
Heterogeneous Graph Neural Network
Chuxu Zhang

University of Notre Dame
czhang11@nd.edu

Dongjin Song
NEC Laboratories America, Inc.

dsong@nec-labs.com

Chao Huang
University of Notre Dame, JD Digits

chuang7@nd.edu

Ananthram Swami
US Army Research Laboratory
ananthram.swami.civ@mail.mil

Nitesh V. Chawla
University of Notre Dame

nchawla@nd.edu

ABSTRACT
Representation learning in heterogeneous graphs aims to pursue
a meaningful vector representation for each node so as to facili-
tate downstream applications such as link prediction, personalized
recommendation, node classification, etc . This task, however, is
challenging not only because of the demand to incorporate het-
erogeneous structural (graph) information consisting of multiple
types of nodes and edges, but also due to the need for considering
heterogeneous attributes or contents (e .д., text or image) associ-
ated with each node. Despite a substantial amount of effort has
been made to homogeneous (or heterogeneous) graph embedding,
attributed graph embedding as well as graph neural networks, few
of them can jointly consider heterogeneous structural (graph) infor-
mation as well as heterogeneous contents information of each node
effectively. In this paper, we propose HetGNN, a heterogeneous
graph neural network model, to resolve this issue. Specifically, we
first introduce a random walk with restart strategy to sample a
fixed size of strongly correlated heterogeneous neighbors for each
node and group them based upon node types. Next, we design a
neural network architecture with two modules to aggregate feature
information of those sampled neighboring nodes. The first module
encodes “deep” feature interactions of heterogeneous contents and
generates content embedding for each node. The second module
aggregates content (attribute) embeddings of different neighboring
groups (types) and further combines them by considering the im-
pacts of different groups to obtain the ultimate node embedding.
Finally, we leverage a graph context loss and a mini-batch gradient
descent procedure to train the model in an end-to-end manner. Ex-
tensive experiments on several datasets demonstrate that HetGNN
can outperform state-of-the-art baselines in various graph mining
tasks, i .e ., link prediction, recommendation, node classification &
clustering and inductive node classification & clustering.

KEYWORDS
Heterogeneous graphs, Graph neural networks, Graph embedding

ACM Reference Format:
Chuxu Zhang, Dongjin Song, Chao Huang, Ananthram Swami, and Nitesh
V. Chawla. 2019. Heterogeneous Graph Neural Network. In The 25th ACM

Publication rights licensed to ACM. ACM acknowledges that this contribution was
authored or co-authored by an employee, contractor or affiliate of the United States
government. As such, the Government retains a nonexclusive, royalty-free right to
publish or reproduce this article, or to allow others to do so, for Government purposes
only.
KDD ’19, August 4–8, 2019, Anchorage, AK, USA
© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-6201-6/19/08. . . $15.00
https://doi.org/10.1145/3292500.3330961

SIGKDD Conference on Knowledge Discovery and Data Mining (KDD ’19),
August 4–8, 2019, Anchorage, AK, USA. ACM, New York, NY, USA, 11 pages.
https://doi.org/10.1145/3292500.3330961

1 INTRODUCTION
Heterogeneous graphs (HetG) [26, 27] contain abundant informa-
tion with structural relations (edges) among multi-typed nodes as
well as unstructured content associated with each node. For in-
stance, the academic graph in Fig. 1(a) denotes relations between
authors and papers (write), papers and papers (cite), papers and
venues (publish), etc . Moreover, nodes in this graph carry attributes
(e .д., author id) and text (e .д., paper abstract). Another example
illustrates user-item relations in the review graph and nodes are
associated with attributes (e .д., user id), text (e .д., item description)
and image (e .д., item picture). This ubiquity of HetG has led to an
influx of research on corresponding graph mining methods and
algorithms such as relation inference [2, 25, 33, 35], personalized
recommendation [10, 23], node classification [36], etc .

Traditionally, a variety of these HetG tasks have relied on fea-
ture vectors derived from a manual feature engineering tasks. This
requires specifications and computation of different statistics or
properties about the HetG as a feature vector for downstream ma-
chine learning or analytic tasks. However, this can be very limiting
and not generalizable. More recently, there has been an emergence
of representation learning approaches to automate the feature engi-
neering tasks, which can then facilitate a multitude of downstream
machine learning or analytic tasks. Beginning with homogeneous
graphs [6, 20, 29], graph representation learning has been expanded
to heterogeneous graphs [1, 4], attributed graphs [15, 34] as well
as specific graphs [22, 28]. For instance, the “shallow” models, e .д.,
DeepWalk [20], were initially developed to feed a set of short ran-
dom walks over the graph to the SkipGram model [19] so as to
approximate the node co-occurrence probability in these walks
and obtain node embeddings. Subsequently, semantic-aware ap-
proaches, e .д., metapath2vec [4], were proposed to address node
and relation heterogeneity in heterogeneous graphs. In addition,
content-aware approaches, e .д., ASNE [15], leveraged both “latent”
features and attributes to learn node embeddings in the graph.

These methods learn node “latent” embeddings directly, but are
limited in capturing the rich neighborhood information. The Graph
Neural Networks (GNNs) employ deep neural networks to aggre-
gate feature information of neighboring nodes, which makes the
aggregated embedding more powerful. In addition, the GNNs can
be naturally applied to inductive tasks involving nodes that are not
present in the training period. For instance, GCN [12], GraphSAGE

https://doi.org/10.1145/3292500.3330961
https://doi.org/10.1145/3292500.3330961

attributes

text

.	.	.		

image

.	.	.		

attributes

image

.	.	.		

text

heterogeneous graph type-1

type-2

type-k

C1 C2 C3

. . .
a

b

c
d

e

f

g

(b)

(a) paperauthor venue
a1
a2
a3
a4

v1
v2

p1

p2

p3

p4

itemuser
i1
i2
i3
i4

u1

u2

u3

u4

academic graph review graph

Figure 1: (a) HetG examples: an academic graph and a review
graph. (b) Challenges of graph neural network for HetG: C1
- sampling heterogeneous neighbors (for node a in this case,
node colors denote different types); C2 - encoding heteroge-
neous contents; C3 - aggregating heterogeneous neighbors.

[7], and GAT [31] employ convolutional operator, LSTM architec-
ture, and self-attentionmechanism to aggregate feature information
of neighboring nodes, respectively. The advances and applications
of GNNs are largely concentrated on homogeneous graphs. Current
state-of-the-art GNNs have not well solved the following challenges
faced for HetG, which we address in this paper.
• (C1) Many nodes in HetG may not connect to all types of neigh-
bors. In addition, the number of neighboring nodes varies from
node to node. For example, in Figure 1(a), any author node has
no direct connection to a venue node. Meanwhile, in Figure 1(b),
node a has 5 direct neighbors while node c only has 2. Most
existing GNNs only aggregate feature information of direct (first-
order) neighboring nodes and the feature propagation process
may weaken the effect of farther neighbors. Moreover, the embed-
ding generation of “hub” node is impaired by weakly correlated
neighbors (“noise” neighbors) and the embedding of “cold-start”
node is not sufficiently represented due to limited neighbor infor-
mation. Thus challenge 1 is: how to sample heterogeneous neighbors
that are strongly correlated to embedding generation for each node
in HetG, as indicated by C1 in Figure 1(b)?
• (C2) A node in HetG can carry unstructured heterogeneous con-
tents, e .д., attributes, text or image. In addition, content associated
with different types of nodes can be different. For example, in
Figure 1(b), type-1 nodes (e .д., b or c) contain attributes and text
content, type-2 nodes (e .д., f or д) carry attributes and image,
type-k nodes (e .д., d or e) are associated with text and image.
The direct concatenation operation or linear transformation by
the current GNNs cannot model “deep” interactions among node
heterogeneous contents. Moreover, it is not applicable to use the

Table 1:Model comparison: (1) RL - representation learning?
(2) HG - heterogeneous graph? (3) C - content aware? (4) HC
- heterogeneous contents aware? (5) I - inductive inference?

