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ABSTRACT
Stock price movement not only depends on the history of individ-
ual stock movements, but also complex hidden dynamics associ-
ated with other correlated stocks. Despite the substantial effort
made to understand the principles of stock price movement, few
attempts have been made to predict movement direction based
upon a single stock’s historical records together with its correlated
stocks. Here, we present a multi-task recurrent neural network
(RNN) with high-order Markov random fields (MRFs) to predict
stock price movement direction. Specifically, we first design a multi-
task RNN framework to extract informative features from the raw
market data of individual stocks without considering any domain
knowledge. Next, we employ binary MRFs with unary features
and weighted lower linear envelopes as the higher-order energy
function to capture higher-order consistency within the same stock
clique (group). We also derive a latent structural SVM algorithm to
learn higher-order MRFs in a polynomial number of iterations. Fi-
nally, a sub-gradient algorithm is employed to perform end-to-end
training of the RNN and high-order MRFs. We conduct thorough
empirical studies on three popular Chinese stock market indexes
and the proposed method outperforms baseline approaches. To our
best knowledge, the proposed technique is the first to investigate
intra-clique relationships with higher-order MRFs for stock price
movement prediction.
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1 INTRODUCTION
It is well known that single the price movement of an individual
stock not only depends on historical records but also highly corre-
lated to other stocks [29, 32] and may change in a non-synchronous
manner [7, 29]. This correlated yet asynchronous price movement
is sometimes referred to as the lead-lag relationship [19] between
a group of stocks and is thought to arise from the different speed
of information diffusion[2, 29, 31]. When new information hits the
market, some stocks react faster than others and identification of
these leading stocks and their lead-lag relationships to other lag-
ging stocks provides strong predictive evidence to the latter's price
movement.

However, there are three key challenges in utilizing the lead-lag
relationship: (1) discovering which stock will be affected by newly
arriving information (such as news); (2) identifying the group (e .д.,
industry, supply chain, etc .) it belongs to along with the leading and
lagging stocks in this group and modeling their relationships; (3)
predicting the price movement of each stock by jointly considering
knowledge in the correlated group and an individual stock'price
movement at that moment.

The first challenge is extremely difficult, not only because it
requires an expert level of understanding of the finance system
and market dynamics and the stock price, but also due to a lack
of training data. However, according to the efficient market hy-
pothesis [30], stock price reflects all available market information.
Economists hitherto to used patterns hidden inside historical trad-
ing prices and volume to predict future price movements [11, 22].
As a result, hundreds of hand-crafted features, known as technical
analysis indicators [23], have been designed. However, most of
these models have stopped generating profitable signals since the
early 1990s [35].

To overcome these problems and address the first challenge,
here we employ an end-to-end hierarchical multi-task [8] RNN to
extract informative changes from raw market prices without using
hand-crafted features such as technical analysis indicators. Good
price prediction relies on rich representations and a multi-task
framework that can leverage complementary aspects from diverse
tasks [39]. Specifically, given raw market price data, which only
contains six features (opening price, low price, high price, closing
price, volume, and amount) at each time interval, we leverage a
hierarchical multi-task network to first extract features on different
tasks and then concatenate those complementary feature vectors
to make the final prediction.

To model lead-lag relationships and address the other two chal-
lenges, we also present a binaryMarkov Random Fields (MRFs) with
weighted lower linear envelopes as higher order (when the clique
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contains more than two nodes) energy functions [13, 14, 25, 34]. In
our implementation, we treat each stock as a node in MRFs and
each stock's group with lead-lag relationships as a maximum clique
in MRFs. We use a pre-defined industry classification list [1] as the
prior domain knowledge of each maximum clique for each stock.
By using a weighted version of higher order functions, stocks have
higher weights in the above list can be seen as leading stocks, and
vice versa. Finally, the complexity of modeling dynamics between
leading and lagging stocks becomes encouraging consistency over
large cliques under weighted lower linear envelope potentials. Log-
its from hierarchical RNN networks are used as unary features in
MRFs. By minimizing the energy function which contains both
unary and higher order features, we can predict each stock's fu-
ture price movement by jointly considering individual market price
trends together with lead-lag relationships.

Unlike the first challenge trying to avoid prior knowledge, we
consider being able to embed prior knowledge as an advantage.
Definitions of sectors as well as leading and lagging stocks in each
sector require solid financial industry research. Statistical evidence
learned automatically from market price data are usually insuffi-
cient for determining such relationships.

We demonstrate the effectiveness of the proposed technique
using three popular Chinese stockmarket indexes, and the proposed
method outperforms baseline approaches. To our best knowledge,
the proposed technique is the first one to investigate intra-clique
relationships with higher-order MRFs on stock price movement
prediction.

To summarize, the main contributions of this paper as follows:

• We propose a hierarchical multi-task RNN architecture to
learn stock price patterns without hand-crafted features. To
our best knowledge, this is the first work proposing a multi-
task neural networks for stock price movement prediction.
• We propose the first model that encode lead-lag relationships
between stocks using higher-order MRFs.
• We develop an algorithm to learn the weighted lower linear
envelope with latent variables as a higher order energy func-
tion under the latent structural SVM framework. Adding
latent variables to higher order functions enables our model
to learn richer representations than previously study [14].
Furthermore, our algorithm is not limited to stock price
movement prediction but can easily be applied to other time
series tasks and computer vision tasks.

2 RELATEDWORKS
This work is closely related to lead-lag relationships, multi-task
learning, high-order MRFs, and latent structural SVMs.

