embedding algorithms on multi-label classification task.
In the PPI dataset, NetRA achieves higher Micro-F1 scores than
the baseline models by over 10% in all experiment settings. In the
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(a) PPI (b) WIKI

Figure 6: Multi-label classification on PPI and Wikipedia

(a) Edge percentage for training (b) Embedding dimensions

Figure 7: Parameter sensitivity analysis

Wikipedia dataset, NetRA model performs better even with lower
percentage training set. This well illustrates the good generaliza-
tion performance when the training set is sparse. The multi-label
classification task shows that, with adversarially regularized LSTM
autoencoders, the neighborhood information can be well captured
by the low dimensional representations.

4.7 Parameter Sensitivity

In this section, we investigate the parameter sensitivity in NetRA
for link prediction. We study how the training set size, embedding
dimension and locality-preserving constraint parameter λ1 will
affect the performance of link prediction. Also by changing the ar-
chitecture of the NetRAmodel, we can investigate roles of different
components in NetRA. Note that similar observations can be made
on multi-label classification and network reconstruction tasks.

In Figure 7(a), we vary the training percentage of edges in the
UCI message network. As it can be seen, the performance increases
as the training ratio increases. Comparing with other algorithms,
NetRA can capture the network topology even with a small propor-
tion of edges for training, which demonstrates the generalization
capability of the NetRA model. In Figure 7(b), we vary the em-
bedding dimension from 50 to 1000. The prediction performance
gets saturated as the dimension increases. Considering that the em-
bedding dimension is related to the parameter volume in NetRA,
there exists a trade off between the performance and the efficiency
during model training.

The parameter λ1 is defined by the relative strength between
locality-preserving constraint and autoencoder constraint. The
higher the λ1, the larger the gradient comes from the locality-
preserving constraint. As observed from the Figure 8, a higher
λ1 enhances the link prediction performance on the UCI message
network, indicating the important role of local proximity.

Figure 8: Performance on dif-

ferent λ1 for LLE

Figure 9: Performance on dif-

ferent NetRA architectures

We also include three variants of NetRA to demonstrate the im-
portance of individual components inNetRA, includingNetRA−LE,
NetRA−LSTM, and NetRA−GAN. NetRA−LE and NetRA−GAN re-
move the locality-preserving constraint LLE and adversarial regu-
larizationW (Pϕ (x),Pθ (z)), respectively. As for NetRA−LSTM, we
replace LSTM with multilayer perceptron. It’s evident from Fig-
ure 9 that LSTM autoencoder, locality-preserving constraint, and
adversarial regularization play important roles in NetRA model.
The overfitting becomes obvious in the training of NetRA−LSTM
and NetRA−GAN.

5 RELATEDWORK

Recently, we have witnessed the emergence of random walk based
methods [8, 12, 23], inspired by the success of natural language
processing [23]. These models build connections between network
structure and natural language. The training input of these algo-
rithms changes frommatrices to sentence-like vertex sequences gen-
erated by random walks among connected vertices. The skip-gram
algorithm [20] maximizes the co-occurrence probability among
the vertices within a certain window in a random walk. Deep-
Walk [23] obtains effective embeddings using truncated random
walks. Node2vec [12] extends the model with flexibility between
homophily and structural equivalence [42]. These last two meth-
ods motivate the study of network embedding taking advantage of
language models.

Deep learning embedding models [4, 32, 37] have also been ap-
plied to solve the network embedding problem. Autoencoder based
approaches [4, 37] were proposed, utilizing its ability of learning
highly non-linear properties. By carefully constructing the learning
objective, [37] preserves the first and second proximity of networks
which delivers the state-of-the-art performance. Recent works on
graph convolutional networks [7, 17] have demonstrated effective
convolution operation on network data. Inductive and unsupervised
GraphSAGE [14] leverages vertex features [15] and aggregates fea-
tures among vertex neighborhood.

The rapid advances in deep learning research in last decades
have provided novel methods for studying highly non-linear data.
One such model is the Generative adversarial networks (GANs) [11]
which has achieved great success in generating and learning the la-
tent presentation of high dimensional data, such images [24]. There
have been several successful attempts [13, 16, 25] of implementing
GANs on discrete structures, such as text and discrete images, which
inspired us to investigate network representation learning using
GANs. Using GANs to learn the representation of discrete contents
like natural languages and social networks remains a challenging

Research Track Paper KDD 2018, August 19‒23, 2018, London, United Kingdom

2670 



problem due to the difficulty in back-propagation through discrete
random variables. Recent work on GANs such as GraphGAN [38]
and ANE [6] for discrete data is either though the use of discrete
structures [5, 40] or the improved autoencoders [16].

6 CONCLUSION

In this study we proposed NetRA, a deep network embedding
model for encoding each vertex in a network as a low-dimensional
vector representation with adversarially regularized autoencoders.
Our model demonstrated the ability of generative adversarial train-
ing process in extracting informative representations. The proposed
model has better generalization capability, without requiring an
explicit prior density distribution for the latent representations.
Specifically, we leveraged LSTM autoencoders that take the sam-
pled sequences of vertices as input to learn smooth vertex repre-
sentations regularized by locality-preserving constraint and gen-
erative adversarial training process. The resultant representations
are robust to the sparse vertex sequences sampled from the net-
work. Empirically, we evaluated the learned representations with
a variety of network datasets on different tasks such as network
reconstruction, link prediction and multi-label classification. The
results showed substantial improvement over the state-of-the-art
network embedding competitors.
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