Property DW MP2V ASNE SHNE GSAGE GAT HetGNN[20] [4] [15] [34] [7] [31]

RL ✓ ✓ ✓ ✓ ✓ ✓ ✓

HG ✗ ✓ ✗ ✓ ✗ ✗ ✓

C ✗ ✗ ✓ ✓ ✓ ✓ ✓

HC ✗ ✗ ✓ ✗ ✓ ✓ ✓

I ✗ ✗ ✗ ✗ ✓ ✓ ✓

same feature transformation function for all node types as their
contents vary from each other. Thus challenge 2 is: how to de-
sign node content encoder for addressing content heterogeneity of
different nodes in HetG, as indicated by C2 in Figure 1(b)?
• (C3) Different types of neighbors contribute differently to the
node embeddings in HetG. For example, in the academic graph
of Figure 1(a), author and paper neighbors should have more
influence on the embedding of author node as a venue node
contains diverse topics thus has more general embedding. Most
of current GNNsmainly focus on homogeneous graphs and do not
consider node type impact. Thus challenge 3 is: how to aggregate
feature information of heterogeneous neighbors by considering the
impacts of different node types, as indicated by C3 in Figure 1(b).

To solve these challenges, we propose HetGNN, a heterogeneous
graph neural network model for representation learning in HetG.
First, we design a randomwalk with restart based strategy to sample
fixed size strongly correlated heterogeneous neighbors of each
node in HetG and group them according to node types. Next, we
design a heterogeneous graph neural network architecture with two
modules to aggregate feature information of sampled neighbors in
previous step. The first module employs recurrent neural network
to encode “deep” feature interactions of heterogeneous contents
and obtains content embedding of each node. The second module
utilizes another recurrent neural network to aggregate content
embeddings of different neighboring groups, which are further
combined by an attention mechanism for measuring the different
impacts of heterogeneous node types and obtaining the ultimate
node embedding. Finally, we leverage a graph context loss and
a mini-batch gradient descent procedure to train the model. To
summarize, the main contributions of our work are:

• We formalize the problem of heterogeneous graph representation
learning which involves both graph structure heterogeneity and
node content heterogeneity.
• We propose an innovative heterogeneous graph neural network
model, i .e ., HetGNN, for representation learning on HetG. Het-
GNN is able to capture both structure and content heterogeneity
and is useful for both transductive and inductive tasks. Table 1
summarizes the key advantages of HetGNN, comparing to a num-
ber of recent models which include homogeneous, heterogeneous,
attributed graph models, and graph neural network models.
• We conduct extensive experiments on several public datasets and
our results demonstrate the superior performance of HetGNN
over state-of-the-art baselines for numerous graph mining tasks

including link prediction, recommendation, node classification &
clustering, and inductive node classification & clustering.

2 PROBLEM DEFINITION
In this section, we introduce the concept of content-associated het-
erogeneous graphs that will be used in the paper and then formally
define the problem of heterogeneous graph representation learning.

Definition 2.1. Content-associated Heterogeneous Graphs.
A content associated heterogeneous graph (C-HetG) is defined as
a graph G = (V ,E,OV ,RE) with multiple types of nodes V and
links E. OV and RE represent the set of object types and that of
relation types, respectively. In addition, each node is associated
with heterogeneous contents, e .д., attributes, text, or image.

The academic graph in Figure 1(a) is a C-HetG. The node types
OV includes author, paper and venue. The link types RE includes
author-write-paper, paper-cite-paper and paper-publish-venue. Be-
sides, the author or venue node is associated with paper abstract
written by the author or included in the venue, and the paper node
contains abstract, references, as well as venue. The bipartite review
graph in Figure 1(a) is also C-HetG as |OV | + |RE | ≥ 3, where OV
includes user and item, the relation RE indicates review behavior.
The user node is associated with review that is written by the user
and the item node contains title, description, and picture.

Problem 1. Heterogeneous Graph Representation Learning.
Given a C-HetG G = (V ,E,OV ,RE) with node content set C,
the task is to design a model FΘ with parameters Θ to learn d-
dimensional embeddings E ∈ R |V |×d (d ≪ |V |) that are able to
encode both heterogeneous structural closeness and heterogeneous
unstructured contents among them. The node embeddings can
be utilized in various graph mining tasks, such as link prediction,
recommendation, multi-labels classification, and node clustering.

3 HetGNN
In this section, we formally present HetGNN to resolve those three
challenges described in Section 1. HetGNN consists of four parts:
(1) sampling heterogeneous neighbors; (2) encoding node hetero-
geneous contents; (3) aggregating heterogeneous neighbors; (4)
formulating the objective and designing model training procedure.
Figure 2 illustrates the framework of HetGNN.

3.1 Sampling Heterogeneous Neighbors (C1)
The key idea of most graph neural networks (GNNs) is to aggregate
feature information from a node’s direct (first-order) neighbors,
such as GraphSAGE [7] or GAT [31]. However, directly applying
these approaches to heterogeneous graphs may raise several issues:
• They cannot directly capture feature information from different
types of neighbors. For example, authors do not directly connect
to local authors and venue neighbors in Fig. 1(a), which could
lead to insufficient representation.
• They are weakened by various neighbor sizes. Some author writes
many papers while some only have few papers in the academic
graph. Some items are reviewed bymany users while some receive
few feedbacks in the review graph. The embedding of “hub” node
could be impaired by weakly correlated neighbors and “cold-start”
node embedding may not be sufficiently represented.

• They are not suitable for aggregating heterogeneous neighbors
which have different content features. Heterogeneous neighbors
may require different feature transformations to deal with differ-
ent feature types and dimensions.

In light of these issues and to solve the challenge C1, we design a
heterogeneous neighbors sampling strategy based on random walk
with restart (RWR). It contains two consecutive steps:
• Step-1: Sampling fixed length RWR. We start a random walk
from node v ∈ V . The walk iteratively travels to the neighbors
of current node or returns to the starting node with a probabil-
ity p. RWR runs until it successfully collects a fixed number of
nodes, denoted as RWR(v). Note that numbers of different types
of nodes in RWR(v) are constrained to ensure that all node types
are sampled for v .
• Step-2: Grouping different types of neighbors. For each node type
t , we select top kt nodes from RWR(v) according to frequency
and take them as the set of t-type correlated neighbors of node v .

This strategy is able to avoid the aforementioned issues due to: (1)
RWR collects all types of neighbors for each node; (2) the sampled
neighbor size of each node is fixed and the most frequently visited
neighbors are selected; (3) neighbors of the same type (having the
same content features) are grouped such that type-based aggre-
gation can be deployed. Next, we design a heterogeneous graph
neural network architecture with two modules to aggregate feature
information of the sampled heterogeneous neighbors for each node.