Lead-lag relationships: Lead-lag relationships have long been
recognized in the stock market. They can arise for many reasons
such as information diffusion, sector (industry) rotation, invest-
ment style rotation, event-driven trading, and asynchronous trad-
ing [9, 10, 15, 29]. It is generally believed that lead-lag relationships
are more prevalent in firms in the same industry [19], justifying
our use of pre-defined industry classification list [1] as prior do-
main knowledge of each stock's maximum clique. Several studies
[2, 7, 19, 31] have shown that stocks with larger capital size and
higher liquidity tend to be leading stocks and vice versa. To replicate

potential lead-lag relationships, we assign each stock a different
weight from its corresponding indexes created by the China Se-
curities Index Company, Ltd. More complicated dynamics hidden
behind a clique of stocks are learned by higher-order MRFs.

Multi-task learning:Caruana [8] showed that inductive knowl-
edge learned from multiple tasks can transfer between tasks and
help improving generalization of all tasks. Many Natural Language
Processing (NLP) tasks take advantage of multi-task frameworks
and achieve state-of-the-art performance while using simple mod-
els for each of these tasks [17, 39]. However, as noted elsewhere
[8, 38], there is a lack of theory on underpinning a diverse set of
tasks and the hierarchical architecture of the chosen tasks. Recent
works [17, 39] apply the principle that the task complexity should
increase according to hierarchical level, and we do likewise. Be-
cause technical analysis indicators can be categorized into trend,
momentum, volatility and volume [23], and volume is included in
market price data, we propose an architecture that uses trend and
volatility tasks as lower level tasks and price movement prediction
(upward or downward) as a higher level task. Other task selection
and hierarchical designations remain open for further research.

Higher-order Markov random fields: Markov random fields
are also known as undirected graphical models that can be regarded
as a regularized joint log-probability distribution of arbitrary non-
negative functions over a set of maximal cliques of the graph [4].
Utilizing MRFs usually involves three steps: defining energy func-
tions, solving inference problem (MAP or energy minimization) and
learning parameters. With respect to energy functions, our work
focuses on a class of higher-order potentials defined as a concave
piecewise linear function which is known as lower linear envelope
potentials over a clique of binary variables. It has been raising much
interest due to its capability of encoding consistent constraints over
large subsets of pixels in an image [25, 34, 40]. We follow Gould
[14] to construct a graph-cut algorithm to solve an exact inference
problem and propose our novel learning algorithms under latent
structural SVM in Section 4.1.

In the second step, in order to solve the inference problem, Kohli
et al. [27] proposed a method to represent a class of higher order po-
tentials with lower (upper) linear envelope potentials. By introduc-
ing auxiliary variables [24], they reduced the linear representation
to a pairwise form and proposed an approximate algorithm with
standard linear programming methods. However, they only show
an exact inference algorithm on at most three terms. Following
their approach, Gould [14] extended their method to a weighted
lower linear envelope with arbitrary many terms solved with an
efficient algorithm. They showed that the energy function with aux-
iliary variables is submodular by transforming it into a quadratic
pseudo-Boolean form [5] and that graph-cuts like algorithms [6]
can be applied for exact inference.

In the third step, Gould [14] solved the learning problem of the
lower linear envelope under the max margin framework [43]. In
their work, they highlighted the potential relationship between
their auxiliary representation and latent SVM [47]; our work is
closely based on their research. We continue to use the higher order
energy function and inference algorithm [13] and extend their max
margin learning algorithm to include latent variables. The learning
algorithm used here is an extension of the max margin framework
known as “latent structural SVM” [47].
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Latent structural SVMs: The max-margin framework [42, 43]
is a principled approach to learn weights of pairwise MRFs. Szum-
mer et al. [41] adapted this framework to optimize pairwise MRFs
parameters inferred by graph-cuts method. To adapt higher-order
energy functions to max margin framework, Gould [13] approxi-
mated the energy function using equally spaced break-points. Gould
[14] extended this framework with additional linear constraints to
enforce concavity on the weights, thus allowing them to be used
to learn lower linear envelope potentials. However, these methods
only approximately learn higher-order functions. In this paper we
propose an algorithm to optimize the energy function exactly by
introducing auxiliary variables back into the feature vector and
solving the learning problem using the latent structural SVM frame-
work [47]. To include unobserved information, Yu and Joachims
[47] extended the joint feature function in structural SVM with
latent variables and re-wrote the objective function of SSVM into a
difference of two convex functions. This formulation can be solved
using the Concave-Convex Procedure (CCCP)[48] which is two-
stages algorithm that guarantee to convergence to a local minimum.

In contrast to SVM, the latent structural SVM cannot directly
use data. In order to use it, the inference algorithm, as well as the
MRF feature function, loss function, and latent variable completion
problem[47] must first be implemented. Our implementation is
described in section 4.

3 METHODS
In this section, we introduce the multi-task RNN-MRFs architecture
which is constructed with two parts. The first part is a “Multi-task
Market Price Learner", which consists of three dual stage atten-
tion based recurrent neural network (DARNN) [36] modules. The
goal of the first part is to tackle the first challenge, i.e., automat-
ically extracting informative representations of the raw market
price without considering any hand-crafted feature and technical
indicator. The second part is an “Intra-clique Predictor” which is a
binary Markov random fields model with weighted higher order
energy functions. Those higher order functions are applied to sector
lists (used as maximum cliques) defined by financial experts. The
domain knowledge about leading stocks and lagging stocks are as-
signed as higher and lower weights in energy function accordingly.
The goal of this part is to tackle the second and third challenges.
Unary features learned by DARNN modules are jointly employed
to maintain higher order consistency among stocks belonging to
the same sector. The detailed architecture is shown in Figure 1.

3.1 Multi-task Market Price Learner
Stock price movement can be interpreted from many aspects such
as investors sentiment, temporal patterns and cycles, flow of funds
and market strength, etc. Ideal features should incorporate as many
aspects as possible. Multi-task learning has shown its effective-
ness to learn inductive knowledge among tasks and improve per-
formance as well as generalization capability [8]. Therefore, we
propose a multi-task RNN framework entitled “Multi-task Mar-
ket Price Learner (MMPL)” to tackle the first challenge: extracting
informational representations from raw market price.