3.2 Encoding Heterogeneous Contents (C2)
To solve the challenge C2, we design a module to extract hetero-
geneous contents Cv from node v ∈ V and encode them as a fixed
size embedding via a neural network f1. Specifically, we denote
the feature representation of i-th content in Cv as xi ∈ Rdf ×1
(df : content feature dimension). Note that xi can be pre-trained
using different techniques w .r .t . different types of contents. For
example, we can utilize Par2Vec [13] to pre-train text content or
employ CNNs [17] to pre-train image content. Unlike the previous
models [7, 31] that concatenate different content features directly
or linearly transform them into an unified vector, we design a new
architecture based on bi-directional LSTM (Bi-LSTM) [9] to capture
“deep” feature interactions and obtain larger expressive capability.
Formally, the content embedding of v is computed as follows:

f1(v) =

∑
i ∈Cv

[
−−−−−→
LSTM

{
FCθx (xi)

}⊕←−−−−−
LSTM

{
FCθx (xi)

}]
|Cv |

(1)

where f1(v) ∈ Rd×1 (d : content embedding dimension), FCθx
denotes feature transformer which can be identity (no transforma-
tion), fully connected neural network with parameter θx , etc . The
operator

⊕
denotes concatenation. The LSTM is formulated as:
zi = σ (UzFCθx (xi) +Wzhi−1 + bz)

fi = σ (Uf FCθx (xi) +Wf hi−1 + bf)

oi = σ (UoFCθx (xi) +Wohi−1 + bo)

ĉi = tanh(UcFCθx (xi) +Wchi−1 + bc)

ci = fi ◦ ci−1 + zi ◦ ĉi
hi = tanh(ci) ◦ oi

(2)

neighbors
sampling

type-based
neighbors

image

text

attributes

attributes

feature
extraction

features
aggregation

NN-1

neighbors
aggregation

Graph
Context Loss

types
mixture

NN-2

NN-3

NN-1 NN-2 NN-3

attributes

text

(a)

(b) (c) (d)

attributes

text

image

par2vec

CNN

.	.	.		

one-hot

.	.	.		

BiLSTM
BiLSTM

BiLSTM

M
ean

Pooling

content features pre-train features aggregation

BiLSTM
BiLSTM

BiLSTM

M
ean

Pooling

node heterogeneous contents encoding same type neighbors aggregation types mixture with attention

type-1

type-2

.	.	.		

.	.	.		

.	.	.		

.	.	.		

.	.	.		

.	.	.		

self

type-K

+

+

+

+

+

.	.	.		

!"

!#

!$

!%

.	.	.		

type-base
neighbors

K types
neighbors

a

ℱ'

ℱ'

ℱ'

ℱ'

a a

Figure 2: (a) The overall architecture ofHetGNN: it first samples fix sized heterogeneous neighbors for each node (node a in this
case), next encodes each node content embedding via NN-1, then aggregates content embeddings of the sampled heterogeneous
neighbors throughNN-2 andNN-3, finally optimizes themodel via a graph context loss; (b) NN-1: node heterogeneous contents
encoder; (c) NN-2: type-based neighbors aggregator; (d) NN-3: heterogeneous types combination.

where hi ∈ R(d/2)×1 is the output hidden state of i-th content, ◦
denotes Hadamard product, Uj ∈ R

(d/2)×df ,Wj ∈ R
(d/2)×(d/2),

and bj ∈ R(d/2)×1 (j ∈ {z, f ,o, c}) are learnable parameters, zi , fi ,
and oi are forget gate vector, input gate vector, and output gate
vector of i-th content feature, respectively. To be more specific,
the above architecture first uses different FC layers to transform
different content features, then employs the Bi-LSTM to capture
“deep” feature interactions and accumulate expression capability
of all content features, and finally utilizes a mean pooling layer
over all hidden states to obtain the general content embedding of
v , as illustrated in Figure 2(b). Note that the Bi-LSTM operates on
an unordered content set Cv , which is inspired by previous work
[7] for aggregating unordered neighbors. Besides, we use different
Bi-LSTMs to aggregate content features for different types of nodes
as their contents vary from each other.

There are three main advantages for this encoding architecture:
(1) it has concise structures with relative low complexity (less pa-
rameters), making the model implementation and tuning relatively
easy; (2) it is capable to fuse the heterogeneous contents informa-
tion, leading to a strong expression capability; (3) it is flexible to add
extra content features, making the model extension convenient.

3.3 Aggregating Heterogeneous Neighbors (C3)
To aggregate content embeddings (obtained from Section 3.2) of
heterogeneous neighbors for each node and solve the challenge
C3, we design another module which is a type-based neural net-
work. It includes two consecutive steps: (1) same type neighbors
aggregation; (2) types combination.

3.3.1 Same Type Neighbors Aggregation.
In Section 3.1, we use RWR based strategy to sample fixed size
neighbor sets of different node types for each node. Accordingly,
we denote the t-type sampled neighbor set ofv ∈ V as Nt (v). Then,
we employ a neural network f t2 to aggregate content embeddings of
v ′ ∈ Nt (v). Formally, the aggregated t-type neighbors embedding
for v is formulated as follows:

f t2 (v) = AG
t
v ′∈Nt (v)

{
f1(v

′)
}

(3)

where f t2 (v) ∈ R
d×1 (d : aggregated content embedding dimension),

f1(v ′) is the content embedding of v ′ generated by the module in
Section 3.2, AGt is the t-type neighbors aggregator which can
be fully connected neural network, convolutional neural network,
recurrent neural network, etc . In this work, we use the Bi-LSTM
since it yields better performance in practise. Thus we re-formulate
f t2 (v) as follows:

f t2 (v) =

∑
v ′∈Nt (v)

[
−−−−−→
LSTM

{
f1(v ′)

}⊕←−−−−−
LSTM

{
f1(v ′)

}]
|Nt (v)|

(4)

where LSTM module has the same formulation as Eq. (2) except
input and parameter set. Obviously, we employ Bi-LSTM to ag-
gregate content embeddings of all t-type neighbors and use the
average over all hidden states to represent the general aggregated
embedding, as illustrated in Figure 2(c). We use different Bi-LSTMs
to distinguish different node types for neighbors aggregation. Note
that the Bi-LSTM operates on an unordered neighbors set, which is
inspired by GraphSAGE [7].

3.3.2 Types Combination.
The previous step generates |OV | (OV : set of node types in the
graph) aggregated embeddings for node v . To combine these type-
based neighbor embeddings with v’s content embedding, we em-
ploy the attention mechanism [31]. The motivation is that different
types of neighbors will make different contributions to the final
representation of v . Thus the output embedding is formulated as:

Ev = αv,v f1(v) +
∑
t ∈OV

αv,t f t2 (v) (5)

where Ev ∈ Rd×1 (d : output embedding dimension), αv,∗ indicates
the importance of different embeddings, f1(v) is the content em-
bedding of v obtained from Section 3.2, f t2 (v) is the type-based
aggregated embedding obtained from Section 3.3. We denote the
set of embeddings as F (v) =

{
f1(v)

⋃
(f t2 (v), t ∈ OV)

}
and re-

formulate the output embedding of v as:

Ev =
∑

fi ∈F(v)

αv,i fi

αv,i =
exp

{
LeakyReLU (uT [fi

⊕
f1(v)])

}∑
fj ∈F(v) exp

{
LeakyReLU (uT [fj

⊕
f1(v)])

} (6)

where LeakyReLU denotes leaky version of a Rectified Linear Unit,
u ∈ R2d×1 is the attention parameter. Figure 2(c) gives the illustra-
tion of this step.

In this framework, to make embedding dimension consistent
and model tuning easy, we use the same dimension d for content
embedding in Section 3.2, aggregated content embedding in Section
3.3, and output node embedding in Section 3.3.

3.4 Objective and Model Training
To perform heterogeneous graph representation learning, we define
the following objective with parameters Θ:

o1 = argmax
Θ

∏
v ∈V

∏
t ∈OV

∏
vc ∈CN t

v

p(vc |v ;Θ) (7)

whereCN t
v is the set of t-type context nodes of v such first/second

order neighbors [29] in the graph or local neighbors in short random
walks [20]. The conditional probability p(vc |v ;Θ) is defined as the
heterogeneous softmax function:

p(vc |v ;Θ) =
exp

{
Evc · Ev

}∑
vk ∈Vt exp

{
Evk · Ev

} , Ev = FΘ(v) (8)

where Vt is the set of t-type nodes in the graph, Ev is the output
node embedding formulated by the proposed graph neural network
Eq. (6) with all neural network parameters Θ. We leverage the
negative sampling technique (NS) [19] to optimize the objective
o1 in Eq. (7). Specifically, by applying NS to the construction of
softmax function in Eq. (8), we can approximate the logarithm of
p(vc |v ;Θ) as:

logσ (Evc · Ev) +
M∑

m=1
Evc′∼Pt (vc′) logσ (−Evc′ · Ev) (9)

whereM is the negative sample size and Pt (vc ′) is the pre-defined
noise distributionw .r .t . the t-type nodes. In this model, we setM =

1 as it makes little impact whenM > 1. Thus Eq. (9) degenerates to
the cross entropy loss:

logσ (Evc · Ev) + logσ (−Evc′ · Ev) (10)

In other words, for each context nodevc ofv , we sample a negative
node vc ′ according to Pt (vc ′). Therefore, we can reformulate the
objective o1 in Eq. (7) as follows:

o2 =
∑

⟨v,vc ,vc′ ⟩∈Twalk

logσ (Evc · Ev) + logσ (−Evc′ · Ev) (11)

whereTwalk denotes the set of triplets ⟨v,vc ,vc ′⟩ collected by walk
sampling on the graph. Similar to DeepWalk [20], we employ the
random walk to generate Twalk . Specifically, first, we uniformly
generate a set of random walks S in the heterogeneous graph. Then,
for each node v in a walk Si ∈ S , we collect context node vc which
satisfies: dist(v,vc) ≤ τ , i .e ., vc is within distance τ to v in Si .
Finally, for each vc , we sample a negative node vc ′ with the same
node type of vc according to Pt (vc ′) ∝ dд

3/4
vc′ , where dдvc′ is the

frequency ofvc ′ in S . To optimize the model parameters of HetGNN,
at each iteration, we first sample a mini-batch of triplets in Twalk
and accumulate the objective according to Eq. (11). Then, we update
the model parameters via the Adam optimizer [11]. We repeat
the training iterations until the change between two consecutive
iterations is sufficiently small (see Section A.1 in supplement for
a pseudocode of this training procedure). With the learned model
parameters, we can infer node representations E for various graph
mining tasks, as we will show in Section 4.

4 EXPERIMENTS
In this section, we conduct extensive experiments with the aim of
answering the following research questions:
• (RQ1) How does HetGNN perform vs . state-of-the-art baselines
for various graph mining tasks, such as link prediction (RQ1-1),
personalized recommendation (RQ1-2), and node classification
& clustering (RQ1-3)?
• (RQ2) How does HetGNN perform vs . state-of-the-art baselines
for inductive graph mining tasks, such as inductive node classifi-
cation & clustering?
• (RQ3) How do different components, e .д., node heterogeneous
contents encoder or heterogeneous neighbors aggregator, affect
the model performance?
• (RQ4) How do various hyper-parameters, e .д., embedding dimen-
sion or the size of sampled heterogeneous neighbors set, impact
the model performance?

4.1 Experiment Design
4.1.1 Datasets.
We use four datasets of two kinds of HetG: academic graph and
review graph. For the academic graph, we extract two datasets,
i .e ., A-I contains papers between year 1996 and 2005 and A-II con-
tains papers between year 2006 and 2015), from the public AMiner
[30] data1. For the review graph, we extract two datasets, i .e ., R-I
(Movies category) and R-II (CDs category), from the public Amazon
[8] data2. The main statistics of four datasets are summarized in

1https://aminer.org/data
2http://jmcauley.ucsd.edu/data/amazon/index.html

Table 2: Datasets used in this work.

Data Node Edge

Academic I (A-I)
author: 160,713 # author-paper: 295,103
paper: 111,409 # paper-paper: 138,464
venue: 150 # paper-venue: 111,409

Academic II (A-II)
author: 28,646 # author-paper: 69,311
paper: 21,044 # paper-paper: 46,931
venue: 18 # paper-venue: 21,044

Movies Review (R-I) # user: 18,340 # user-item: 629,125# item: 56,361

CDs Review (R-II) # user: 16,844 # user-item: 555,050# item: 106,892

Table 2 (see Section A.2 in supplement for detail of these datasets).
Note that HetGNN is flexible to be applied to other HetG.
4.1.2 Baselines.
We use five baselines including heterogeneous graph embedding
modelmetapath2vec [4] (represented asMP2V), attributed graph
modelsASNE [15] and SHNE [34], as well as graph neural network
models GraphSAGE [7] (represented as GSAGE) and GAT [31]
(see Section A.3 in supplement for detailed settings of these baseline
methods).
4.1.3 Reproducibility.
For the proposed model, the embedding dimension is set as 128.
The size of sampled neighbor set (in Section 3.1) equals 23 (10, 10,
3 for author, paper, venue neighbor groups, respectively) in aca-
demic data. This value equals 20 (10, 10 for user, item neighbor
groups, respectively) in review data. We use Par2Vec [19] and CNN
[17] to pre-train text and image features, respectively. Besides, the
DeepWalk [20] is employed to pre-train node embeddings. The
nodes in academic data are associated with text (paper abstract) fea-
tures and pre-trained node embeddings, while the nodes in review
data include text (item description), image (item picture) features,
and pre-trained node embeddings. Section A.4 of supplement con-
tains more detailed settings. We employ Pytorch3 to implement
HetGNN and conduct experiments on GPU. Code is available at:
https://github.com/chuxuzhang/KDD2019_HetGNN.

4.2 Applications
4.2.1 Link Prediction (RQ1-1).
Which links will happen in the future? To answerRQ1-1, we design
experiments to evaluate HetGNN on several link prediction tasks.

Setting. Unlike previous work [6] that randomly samples a por-
tion of links for training and uses the remaining for evaluation,
we consider a more practical setting that splits training and test
data sequentially. Specifically, first, the graph of training data is
utilized to learn node embeddings and the corresponding links
are used to train a binary logistic classifier. Then, test relations
with equal number of random negative (non-connected) links are
used to evaluate the trained classifier. In addition, only new links
among nodes in training data are considered and duplicated links
are removed from evaluation. The link embedding is formed by
element-wise multiplication of embeddings of the two edge nodes.
We use AUC and F1 scores as evaluation metrics. In academic data,
we consider two types of links: (type-1) collaboration between two
authors and (type-2) citation between author and paper. The data
3https://pytorch.org/

Table 3: Link prediction results. Split notation in data de-
notes train/test data split years or ratios.