However, as noted elsewhere [8, 38], there is a lack of theory
on underpinning a diverse set of tasks and the hierarchical archi-
tecture of the chosen tasks. We follow this intuition to construct

Figure 1: Multi-task RNN-MRFs architecture. Note that the
output ofDARNNmulti only corresponds to one node’s unary
feature in MRFs.

our model. Most technical indicators fall into four categories: trend,
momentum, volatility and volume [23]. Since volume is included
in input for all low-level tasks and we assume that momentum
information can be learned by a high-level task, we propose an
architecture that using trend and volatility tasks as our low-level
tasks and price movement prediction (upward or downward) as the
high-level task.

Multi-task Market Price Learner(MMPL) contains two levels,
three modules of DARNNs. DARNNs [36] are used as our basic
module not only because of its capability of selecting relevant de-
riving series as well as temporal features, but also due to its superior
performance for time series prediction compared to LSTM [18] and
attention based LSTM [3]. Specifically, the bottom level contains
two separate DARNN modules. They are supervised by low-level
tasks which aim to predict future price as well as volatility based
upon the raw market price data. The key difference among those
modules is the loss function. At the top level, it is supervised by
a high-level task that learns to use representations extracted by
two low-level modules as well as raw market price data to predict
positive / negative price movement of stocks. Logits of the last
layer are passed to Intra-clique Predictor described in section 3.2
as unary features.

All three DARNN modules share the same raw market price
data. Here, we denote the time-series dataset as X where X =
(x1,x2, . . . ,xT ) ∈ R

N×T . We use xn = (xn1 ,x
n
2 , . . . ,x

n
T ) ∈ R

T to
denote a driving series ofT time-steps and xt = (x1

t ,x
2
t , . . . ,x

N
t ) ∈

RN to denote a snapshot at time-step t of all N features.
For both DARNN modules at the low level, the input is X ∈

R5×T which contains 5 exogenous driving series, i.e., opening price,
low price, high price, volume, amount and 1 target series y =
(y1,y2, . . . ,yT ) ∈ R

T . These two modules aim to predict target
series yt+p in the next p time steps:

ŷt+p = DARNN(y1, . . . ,yt ,x1, . . . ,xt )

The target series ytrend of DARNNtrend is the closing price. The
target series yvolat of DARNNvolat is the standard deviation of clos-
ing price over M constant time-steps. In our implementation we
setM = 10. We use Mean Squared Error (MSE) as the loss function
to train those two modules separately.

To construct the high level DARNN module, which aims to pre-
dict the price movement, we concatenate context vectors cT from
each of low level DARNN module’s encoder and raw market price
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matrix as the input. The target series ybinary is constructed by the
sign function ybinaryt = siдn(yt+p − yt ) where yt denotes closing
price at time-step t . We use cross-entropy as loss function to train
the final DARNNmulti. Logits (outputs before going through soft-
max) of DARNNmulti are then passed to Intra-clique Predictor as
unary features.

In order to train MMPL together with MRFs in an end-to-end
manner, we follow the subgradient method proposed by Witoon-
chart and Chongstitvatana [44]. Since our inner loop proposed in
section 4.2 is actually a latent structural SVM. Only gradients of
parameters and feature functions need to be updated. In our frame-
work, outputs of MMPL (Logits of DARNNmulti) are only used as
unary features in MRFs’ energy functions, our back-propagation
rules can be defined by taking derivative of the objective function
w.r.t wU defined in (18):

∂L

∂wU = ψ
U (y) −ψU (y∗) (1)

where y is the ground-truth label and y∗ is inferenced label.ψU is
unary feature function described in section 3.2.1, here it denotes
logits calculated from DARNNmulti.wU is unary parameter defined
in energy function (2). Equations (1) can be directly plugged into
sub-gradient algorithm proposed in [44]. Other configurations stay
the same with their algorithm.

3.2 Intra-clique Predictor
In this section, we show how to construct an “Intra-clique Pre-
dictor" to model lead-lag relationships and address the other two
challenges asmentioned in the introduction. Specifically, we present
a binary Markov Random Fields (MRFs) with weighted lower linear
envelopes as higher order (when the clique contains more than two
nodes) energy functions. Note that the algorithm proposed here
is a general framework for classification tasks. Besides time series
classification, it can also be applied to other tasks such as computer
vision.

3.2.1 Higher Order Energy: The Weighted Lower Linear Envelope
Function. Energy functions can be decomposed over nodesN , edges
E and higher order cliques C [41]. Letw be vector of parameters and
ψ be arbitrary feature function, then the energy can be decomposed
as a set of linear combinations of weights and feature vectors:

E(y;w) =
∑
i ∈N

wU
i ψ

U (yi )+∑
(i, j)∈E

wP
i jψ

P (yi ,y j ) +
∑

yC ∈C

wH
Cψ

H (yC ) (2)

whereU denotes unary terms, P denotes pairwise terms, H denotes
higher order terms. In this section we mainly focus on one class of
higher-order potentialsψH defined as a concave piecewise linear
function which is known as lower linear envelope potentials. This has
been studied extensively in Markov Random Fields area for encour-
aging consistency over large cliques [13, 25, 34]. Pairwise energy
function is included only to show our framework applies to general
cases. To our best knowledge there is no public available definition
of pairwise relationship between stocks. In our implementation, we

Figure 2: Example piecewise-linear concave function of
Wc (yc ) =

∑
i ∈c w

c
i yi . Assume the second linear function is ac-

tive namely zc = (1, 1, 0, 0) (equation 7). The result of linear
combination of parameter vector and feature vector is same
as quadratic pseudo-Boolean function.

use logits from MMPL as unary function and weighted lower linear
envelopes as higher order function to encode lead-lag relationships.
Pairwise features are excluded.