Dataspl it Metric MP2V ASNE SHNE GSAGE GAT HetGNN[4] [15] [34] [7] [31]

A-I2003 AUC 0.636 0.683 0.696 0.694 0.701 0.714
(type-1) F1 0.435 0.584 0.597 0.586 0.606 0.620

A-I2003 AUC 0.790 0.794 0.781 0.790 0.821 0.837
(type-2) F1 0.743 0.774 0.755 0.746 0.792 0.815

A-I2002 AUC 0.626 0.667 0.688 0.681 0.691 0.710
(type-1) F1 0.412 0.554 0.590 0.567 0.589 0.615

A-I2002 AUC 0.808 0.782 0.795 0.806 0.837 0.851
(type-2) F1 0.770 0.753 0.761 0.772 0.816 0.828

A-II2013 AUC 0.596 0.689 0.683 0.695 0.678 0.717
(type-1) F1 0.348 0.643 0.639 0.615 0.613 0.669

A-II2013 AUC 0.712 0.721 0.695 0.714 0.732 0.767
(type-2) F1 0.647 0.713 0.674 0.664 0.705 0.754

A-II2012 AUC 0.586 0.671 0.672 0.676 0.655 0.701
(type-1) F1 0.318 0.615 0.612 0.573 0.560 0.642

A-II2012 AUC 0.724 0.726 0.706 0.739 0.750 0.775
(type-2) F1 0.664 0.737 0.692 0.706 0.715 0.757

R-I5:5
AUC 0.634 0.623 0.651 0.661 0.683 0.749
F1 0.445 0.551 0.586 0.542 0.665 0.735

R-I7:3
AUC 0.701 0.656 0.695 0.716 0.706 0.787
F1 0.595 0.613 0.660 0.688 0.702 0.776

R-II5:5
AUC 0.678 0.655 0.685 0.677 0.712 0.736
F1 0.541 0.582 0.593 0.565 0.659 0.701

R-II7:3
AUC 0.737 0.695 0.728 0.721 0.742 0.772
F1 0.660 0.648 0.685 0.653 0.713 0.749

before Ts (split year) is training data, otherwise test data. Ts of A-I
data is set to 2003 and 2002. The value for A-II data is set to 2013
and 2012. In the review data, we consider user-item review links
and divide training/test data sequentially. The train/test ratio (in
terms of review number) is set to 7 : 3 and 5 : 5 for both R-I and
R-II data.

Result. The performances of all models are reported in Table
3, where the best results are highlighted in bold. According to this
table: (a) the best baselines in most cases are attributed graph em-
bedding methods or graph neural network models, showing that
incorporating node attributes or employing deep neural network
generates desirable node embeddings for link prediction; (b) Het-
GNN outperforms all baselines in all cases especially in review
data. The relative improvements (%) over the best baselines range
from 1.5% to 5.6% and 3.4% to 10.5% for academic data and review
data, respectively. It demonstrates that the proposed heterogeneous
graph neural network framework is effective and obtains better
node embeddings (than baselines) for link prediction.
4.2.2 Recommendation (RQ1-2).
Which nodes should be recommended to the target node? To answer
RQ1-2, we design experiment to evaluate HetGNN on personalized
node recommendation task.

Setting. The concept of node recommendation is similar to link
prediction besides the experimental settings and evaluation metrics.
To distinguish with the previous link prediction task, we evaluate
venue recommendation (author-venue link) performance in the
academic data. Specifically, the graph in training data is utilized
to learn node embeddings. The ground truth of recommendation
is based on author’s appearance (having papers) in venue of test

https://github.com/chuxuzhang/KDD2019_HetGNN

Table 4: Recommendation results. Split notation in data de-
notes train/test data split years.

Dataspl it Metric MP2V ASNE SHNE GSAGE GAT HetGNN[4] [15] [34] [7] [31]

A-I2003
Rec 0.158 0.201 0.298 0.263 0.275 0.319
Pre 0.044 0.060 0.081 0.077 0.079 0.094
F1 0.069 0.092 0.127 0.120 0.123 0.145

A-I2002
Rec 0.144 0.152 0.279 0.231 0.274 0.293
Pre 0.046 0.050 0.086 0.073 0.087 0.093
F1 0.070 0.075 0.134 0.112 0.132 0.141

A-II2013
Rec 0.516 0.419 0.608 0.540 0.568 0.625
Pre 0.207 0.174 0.241 0.219 0.230 0.252
F1 0.295 0.333 0.345 0.312 0.327 0.359

A-II2012
Rec 0.468 0.382 0.552 0.512 0.518 0.606
Pre 0.204 0.171 0.233 0.224 0.227 0.264
F1 0.284 0.236 0.327 0.312 0.316 0.368

Table 5: Multi-label classification (MC) and node clustering
(NC) results. Percentage denotes training data ratio.

Task Metric MP2V ASNE SHNE GSAGE GAT HetGNN[4] [15] [34] [7] [31]

MC Macro-F1 0.972 0.965 0.939 0.978 0.962 0.978
(10%) Micro-F1 0.973 0.967 0.940 0.978 0.963 0.979

MC Macro-F1 0.975 0.969 0.939 0.979 0.965 0.981
(30%) Micro-F1 0.975 0.970 0.941 0.980 0.965 0.982

NC NMI 0.894 0.854 0.776 0.914 0.845 0.901
ARI 0.933 0.898 0.813 0.945 0.882 0.932

data. The preference score is defined as the inner-product between
embeddings of two nodes. We use Recall (Rec), Precision (Pre), and
F1 scores in top-k recommendation list as the evaluation metric. In
addition, duplicated author-venue pairs are removed from evalu-
ation. The reported score is the average value over all evaluated
authors. The same as link prediction task, the train/test split year Ts
for A-I data is set to 2003 and 2002. The value for A-II data is set to
2013 and 2012. Besides, k is set to 5 and 3 for two data respectively.

Result. The results of different models are reported in Table
4. The best results are highlighted in bold. According to this ta-
ble, the best baselines are attributed graph embedding methods or
graph neural network models in most cases. In addition, HetGNN
performs best in all cases. The relative improvements (%) over the
best baseline range from 2.8% to 16.0%, showing that HetGNN is
effective and can learn better node embeddings (than baselines) for
node recommendation.
4.2.3 Classification and Clustering (RQ1-3).
Which class/cluster does this node belong to? To answer RQ1-
3, we design experiments to evaluate HetGNN for multi-labels
classification and node clustering tasks.

Setting. Similar to metapath2vec [4], we match authors in A-
II dataset with four selected research domains, i .e ., Data Mining
(DM), Computer Vision (CV), Natural Language Processing (NLP)
and Database (DB). Specifically, we choose three top venues4 for
each area. Each author is labeled with the area with the majority
of his/her publications (authors without paper in these venues are
excluded in evaluation). The node embeddings are learned from the
full dataset. For the multi-labels classification task, the learned node
4DM: KDD, WSDM, ICDM. CV: CVPR, ICCV, ECCV. NLP: ACL, EMNLP, NAACL. DB: SIGMOD,
VLDB, ICDE

DB DB

CV CV

2 dimension 3 dimension
NLP NLP

DM
DM

Figure 3: Author embeddings visualization of four selected
domains in academic data.

Table 6: Inductivemulti-labels classification (IMC) and node
clustering (INC) results. Percentage is training data ratio.

Task Metric GSAGE [7] GAT [31] HetGNN

IMC Macro-F1 0.938 0.954 0.962
(10%) Micro-F1 0.945 0.958 0.965

IMC Macro-F1 0.949 0.956 0.964
(30%) Micro-F1 0.955 0.960 0.968

INC NMI 0.714 0.765 0.840
ARI 0.764 0.803 0.894

embeddings are used as the input to a logistic regression classifier.
Besides, the size (ratio) of training data is set to 10% and 30%, and
the remaining nodes are used for test. We use bothMicro-F1 and
Macro-F1 as evaluation metrics. For the node clustering task, the
learned node embeddings are used as the input to a clustering
model. Here we employ the k-means algorithm to cluster the data
and evaluate the clustering performance in terms of normalized
mutual information (NMI) and adjusted rand index (ARI).

Result. Table 5 reports results of all methods, where the best
results are highlighted in bold. It is can be seen that: (1) most of
models have good performance in multi-labels classification and
obtain large Macro-F1 and Micro-F1 scores (over 0.95). It is reason-
able since authors of four selected domains are quite different from
each other; (2) Despite (1), HetGNN achieves the best performance
or is comparable to the best method for multi-label classification
and node clustering tasks, showing that HetGNN can learn effective
node embeddings for these tasks.

Furthermore, we employ TensorFlow embedding projector to
visualize author embeddings of four domains, as shown by Figure
3. For each area, we randomly sample 100 authors. It is easy to see
that embeddings of authors in the same class cluster closely and can
be well distinguished from others in both 2D and 3D visualizations,
demonstrating the effectiveness of learned node embeddings.
4.2.4 Inductive Classification and Clustering (RQ2).
Which class/cluster does new node belong to? To answer RQ2, we
design experiment to evaluate HetGNN for inductive multi-labels
classification and inductive node clustering tasks.

Setting. The setting of this task is similar to the previous node
classification and clustering tasks except that we use the new node
embeddings as the model input. Specifically, first, we use the train-
ing data (A-II dataset, train/test split year = 2013) to train the model.
Then, we employ the learned model to infer the embeddings of

Link Prediction (Type-1) Link Prediction (Type-2) Node Recommendation

Link Prediction (Type-1) Link Prediction (Type-2) Node Recommendation

Figure 4: Performances of variant proposed models.

all new nodes in test data. Finally, we use the inferred new node
embeddings as the input to classification and clustering models.

Result. Table 6 reports performances of graph neural network
models, where the best results are highlighted in bold. According
to this table: (1) all methods have good performances in inductive
multi-labels classification as the reason described in the previous
task. However, HetGNN still achieves the best performance; (2)
The result of HetGNN is better than the others for inductive node
clustering. The average relative improvements (%) over GSAGE and
GAT are 17.3% and 10.6%, respectively. It shows that the learned
HetGNN model is effective for inferring new node embeddings.

4.3 Analysis
4.3.1 Ablation Study (RQ3).
HetGNN is a joint learning framework of node heterogeneous
contents encoding and heterogeneous neighbors aggregation. How
content encoder impact the model performance? Whether neigh-
bors aggregation is effective for improving the model capability?
To answer these questions and RQ3, we conduct ablation studies
to evaluate performances of several model variants which include:
(a) No-Neigh that uses heterogeneous contents encoding to rep-
resent each node embedding (without neighbors information); (b)
Content-FC that employs a fully connected neural network (FC)
to encode node heterogeneous contents; (c) Type-FC that utilizes a
FC to combine embeddings of different neighbor types (see Section
A.5 in supplement for detail of model variants). The results of link
prediction and node recommendation on A-II dataset (train/test
split year = 2013) are reported in Figure 4. From this figure:
• HetGNN has better performance than No-Neigh in most cases,
demonstrating that aggregating neighbors information is effective
for generating better node embeddings.
• HetGNN outperforms Content-FC, indicating that the Bi-LSTM
based content encoding is better than “shallow” encoding like FC
for capturing “deep” content feature interactions.
• HetGNN achieves better results than Type-FC, showing that self-
attention is better than FC for capturing node type impact.

4.3.2 Hyper-parameters Sensitivity (RQ4).
The hyper-parameters play important roles in HetGNN, as they
determine how the node embeddings will be generated. We conduct
experiments to analyze the impacts of two key parameters, i .e ., the
embedding dimension d and the size of sampled neighbors set for
each node (see Section A.6 in supplement for detailed setup). The
link prediction and recommendation performances of HetGNN as

Link Prediction (Type-1) Link Prediction (Type-2) Node Recommendation

Link Prediction (Type-1) Link Prediction (Type-2) Node Recommendation

Figure 5: Impact of embedding dimension.

Link Prediction (Type-1) Link Prediction (Type-2) Node Recommendation

Link Prediction (Type-1) Link Prediction (Type-2) Node Recommendation

Figure 6: Impact of sampled neighbor size.

a function of embedding dimension and sampled neighbor size on
A-II dataset (train/test split year = 2013) are shown in Figure 5 and
Figure 6, respectively. According to these figures, we can find that:
• When d varies from 8 to 256, all evaluation metrics increase in
general since better representations can be learned. However, the
performance becomes stable or slightly worse when d further
increases. This may due to over-fitting.
• When the neighbor size varies from 6 to 34, all evaluation metrics
increase at first as suitable amount of neighborhood information
are considered. But when the size of neighbors exceeds a certain
value, performance decreases slowly which may due to uncorre-
lated (“noise”) neighbors are involved. The best neighbor size is
in the range of 20 to 30.

5 RELATEDWORK
The related study includes: (1) heterogeneous graph mining; (2)
graph representation learning; (3) graph neural networks.

Heterogeneous graphmining. In the past decade, many work
have been devoted to mining heterogeneous graphs (HetG) for dif-
ferent applications such as relation inference [2, 25, 33, 35], person-
alized recommendation [10, 23], classification [36], etc . For example,
Sun et al . [25] leveraged metapath based approach to extract topo-
logical features and predict citation relationship in academic graph.
Chen et al . [2] designed a HetG based ranking model to identify
authors of anonymous papers. Zhang et al . [36] proposed a deep
convolutional classification model for collective classification in
HetG.

Graph representation learning. Graph representation learn-
ing [3] has became one of the most popular data mining topics in
the past few years. Graph structure based models [4, 6, 20, 29] were
proposed to learn vectorized node embeddings that can be further

utilized in various graph mining tasks. For example, inspired by
word2vec [19], Perozzi et al . [20] developed the innovative Deep-
Walk which introduces node-context concept in graph (analogy to
word-context) and feeds a set of random walks over graph (anal-
ogy to “sentences”) to SkipGram so as to obtain node embeddings.
Later, to address graph structure heterogeneity, Dong et al . [4]
introduced metapath guided walks and proposed metapath2vec
for representation learning in HetG. Further, attributed graph em-
bedding models [14, 15, 34] have been proposed to leverages both
graph structure and node attributes for learning node embeddings.
Besides those methods, many other approaches have been proposed
[1, 18, 21, 28, 32], such as NetMF [21] that learns node embedding
via matrix factorization and NetRA [32] that uses adversarially
regularized autoencoders to learn node embeddings, and so on.

Graph neural networks. Recently, with the advent of deep
learning, graph neural networks (GNNs) [5, 7, 12, 16, 24, 31] has
gained a lot of attention. Unlike previous graph embedding models,
the key idea behind GNNs is to aggregate feature information from
node’s local neighbors via neural networks. For example, Graph-
SAGE [7] uses neural networks, e .д., LSTM, to aggregate neighbors’
feature information. Besides, GAT [31] employs self-attentionmech-
anism to measure impacts of different neighbors and combine their
impacts to obtain node embeddings. Moreover, some task depen-
dent approaches, e .д., GEM [16] for malicious accounts detection,
have been proposed to obtain better node embeddings for specific
tasks.

6 CONCLUSION
In this paper, we introduced the problem of heterogeneous graph
representation learning and proposed a heterogeneous graph neu-
ral network model, i .e ., HetGNN, to address this problem. HetGNN
jointly considered node heterogeneous contents encoding, type-
based neighbors aggregation, and heterogeneous types combina-
tion. In the training stage, a graph context loss and a mini-batch
gradient descent procedure were employed to learn the model pa-
rameters. Extensive experiments on various graph mining tasks,
i .e ., link prediction, recommendation, node classification & cluster-
ing and inductive node classification & clustering, demonstrated
that HetGNN can outperform state-of-the-art methods.

ACKNOWLEDGMENTS
This work is supported by the CCDC Army Research Laboratory
under Cooperative Agreement Number W911NF-09-2-0053 (Net-
work Science CTA) and the National Science Foundation (NSF)
grant IIS-1447795.

REFERENCES
[1] Shiyu Chang, Wei Han, Jiliang Tang, Guo-Jun Qi, Charu C Aggarwal, and

Thomas S Huang. 2015. Heterogeneous network embedding via deep archi-
tectures. In KDD. 119–128.

[2] Ting Chen and Yizhou Sun. 2017. Task-Guided and Path-Augmented Heteroge-
neous Network Embedding for Author Identification. In WSDM. 295–304.