Let C denotes the set of all maximal cliques andyc = {yi | for i ∈
Cj } denotes set of binary random variables where yi ∈ {0, 1} in
clique Cj , a weighted lower linear envelope potential over yc is
defined as the minimum over a set of K linear functions as:

ψH
c (yc ) = min

k=1, ...,K

{
akWc (yc ) + bk

}
. (3)

whereWc (yc ) =
∑
i ∈c w

c
i yi with wc

i ≥ 0 and
∑
i ∈c w

c
i = 1 which

are weights for each clique. (ak ,bk ) ∈ R2 are the linear function
parameters. We illustrate an example with four linear functions in
Figure 2.

Inference on energy function contains lower linear potentials is
the same as the standard equation (2) and is given by:

y∗ = argminE(y) (4)

To ensure potentials do not contain redundant linear functions
(functions that would never be active), Gould [14] proposed a con-
straint on parameters of the envelope. The k-th linear function is
not redundant if the following condition is satisfied:

0 <
bk − bk−1
ak−1 − ak

<
bk+1 − bk
ak − ak+1

< 1. (5)

Another important property of equation (4) is shift invariant (ver-
tically). We write ψ̃H

c (yc ) by shift equation (3) vertically with an
arbitrary amount bconst ∈ R

ψ̃H
c (yc ) = min

k=1, ...,K

{
akWc (yc ) + bk + b

const}
Then we have

argmin
yc

ψH
c (yc ) = argmin

yc

ψ̃H
c (yc ). (6)

Therefore, in the following discussion without loss of generality
we assume b1 = 0 thus bk ≥ 0 for k = 1, . . . ,n.
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3.2.2 Exact Inference. Exact inference on MRFs has been exten-
sively studied in past years. Researchers found that, energy func-
tions which can be transformed into quadratic pseudo-Boolean
functions [20, 21, 37] are able to be minimized exactly using graph-
cuts like algorithms [12, 16] when they satisfy submodularity con-
dition [5]. Kohli et al. [26] and Gould [13] adapted those results
to perform exact inference on lower linear envelope potentials. In
this section we mainly focus on describing the minimum st-cut
graph constructed by Gould [13, 14] for exact inference of energy
function (equation (4)) containing lower linear envelope potentials.

Following the approach of Kohli and Kumar [24], Gould [13, 14]
transformed the weighted lower linear envelope potential in equa-
tion (3) into a quadratic pseudo-Boolean function by introducing
K − 1 auxiliary variables z = (z1, . . . , zK−1) with zk ∈ {0, 1}:

Ec (yc ,z) = a1Wc (yc ) + b1

+

K−1∑
k=1

zk
(
(ak+1 − ak )Wc (yc ) + bk+1 − bk

)
(7)

for a single clique c ∈ C. Under this formulation, minimizing the
pseudo-Boolean function over z is equivalent to selecting (one of)
the active functions(s) from equation (3). Another important prop-
erty of optimized z under this formulation is that it automatically
satisfies the constraint: zk+1 ≤ zk . This property give rise to further
development of parameter vector and feature vector (equation (11)
and (12)) which are used in latent structural SVM. By introducing
latent variables within the energy function, we can learn richer en-
ergy representations than previous study [14] and solve inference
problem exactly within polynomial number of iterations.

In order to construct the minimum st-cut graph, we rewrite
equation (7) into posiform [5]:

Ec (yc ,z) = b1 − (a1 − aK ) +
∑
i ∈c

a1w
c
i yi

+

K−1∑
k=1
(bk+1 − bk ) zk +

K−1∑
k=1
(ak − ak+1) z̄k

+

K−1∑
k=1

∑
i ∈c
(ak − ak+1)w

c
i ȳizk (8)

where z̄k = 1 − zk and ȳi = 1 − yi . a1 is assumed to be greater
than 0 so that all coefficients are positive (recall we assume b1 = 0
in section 3.2.1 and we have ak > ak+1 and bk < bk+1). Since
the energy function (8) is submodular, the st-min-cut graph can
be constructed based on equation (8). The construction (including
unary and pairwise) is explained in Figure 3.

4 OPTIMIZATION
4.1 Transforming Between Representations
With the inference algorithm in hand, we now can develop the
learning algorithm for weighted lower linear envelope potentials
using the latent structural SVM framework. We begin by transform-
ing the equation (7) into a linear combination of parameter vector
and feature vector. Then a two-step algorithm was developed to
solve the latent structural SVM.

(a) (b)

Figure 3: st-graph construction for equation (8), unary and
pairwise terms. Every cut corresponds to an assignment to
the randomvariables, where variables associatedwith nodes
in the S set take the value one, and those associated with
nodes in the T set take the value zero. With slight abuse of
notation, we use the variables to denote nodes in our graph.

The latent structural SVM formulation requires that the energy
function be formulated into a linear combination of features and
weights while our higher-order potential is represented as the min-
imum over a set of linear functions. However, in 3.2.2 we reformu-
lated the piesewise linear functions into a quadratic pseudo-Boolean
function in equation (7) by introducing auxiliary variables. Now
we show equation (7) itself is an inner product of parameter vector
and feature vector with latent information. Note that the function
can be expanded as a summation of 2K − 1 terms:

Ec (yc , z) =a1Wc (yc ) +
K−1∑
k=1
(ak+1 − ak )zkWc (yc )

+

K−1∑
k=1
(bk+1 − bk )zk (9)

Here we use the fact of equation (6) and let b1 = 0. Now we can
reparameterize the energy function as

Ec (yc ,z;θH ) = θH
T
ψH (yc ,z) (10)

where:

θHk =


a1 for k = 1
ak − ak−1 for 1 < k ≤ K

bk+1−K − bk−K for K < k ≤ 2K − 1
(11)