[3] Peng Cui, Xiao Wang, Jian Pei, and Wenwu Zhu. 2018. A survey on network
embedding. TKDE (2018).

[4] Yuxiao Dong, Nitesh V Chawla, and Ananthram Swami. 2017. metapath2vec:
Scalable Representation Learning for Heterogeneous Networks. InKDD. 135–144.

[5] Hongyang Gao, Zhengyang Wang, and Shuiwang Ji. 2018. Large-scale learnable
graph convolutional networks. In KDD. 1416–1424.

[6] Aditya Grover and Jure Leskovec. 2016. node2vec: Scalable feature learning for
networks. In KDD. 855–864.

[7] Will Hamilton, Zhitao Ying, and Jure Leskovec. 2017. Inductive representation
learning on large graphs. In NIPS. 1024–1034.

[8] Ruining He and Julian McAuley. 2016. Ups and downs: Modeling the visual
evolution of fashion trends with one-class collaborative filtering. In WWW. 507–
517.

[9] Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long short-termmemory. Neural
computation 9, 8 (1997), 1735–1780.

[10] Binbin Hu, Chuan Shi, Wayne Xin Zhao, and Philip S Yu. 2018. Leveraging
meta-path based context for top-n recommendation with a neural co-attention
model. In KDD. 1531–1540.

[11] Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochastic opti-
mization. arXiv preprint arXiv:1412.6980 (2014).

[12] Thomas N Kipf and MaxWelling. 2017. Semi-supervised classification with graph
convolutional networks. In ICLR.

[13] Quoc Le and Tomas Mikolov. 2014. Distributed representations of sentences and
documents. In ICML. 1188–1196.

[14] Jundong Li, Harsh Dani, Xia Hu, Jiliang Tang, Yi Chang, and Huan Liu. 2017.
Attributed network embedding for learning in a dynamic environment. In CIKM.
387–396.

[15] Lizi Liao, Xiangnan He, Hanwang Zhang, and Tat-Seng Chua. 2018. Attributed
social network embedding. TKDE 30, 12 (2018), 2257–2270.

[16] Ziqi Liu, Chaochao Chen, Xinxing Yang, Jun Zhou, Xiaolong Li, and Le Song.
2018. Heterogeneous Graph Neural Networks for Malicious Account Detection.
In CIKM. 2077–2085.

[17] Jonathan Long, Evan Shelhamer, and Trevor Darrell. 2015. Fully convolutional
networks for semantic segmentation. In CVPR. 3431–3440.

[18] Jianxin Ma, Peng Cui, XiaoWang, andWenwu Zhu. 2018. Hierarchical Taxonomy
Aware Network Embedding. In KDD. 1920–1929.

[19] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. 2013.
Distributed representations of words and phrases and their compositionality. In
NIPS. 3111–3119.

[20] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. 2014. Deepwalk: Online learning
of social representations. In KDD. 701–710.

[21] Jiezhong Qiu, Yuxiao Dong, Hao Ma, Jian Li, Kuansan Wang, and Jie Tang. 2018.
Network embedding as matrix factorization: Unifying deepwalk, line, pte, and
node2vec. In WSDM. 459–467.

[22] Meng Qu, Jian Tang, and Jiawei Han. 2018. Curriculum Learning for Heteroge-
neous Star Network Embedding via Deep Reinforcement Learning. In WSDM.
468–476.

[23] Xiang Ren, Jialu Liu, Xiao Yu, Urvashi Khandelwal, Quanquan Gu, Lidan Wang,
and Jiawei Han. 2014. Cluscite: Effective citation recommendation by information
network-based clustering. In KDD. 821–830.

[24] Michael Schlichtkrull, Thomas N Kipf, Peter Bloem, Rianne Van Den Berg, Ivan
Titov, and Max Welling. 2018. Modeling relational data with graph convolutional
networks. In ESWC. 593–607.

[25] Yizhou Sun, Jiawei Han, Charu C Aggarwal, and Nitesh V Chawla. 2012. When
will it happen?: relationship prediction in heterogeneous information networks.
In WSDM. 663–672.

[26] Yizhou Sun, Jiawei Han, Xifeng Yan, Philip S Yu, and Tianyi Wu. 2011. Pathsim:
Meta path-based top-k similarity search in heterogeneous information networks.
VLDB 4, 11 (2011), 992–1003.

[27] Yizhou Sun, Brandon Norick, Jaiwei Han, Xifeng Yan, Philip Yu, and Xiao Yu.
2012. PathSelClus: Integrating Meta-Path Selection with User-Guided Object
Clustering in Heterogeneous Information Networks. In KDD. 1348–1356.

[28] Jian Tang, Meng Qu, and Qiaozhu Mei. 2015. Pte: Predictive text embedding
through large-scale heterogeneous text networks. In KDD. 1165–1174.

[29] Jian Tang, Meng Qu, Mingzhe Wang, Ming Zhang, Jun Yan, and Qiaozhu Mei.
2015. Line: Large-scale information network embedding. In WWW. 1067–1077.

[30] Jie Tang, Jing Zhang, Limin Yao, Juanzi Li, Li Zhang, and Zhong Su. 2008. Arnet-
miner: extraction and mining of academic social networks. In KDD. 990–998.

[31] Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro
Lio, and Yoshua Bengio. 2018. Graph attention networks. In ICLR.

[32] Wenchao Yu, Cheng Zheng, Wei Cheng, Charu C Aggarwal, Dongjin Song, Bo
Zong, Haifeng Chen, and Wei Wang. 2018. Learning Deep Network Representa-
tions with Adversarially Regularized Autoencoders. In KDD. 2663–2671.

[33] Chuxu Zhang, Chao Huang, Lu Yu, Xiangliang Zhang, and Nitesh V Chawla.
2018. Camel: Content-Aware and Meta-path Augmented Metric Learning for
Author Identification. In WWW. 709–718.

[34] Chuxu Zhang, Ananthram Swami, and Nitesh V Chawla. 2019. SHNE: Represen-
tation Learning for Semantic-Associated Heterogeneous Networks. In WSDM.
690–698.

[35] Chuxu Zhang, Lu Yu, Xiangliang Zhang, and Nitesh V Chawla. 2018. Task-Guided
and Semantic-Aware Ranking for Academic Author-Paper Correlation Inference..
In IJCAI. 3641–3647.

[36] Yizhou Zhang, Yun Xiong, Xiangnan Kong, Shanshan Li, Jinhong Mi, and Yangy-
ong Zhu. 2018. Deep Collective Classification in Heterogeneous Information
Networks. In WWW. 399–408.

A SUPPLEMENT
A.1 Pseudocode of HetGNN Training

Procedure
The pseudocode of HetGNN training procedure is described in
Algorithm 1. The content features are pre-trained by different tech-
niques and Twalk is collected by random walk sampling in graph
(Section 3.4). After training, the optimized model parameters Θ can
be utilized to infer node embeddings E which can be further used
in various graph mining tasks.

A.2 Dataset Description
We use four datasets of two types of heterogeneous graphs: aca-
demic graph and review graph. For the academic graph, we extract
two datasets from the public AMiner [30] data5. The first one (rep-
resented as A-I) contains publications information of the major
computer science venues from year 1996 to 2005. In addition, con-
sidering most of researchers pay attention to papers published in
top venues, we extract the second one (represented as A-II) which
includes publications in a number of selected top venues6 related to
artificial intelligence and data science from year 2006 to 2015. Each
paper has various bibliographic content information: title, abstract,
authors, references, year, venue. For the review graph, we extract
two datasets from the public Amazon [8] data (Movies category
and CDs category)7. The dataset contains user review and item
metadata from Amazon spanning from 05/1996 to 07/2014. Each
item has various content information: title, description, genre, price,
and picture.

A.3 Baseline Description
We use five baseline methods which include heterogeneous graph
and attributed graph embedding models, as well as graph neural
network models.

• metapath2vec [4]: It is a heterogeneous graph embeddingmodel
which leverages metapath guided walks and Skip-gram model to
learn node embeddings.
• ASNE [15]: It is an attributed graph embedding method that uses
both node “latent” features and attributed features to learn node
embeddings.
• SHNE [34]: It jointly optimizes graph structure closeness and text
semantic correlation to learn node embedding in text-associated
heterogeneous graphs.
• GraphSAGE [7]: It is a graph neural network model that ag-
gregates feature information of neighbors by different neural
networks, such as LSTM.
• GAT [31]: It is a graph attention network model that aggregates
neighbors’ feature information by self-attention neural network.

A.4 Reproducibility Settings
The detailed settings for reproducing experiments in this work
include:

5https://aminer.org/data
6ICML, AAAI, IJCAI, CVPR, ICCV, ECCV, ACL, EMNLP, NAACL, KDD, WSDM, ICDM,
SIGMOD, VLDB, ICDE, WWW, SIGIR, CIKM.
7http://jmcauley.ucsd.edu/data/amazon/index.html

Algorithm 1: Training Procedure of HetGNN
input :pre-trained content features of v ∈ V , triplets set Twalk
output :optimized model parameters Θ (for inferring node

embeddings E)
1 while not done do
2 sample a batch of (v, vc , vc′) in Twalk

3 formulate embeddings of v , vc , and vc′ by Eq. (6)
4 accumulate the objective by Eq. (11)
5 update the parameters Θ by Adam
6 end
7 return optimized Θ

• Hyper-parameters. The embedding dimension of HetGNN is
set to 128. In Section 3.1, the return probability of RWR is set to
0.5 and the length of RWR for node v ∈ V (|RWR(v)|) equals 100.
The size of sampled neighbors set for each node equals 23 and
20 in academic data and review data, respectively. To be more
specific, sizes of different neighbor groups (types) are 10 (author),
10 (paper), 3 (venue) in academic data, and 10 (user), 10 (item) in
review data. In addition, we use random walk sampling to get
the triplets setTwalk of the graph context loss in Section 3.4. The
number of random walks rooted at each node equals 10, the walk
length is set to 30, the window distance τ equals 5 for both data.
• Content features. In academic data, we use Par2Vec [19] to pre-
train paper title and abstract contents. Besides, the DeepWalk
[20] is employed to pre-train embeddings of author, paper, venue
nodes based on the academic heterogeneous graph. The author
node is associated with pre-trained author embedding, average
abstract and title embeddings of some sampled papers that are
written by the author. Thus the Bi-LSTM length of author con-
tent encoder equals 3. The paper node carries pre-trained paper
embedding, title embedding, abstract embedding, average of its
authors’ pre-trained embeddings, and pre-trained embeddings
of its venue. Therefore, the Bi-LSTM length of paper content
encoder is 5. The venue node contains pre-trained venue em-
bedding, average abstract and title embeddings of some sampled
papers that are included in the venue. In other words, the Bi-
LSTM length of venue content encoder equals 3. In review data,
we use Par2Vec to pre-train item title and description content.
The CNN [17] is utilized to pre-train item image (picture). Besides,
DeepWalk is employed to get pre-trained embeddings of user and
item nodes based on user-item review graph. The user node is
associated with pre-trained user embedding, average description
and image embeddings of items that are reviewed by the user.
Thus the Bi-LSTM length of user content encoder is 3. Besides,
the item node includes pre-trained item embedding, description
embedding, and image embedding. In other words, the Bi-LSTM
length of item content encoder equals 3.
• Baseline settings. For fair comparison, the embedding dimen-
sion d of all baselines are set to 128 (same as HetGNN). For MP2V,
we employ three metapaths, i .e ., APA (author-paper-author),
APVPA (author-paper-venue-paper-author) and APPA (author-
paper-paper-author), and onemetapath, i .e ., UIU (user-item-user),
in academic and review data, respectively. Besides, the number
of walks rooted at each node equals 10 and the walk length is
set to 30 (same as the training procedure of HetGNN). For ASNE,

besides “latent” feature, we use the same content features as Het-
GNN and concatenate them as general attribute features. For
SHNE, we utilize paper abstract and item description (text se-
quence length = 100) as the input for deep semantic encoding
(i .e ., LSTM) in two data, respectively. Besides, the walk sampling
setting is the same as MP2V. For GraphSAGE and GAT, we use
the same input features (concatenated as a general feature) and
the sampled neighbors set for each node as HetGNN.
• Software & Hardware.We employ Pytorch8 to implement Het-
GNN and further conduct it on a server with GPUmachines. Code
is available at: https://github.com/chuxuzhang/KDD2019_HetGNN.

A.5 Model Variants Description
In Section 4.3.1, we propose three model variants to conduct abla-
tion study experiments. These models are:
• No-Neigh. This variant does not consider neighbors influence
and uses heterogeneous contents encoding f1(v) (Section 3.2) to
represent embedding of node v ∈ V . That is, it removes heteroge-
neous neighbors aggregation module (Section 3.3) of HetGNN.
• Content-FC. This variant replaces heterogeneous content en-
coder (Bi-LSTM) of HetGNN with a fully connected neural net-
work (FC). That is, the concatenated content feature is fed to a
FC layer to get content embedding. The other modules are the
same as HetGNN.

• Type-FC. This variant replaces types combination module (atten-
tion) of HetGNN with a FC. That is, the concatenated embedding
of different neighbor groups (types) is fed to a FC layer to get
aggregated embedding. The other modules are the same as Het-
GNN.

Besides, the training procedures of all model variants are the same
as HetGNN.

A.6 Hyper-parameters Sensitivity Setup
In Section 4.3.2, we conduct experiments on A-II dataset (train/test
split year = 2013) to study the impacts of two hyper-parameters:
embedding dimension d and the sampled neighbors size for each
node. We investigate a specific parameter by changing its value
and fixing the others. Specifically, when fixing sampled neighbor
size (i .e ., 23), we set different embedding dimension d (i .e ., 8, 16,
32, 64, 128, 256) of HetGNN and evaluate its performance for each
dimension. Besides, when fixing embedding dimension (i .e ., 128),
we set different sizes of sampled neighbors set (i .e ., 6, 12, 17, 23,
28, 34) for each node and evaluate HetGNN’s performance for each
size. The constitutions of different neighbors groups (types) for
aforementioned sizes are: 6 = 2 (author) + 2 (paper) + 2 (venue), 12
= 5 (author) + 5 (paper) + 2 (venue), 17 = 7 (author) + 7 (paper) + 3
(venue), 23 = 10 (author) + 10 (paper) + 3 (venue), 28 = 12 (author) +
12 (paper) + 4 (venue), and 34 = 15 (author) + 15 (paper) + 4 (venue).
8https://pytorch.org/

https://github.com/chuxuzhang/KDD2019_HetGNN

	Abstract
	1 Introduction
	2 Problem Definition
	3 HetGNN
	3.1 Sampling Heterogeneous Neighbors (C1)
	3.2 Encoding Heterogeneous Contents (C2)
	3.3 Aggregating Heterogeneous Neighbors (C3)
	3.4 Objective and Model Training

	4 Experiments
	4.1 Experiment Design
	4.2 Applications
	4.3 Analysis

	5 Related Work
	6 Conclusion
	References
	A Supplement
	A.1 Pseudocode of HetGNN Training Procedure
	A.2 Dataset Description
	A.3 Baseline Description
	A.4 Reproducibility Settings
	A.5 Model Variants Description
	A.6 Hyper-parameters Sensitivity Setup