ψH
k =


Wc (yc ) for k = 1
Wc (yc )zk for 1 < k ≤ K

zk for K < k ≤ 2K − 1
(12)

Under this formulation, similar to [47], the inference problem
can be given by:

(y∗k (θ
H ), z∗k (θ

H )) = argmin
(y×z)∈Y×Z

θH
T
·ψH (yk , zk ) (13)
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and

z∗k (θ ) = argmin
z∈Z

θH
T
·ψH (yk , zk ) (14)

There are two facts worth to mention. The first fact is that in
our previous construction of minimum st − cut graph the latent
variable z is already included. Therefore, we can apply our inference
algorithm directly on our 2 new formulations. The second fact is that
for equation (14), there exists a more efficient algorithm. At training
stage, the ground-truth labels yi is an input and is completely
observed. Therefore, the term ((ak+1 − ak )Wc (yc ) + bk+1 − bk ) in
equation (9) becomes constant. So we can infer latent variable z
explicitly by:

zck =

{
0 if ((ak+1 − ak )Wc (yc ) + bk+1 − bk ) ≥ 0
1 otherwise.

(15)

Therefore, assignments inferred by graph-cut algorithm can be
directly encoded into a linear combination by using our latent
structural SVM formulation for learning purpose. The remaining
task is to ensure the concavity of θ . We do this by adding following
constraint:

Aθ ≥ ϵ , A =

1 0 0
0 −1 0
0 0 P

 ∈ R(2K−1)×(2K−1) (16)

where −1 is a matrix of size (K − 1) × (K − 1) and P is an identity
matrix of size (K −1)×(K −1). One subtle problem we found during
experiments is that the algorithm can be stuck with small numerical
value. To avoid this we add small slack variables ϵ = 1−15 on those
constraints.

4.2 Latent Structural SVM Learning
With the inner product formulation (equation (10)) of higher order
energy function, we are able to derive our latent structural SVM
learning algorithm. The energy function (higher order function
together with unary and pairwise functions) can be written as:

Eall (y, z) =


θH

θunary

θpairwise


T

·


ψH

ψunary

ψpairwise

 = θTall ·ψall (17)

where θH ∈ R2K−1 is the parameter vector in higher order equa-
tion (10) of size 2K − 1. θunary and θpairwise are both scalars.
ψ unary =

∑
i ψ

U
i (yi ) and ψ

pairwise =
∑
i j ψ

P
i j (yi ,yj ). Therefore, the

size of θall is 2K + 1.
Following Yu and Joachims [47], we use the two stages Concave-

Convex Procedure (CCCP) [48] to solve the optimization problem.
We first imputes the latent variables z explicitly by equation (14).
Namely solving the “latent variable completion” problem [47]:

The inference result z∗i for i = 1, . . . ,n is used as completely
observed for later stage. With the latent variable z∗i which best
explains the ground-truth data yi in hand, updating the parameter
vector θ reduces to solve the standard structural SVM problem:

min
θ

(
1
2
∥θ ∥2 +C

n∑
i=1

(
max

(ŷ×ẑ)∈Y×Z
[θ ·ψ (ŷ, ẑ) + ∆(yi , ŷ, ẑ)]

) )
(18)

−C
n∑
i=1

(
θ ·ψ (yi , z∗i )

)
The detail of the optimization algorithm is summarized in Algo-

rithm 2 of Appendix. As we mentioned in Appendix A, although
we proposed an end-to-end subgradient algorithm is section 3.1,
MRFs updated by such algorithm take too many iterations to con-
verge. Therefore, we propose a two-stage training procedure. At
first stage, MMPL andMRFs are trained separately. Therefore, MRFs
can take advantage of the efficient latent structural SVM and con-
verge in a polynomial number of iterations. After all those models
are converged, we then combine them together to conduct end-
to-end training. Note that the CCCP Inner Loop in Algorithm 2 is
actually solving standard structural SVM problem. Therefore, at the
second stage, we use subgradient algorithm proposed in section 3.1
to replace the CCCP Inner Loop. Other settings remain the same.

The last problem remaining is the initialization method. Because
our objective function (18) is not convex and the CCCP algorithm is
only guaranteed to converge to a local minimum or saddle point[48],
initialization of θ might affect the performance of our algorithm.
Since there are no theoretical solution for this problem, we propose
an empirical initialization algorithm in Appendix A.1.

5 EXPERIMENT
In this section, we first introduce 3 stock datasets. Then, we in-
troduce the parameter settings for our model and training details.
Finally, we select four evaluation metrics and use them to demon-
strate the effectiveness of our proposed model by comparing to
several baseline approaches.

5.1 Dataset and Model Settings
To demonstrate the effectiveness of higher order consistency, we
choose three exclusive and the most famous stock indexes on Chi-
nese stock market to build our input datasets. Their index codes
are: CSI (China Securities Index) 200, CSI 300 and CSI 500 which
contain 200, 500 and 300 constituent stocks respectively. The CSI
300 index selects most liquid A-share stocks. It aims to reflect the
overall performance of China A-share market. The CSI 200 and 500
indexes aim to reflect the overall performance of mid-to-large and
small-to-mid capital A-shares respectively.

All these indexes are exclusive and are refined on a yearly basis.
In this paper, we use fixed versions on 30-JAN-2015. We then collect
their constituent stocks’ minute-level data from 05-JAN-2015 to 29-
DEC-2017. On Chinese stock market each trading day has 4 trading
hours. So there are 240 samples (minutes) for each normally traded
stock on each day. Each sample contains 6 features: opening price,
high price, low price, closing price, volume, and amount. 1 For each
stock, the first 80% days are used to construct the training set and
the last 20% days are used as test set. Approximately training set and

1During this period, there are some stocks de-listed (SZ000024, SH600485, SH600832
in CSI 200; SZ000693, SZ000748, SZ000982 in CSI 500; SH600485, SH600832, SZ000024,
SH601299 in CSI 300). Therefore, in total we collect 197, 497 and 296 stocks during
this period respectively.
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test set contain 33.6 million and 4.2 million samples, respectively.
49.5% of them are positivemovements, 0.3% of them stay unchanged
and 50.2% of them are negativemovements. For binary classification
task, we follow Mitchell and Pulvino [33]’s approach and label all
positive movement samples 1 and 0 for the other samples. More
labeling details are described in appendix A.

Table 1: Technical Indicators Selection

Category Indicator Name
Momentum Awesome Oscillator, Money Flow Index

Volume Chaikin Money Flow
On-balance volume mean

Volatility Bollinger Bands (Upper and Lower Bands)

Trend Average Directional Movement Index
Moving Average Convergence Divergence

To demonstrate the benefits of multi-task RNN over manually
designed technical indicators, we construct technical indicators
datasets. We select 8 most popular indicators, 2 from each cate-
gory [23] shown in Table 1. In implementation, we use open source
package Technical Analysis Library in Python2 to calculate those
indicators and all hyperparameters are using package’s default set-
tings without any prior expert knowledge involved with. After
technical indicators calculation, these 8 new features are concate-
nated to above market price dataset (5 features at each minute). So
the final input dataset for each single task model contains 13 fea-
tures in total. Before feeding into models, we normalize each stock
with z-score function using standard deviation and mean calculated
in the training set.

For brevity, we denote market price dataset which only contains
5 features asMarket and the concatenated 13 features dataset as
Indicator. As discussed in section 3.1, closing price at time t can
be directly used as regression target for DARNNtrend. Standard
deviation of closing price with a window size of 10 is used as
regression target for DARNNvolat. The dimensions of hidden state
and cell state are fixed as 32 for DARNNtrend as well as DARNNvolat,
and 128 for DARNNmulti. More training details are described in
appendix A.

5.2 Results
In order to demonstrate the effectiveness of our framework, we
compare 3 baseline methods, i.e., LSTM [18], attention based LSTM
Encoder_Decoder [3], and DARNN [36] on 3 different Chinese
Securities Indexes with and without technical analysis indicators as
inputs. Results are summarized in Table 2. All results are reported
over the test sets. We select four metrics (Accuracy, Precision, Recall
and F1 Score) as evaluation metrics to justify the effectiveness of the
proposed approach. They are calculated by collecting all predicted
labels of constituent stocks in each CSI index.

5.2.1 Effectiveness of multi-task framework. As mentioned earlier,
to demonstrate effectiveness of multi-task framework, we use Indi-
cator dataset, which contains both market price data and technical
analysis indicators as inputs for baseline approaches and Market
dataset which only contains market price data as inputs for MMPL
2https://github.com/bukosabino/ta

(multi-task RNN) as well as baseline methods. For DARNN, we
use a hidden size of 128. MMPL’s configuration is described in sec-
tion A.2. As we can see in Table 2, single task models (LSTM, LSTM
Encoder_Decoder, DARNN) tested on Market dataset (without
technical analysis indicators as inputs) generally have worse per-
formance with all 4 metrics. In particular, performance of DARNN
models tested on Indicator dataset is consistently better than the
ones on Market dataset. This proves that even with hand-crafted
features, deep learning models can still benefit from diversified and
complementary features.

To test the effectiveness of multi-task framework, we conduct
ablation study with only one low-level task ( DARNNtrend or
DARNNvolat) togetherwith the high-level taskmodule DARNNmulti.
Results indicate that these two variants have comparable or slightly
worse result than DARNN on Market. This may because single
task model does not provide diversified features while have more
parameters than DARNN. Finally, MMPL outperforms all single
task models and baseline methods onMarket. This suggests that di-
versified and complementary tasks can help MMPL extract effective
features. Specifically, by comparing MMPL and DARNN onMarket
as well as Indicator, we can see that MMPL generally outperforms
DARNN on CSI200 and CSI300 indexes and is slightly worse than
DARNN on Indicator of CSI500 index. We can conclude that by
using multi-task RNNs, we can extract better or at least comparable
features compared with hand-crafted features.

5.2.2 Effectiveness of higher-order MRFs. In Table 2, we can ob-
serve that MMPL-MRFs framework consistently outperforms other
baselines on all 3 CSI index constituent stocks. It shows evidence
that higher-order energy function can help with encoding clique
level consistency thus improving overall prediction performance.
One interesting point to note is that the recall rate of MMPL-MRFs
is constantly lower than other baselines. This can be seen as a
trade off between accuracy and recall rate. However, it is worth to
mention that for stock price movement prediction, high accuracy
and precision are much preferred than recall rate. Another interest-
ing phenomenon is that MMPL-MRFs gives more improvement on
CSI200 and CSI300 while less improvement over DARNN trained
with technical analysis indicators on CSI500. One possible reason is
that CSI200 and CSI300 select most liquid and representative stocks
in Chinese stock market. Those stocks exhibit much stronger and
higher order consistency than illiquid stocks. CSI500 selects small-
mid capital stocks which are less liquid and contains much more
noisy movements.

In the training stage, our algorithm converges in 4 to 19 CCCP
outer loops. The average inference time of graph-cut algorithm is
34 seconds.

5.2.3 Visualization of higher-order consistency. In order to further
investigate higher-order MRFs’ effectiveness, we design a heat-map
to visualize CSI300 index intra-clique higher-order relationship in
figure 4.

We first select two sectors: nonferrous metal sector, which con-
tains 10 constituent stocks, and infrastructure sector, which con-
tains 35 constituent stocks from CSI300 index 3. We then measure

3These two sectors are selected only because painting many sectors in one figure
would be too messy to interpret and those two sectors have appropriate clique size
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Table 2: Results: baselines and ablation studies. All models have a window size (lag steps) of 20 and predict price movement
label at the next time step.

Data Set Models Chinese Securities Index (CSI)

CSI200 CSI500 CSI300
Accuracy Precision Recall F1 Score Accuracy Precision Recall F1 Score Accuracy Precision Recall F1 Score

Indicator
LSTM 62.30 73.82 70.70 72.23 60.35 68.56 70.03 69.29 60.16 71.39 68.50 69.91

LSTM Encoder_Decoder 64.26 72.41 74.34 73.36 61.13 75.63 66.67 70.86 64.26 75.54 70.57 72.97
DARNN 63.09 72.08 73.55 72.81 66.60 78.98 74.13 76.48 65.82 76.68 73.46 75.04

Market

LSTM 57.62 67.57 67.37 67.47 55.86 68.10 64.53 66.27 56.25 67.17 65.98 66.57
LSTM Encoder_Decoder 59.57 71.60 66.86 69.15 58.40 69.53 68.12 68.81 61.33 71.87 68.91 70.36

DARNN 61.13 71.26 71.47 71.37 63.09 77.04 67.87 72.16 63.87 72.09 73.59 72.83
DARNNtrend + DARNNmulti 63.67 74.77 71.38 73.04 62.89 75.30 69.38 72.22 62.69 73.84 66.56 70.00
DARNNvolat + DARNNmulti 62.50 73.97 71.06 72.49 62.30 74.46 69.20 71.74 61.91 72.98 68.51 70.67

MMPL 65.04 74.04 73.39 73.72 65.43 76.04 72.80 74.38 66.60 71.67 78.90 75.11
MMPL+MRFs 67.97 77.51 73.91 75.67 66.80 79.65 72.78 76.06 68.95 78.55 74.71 76.58

(a) Ground-truth (b) MMPL (c) MMPL-MRFs

Figure 4: Higher order consistency visualization. (a) is calculated directly from ground truth labels on test set. (b) is calculated
using predicted labels of MMPL without MRFs on the test set. (c), we use predicted labels of MMPL-MRFs on test set as inputs.

consistency level between each two of these constituent stocks. In
order to capture their temporal relationship, we propose a novel
consistency measure which is calculated on temporal intervals.

Let yTi = {y
1
i ,y

2
i , ...,y

T
i } denotes time-series for stock i . yti ∈

{0, 1} is the binary price movement label at time t . We segment time-
seriesyTi intoN = ⌈TP ⌉ non-overlapping intervals {y

n
i ,y

n+1
i , ...,yn+Pi }

with fixed length P . For any two stocks i and j , we calculate the dif-
ferencedni j =

∑n+P
n yni −

∑n+P
n ynj of howmany times positive price

movement happen in the n-th time interval in each stock. Then the
consistency level ci j between stocks i and j can be calculated via a
ℓ1norm:

ci j = −∥di j ∥1
where di j = {d1

i j ,d
2
i j , ...,d

N
ij }. We normalize ci j into interval [−1, 1].

Each entry in figure 4 denotes a consistency level measure ci j . The
larger the ci j is, the higher of consistency level between stock i
and stock j, the color of corresponding entry is closer to red, and
vice versa. As we mentioned, the average duration of information
arrival-conduction-integration-release process is 4.04 minutes [45].
Since which stock is leading at each time interval is elusive, we set
P = 9 when calculating consistency measures.

As we can see in Figure 4(a), there is a significant red square area,
which means ground-truth heat-map shows strong intra-clique

(number of stocks) for visualization. Conclusions from these two sectors also apply to
other sectors

consistency. This is an evidence that higher-order relationships
do exist within clique of stocks. However, in Figure 4(b), the red
square area is fragmented into many little pieces. The whole area’s
color is closer to blue when compared to ground-truth heat-map,
which means that MMPL captures little higher-order consistency.
The reason we still can observe a shape of red square is that the
accuracy of MMPL model on CSI300 is 66.6%. However, we can
still conclude that the accuracy of single MMPL model mainly
comes from unary features and it fails to capture higher order
consistency of different stocks belonging to the same clique. On the
contrary, even though MMPL-MRFs model’s accuracy on CSI300
index is only 2.35% better than MMPL model, we can observe that
heat-map Figure 4(c) is more close to ground-truth heat-map than
heat-map Figure 4(b). There is a much clear red square and the
number of small fragments in red area is also less than Figure 4(b).
We can conclude that MMPL-MRFs models learn to utilize both
unary features from MMPL as well as higher-order relationships
encoded in MRFs.

6 CONCLUSIONS
Here we show how to model individual stock price predictions
without hand-crafted features and encode lead-lag relationships be-
tween stocks using weighted higher-order MRFs. A multi-task neu-
ral network framework - Multi-task Market Price Learner (MMPL) -
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is proposed to automatically extract diversified and complementary
features from individual stock price sequences. Features learned by
MMPL are passed to a binary MRF with a weighted lower linear
envelope energy function to utilize intra-clique higher-order consis-
tency between stocks. An efficient latent structural SVM algorithm
is designed to learn MRFs in polynomial time. Finally, the MRFs and
MMPL are trained end-to-end using the sub-gradient algorithm.
Extensive experiments are conducted on three major Chinese stock
market indexes, and the proposed MMPL-MRFs achieve the best
accuracy on all three indexes.

Our work provides a number of directions for future research. In
this work we proposed a multi-task recurrent neural network for
stock price prediction. While we directly use DARNN as a proof of
concept, other, more dedicated architectures are worthy of explo-
ration. As well as time series tasks, we can also investigate how the
latent SSVM framework performs on computer vision tasks. An-
other interesting direction is to investigate the implicit relationship
between the expert-defined index list and graph RNN [46], which
could further help to reduce the domain knowledge required by
our framework.
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A TRAINING DETAILS
A.1 Initialization of lower linear envelope
We assume that the more evenly distributed ofWc (Yc ) where c ∈ C
on x axis, the more rich representation (number of linear functions)
the energy function should have. In order to initialize θ , we first de-
termine the x-coordinate of sampled points sp. Thenwe sample its y-
coordinate from a uniform distributionU(upbound, upbound−0.5)
to add some randomness in our initialization as well as maintain
concavity. Linear parameters ak and bk are later calculated using
those sampled points spk and spk−1. At last we encode {ak ,bk }Kk=1
into θ using equation (11). This algorithm is summarized in Algo-
rithm 1.

Algorithm 1 Empirical initialization algorithm for θ

1: дap = 1
K , a1 = U(0, 1e6), b1 = 0, sp1 = (0, 0), w0 = 0,

counter = 2
2: for each clique c ∈ C do
3: Compute weighted clique valuewc =Wc (yC )
4: if wc −wc−1 > дap then
5: upbound = acounterwc + bcounter

spcounter = (wc ,U(upbound − 0.5,upbound))
Calculate acounter and bcounter using spcounter−1 and
spcounter
counter = counter + 1

6: end if
7: end for
8: If counter < K , remaining as and bs are all set to be acounter

and bcounter
9: Calculate θ using {ak ,bk }Kk=1

A.2 Multi-task training
To improve accuracy and reduce over-fitting, we add a drop out
layer between input layer and LSTM layer with a ratio of 0.2. We
also clip and normalize gradients during back-propagation stage
with a maximum norm of 5.0 to prevent gradient exploding issue.
As pointed out by Lample et al. [28], the question of “when should
the training schedule switch from one task to another task?” or
“should each task be weighted equally?” remains open. In our imple-
mentation, we follow the proportional sampling approach described
by Søgaard and Goldberg [39]. After a backward pass completed,
we randomly sample a new task as well as its batch data as the next
task to be trained. In practice, we use a proportion of [0.25, 0.25, 0.5]
for three tasks respectively. This mechanism helps multi-task model
to avoid Catastrophic Forgetting phenomenon which means lower
level model forgets learned knowledge during higher level model
back-propagation pass.

Even though we propose an end-to-end training algorithm for
MMPL andMRFs in section 3.1, MRFs inference stage is still too slow
to be trained jointly with MMPL. To overcome this difficulty, we
implement a two stages training procedure. We first add a softmax
layer on top of DARNNclass and train MMPL separately from MRFs.
We use Negative Log-likelihood as the loss function. At the second
stage, after MMPL converge, we remove the softmax layer and re-
train it together with MRFs. One issue we must mention is that,

even though we use binary MRFs which can only predict positive
/ negative price movement, we find there is a significant amount
of time when stock price remains no change. We find it benefits
the performance a lot if we treat the classification as a three classes
problem rather than a binary classification problem during the first
stage. Therefore, at the first stage, the softmax layer will output
probability for three labels: negative movement, no changes and
positive movement. Since binary MRFs still needs a two dimension
input as part of unary energy function, after the softmax layer is
removed, we add an additional linear mapping layer between logits
of MMPL and MRFs at the second stage.

A.3 End-to-end multi-task RNN-MRFs training

Algorithm 2 Learning lower linear envelope MRFs with latent
variables.
1: SetMaxIter = 100
2: input training set {yi }ni=1, regularization constant C > 0, and

tolerance ϵ ≥ 0
3: Initialize θ using Algorithm 1
4: repeat
5: CCCP Outer Loop
6: Set iter = 0
7: for each training example, i = 1, . . . ,n do
8: compute z∗i = argmaxz∈Z θ ·ψ (yi , z)
9: end for
10: initialize active constraints set Ci = {} for all i
11: repeat
12: CCCP Inner Loop
13: solve the quadratic programming problem in equation 18

with respect to active constraints set Ci for all i and con-
cavity constraints Aθ ≥ ϵ to get θ̂ and ξ̂

14: for each training example, i = 1, . . . ,n do
15: compute ŷi , ẑi = argminy E(y,z; θ̂ ) − ∆(y,z,yi )
16: if ξ̂i +ϵ <∆(ŷi , ẑi ,yi )−E(ŷi , ẑi ; θ̂ )+E(yi ,z∗i ; θ̂ ) then
17: Ci ← Ci ∪ {y⋆i }
18: end if
19: end for
20: until no more violated constraints
21: return parameters θ̂
22: Set iter = iter + 1
23: until iter ≥ MaxIter
24: return parameters θ̂

With converged MMPL and MRFs at hand, now we can go for-
ward to train them in an end-to-end manner. We only include
pairwise energy function through section 3.2 and section 4 to show
a general application of our proposed algorithm. In the case of
Chinese stock market, to our best knowledge there is no public
available definition of pairwise relationship between stocks. There-
fore, in our implementation we only use unary and higher order
energy function. Each stock is then treated as a node in MRFs and
each stocks group which has lead-lag relationships is treated as
a maximum clique in MRFs. One benefit of MRFs clique is that
we can embed domain expert knowledge about industry classi-
fication as maximum cliques into our model. We choose to use
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Tonghuashun industry classification [1] in our model. One subtle
but crucial detail about modeling lead-lag effect lies in equation (3).
Recall thatWc (yc ) =

∑
i ∈c wiyi with wc

i ≥ 0 and
∑
i ∈c w

c
i = 1

which are weights for stocks in each clique. Therefore, leading

stocks should have a higher weights while lagging stocks should
have lower weights. In our implementation, we use constituents’
weight defined in CSI200, CSI500 and CSI300 as their weights in
equation (3) and normalize them to ensure the summation equals 1.
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