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ABSTRACT
Imitation learning that replicates experts’ skills via their demon-
strations has shown significant success in various decision-making
tasks. However, two critical challenges still hinder the deployment
of imitation learning techniques in real-world application scenarios.
First, existing methods lack the intrinsic interpretability to explic-
itly explain the underlying rationale of the learned skill and thus
making learned policy untrustworthy. Second, due to the scarcity of
expert demonstrations from each end user (client), learning a policy
based on different data silos is necessary but challenging in privacy-
sensitive applications such as finance and healthcare. To this end,
we present a privacy-preserved interpretable skill learning frame-
work (FedSkill) that enables global policy learning to incorporate
data from different sources and provides explainable interpretations
to each local user without violating privacy and data sovereignty.
Specifically, our proposed interpretable skill learning model can
capture the varying patterns in the trajectories of expert demon-
strations, and extract prototypical information as skills that provide
implicit guidance for policy learning and explicit explanations in
the reasoning process. Moreover, we design a novel aggregation
mechanism coupled with the based skill learning model to preserve
global information utilization and maintain local interpretability
under the federated framework. Thoroughly experiments on three
datasets and empirical studies demonstrate that our proposed Fed-
Skill framework not only outperforms state-of-the-art imitation
learning methods but also exhibits good interpretability under a
federated setting. Our proposed FedSkill framework is the first at-
tempt to bridge the gaps among federated learning, interpretable
machine learning, and imitation learning.
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1 INTRODUCTION
Imitation learning thatmimics experts’ skillful behaviors has demon-
strated its success in a wide range of real-world decision-making
tasks, e.g., autonomous driving, robotics, and healthcare [7, 11, 13,
37, 43]. Without accessing and optimizing the explicitly predefined
reward that can be sparse and inappropriate in complex tasks, im-
itation learning exhibits advantages over reinforcement learning
by directly exploiting the experts’ demonstrations for policy learn-
ing. However, building an effective imitation learning system is
challenging since it needs to exploit a sufficient amount of expert
demonstrations to accurately represent the needed skill in task en-
vironments. This introduces two critical challenges that hinder the
model deployment in practical application scenarios. First, expert
demonstrations can be extremely sparse from an individual client
or organization. Meanwhile, it is infeasible to perform centralized
model training by collecting example demonstrations frommultiple
sources (e.g., clients or organizations) because of privacy concerns
or enforced regulations. Second, even the demonstrations from a
single source can be multi-mode and highly variable as human
experts may have different skills. It is inherently difficult to capture
different skill structures within the set of demonstrations, let alone
explicitly discover the underlying rationales of the learned policy.

A typical solution to resolve the first challenge is to leverage
federated learning and perform imitation learning in a privacy-
preserving manner. Existing studies have shown that federated
imitation learning is desired in various applications, e.g., urban
traffic forecasting, autonomous driving, robotic system, and UAV
swarm coordination [22, 38, 40, 41]. Specifically, by leveraging ex-
pert demonstrations from multiple sources (e.g., clients or organiza-
tions), agents can benefit from the federated framework and yield
better performance on downstream tasks.
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Figure 1: The overview of the proposed FedSkill framework in
dynamic treatment recommendation.

To facilitate the deployment of federated imitation learning for
practical applications, a critical step is to build a federated imitation
learning framework with a desired interpretation architecture. Re-
cent developments in interpretable sequencemodeling that resort to
case-based reasoning have brought an end-to-end interpretable so-
lution on downstream classification results [25, 26]. These methods
have achieved competitive performance compared to the state-of-
the-art black box models, and more importantly, enabled faithful
explanations for the model’s output based on the known represen-
tative data. As the expert demonstration is often a sequence of state
and action pairs, similar techniques could be developed to interpret
the learned skills within the varying patterns.

In this paper, we propose a self-explainable federated skill learn-
ing framework with built-in interpretability, i.e., FedSkill, to better
exploit the experts’ demonstrations based on imitation learning.
Specifically, we first present an interpretable skill learning model
to capture the varying patterns in the trajectories of expert demon-
strations, and extract prototypical information as skills provide
implicit guidance for the agent to take actions, as well as explicit
explanations in the reasoning process. Note that the skill is learned
at the segment level since it is more flexible and transferable across
different experts compared to a trajectory-level formulation, and
is less complex and laboring compared to a step-level formulation.
Next, we develop a novel aggregation mechanism coupled with the
based skill learning model to preserve global information utilization
and maintain local interpretability under the federated framework.

We provide an example in dynamic treatment recommenda-
tion (DTR) to illustrate the proposed FedSkill framework, as shown
in Figure 1. Suppose that 𝑛 hospitals collaborate to cure a disease
via imitation learning. The goal for each hospital is to learn a model
that discovers and explains the underlying skills to cope with the
variability of patients’ symptoms, in a privacy-preserved manner. In
this model, a contextual treatment policy is coupled with a learnable
prototype set containing parameterized vectors that will represent
prototypical symptoms and treatments (prototypes) after training.
As such, the skill is formulated by combining multiple prototypes

representing different treatment plans that correspond to different
symptoms. During the local training at each hospital, we extract
the representations of segmented trajectories as candidates for skill
learning, where the parameterized vectors are optimized to have
desired interpretation properties via multiple objectives based on
these candidates. On the server side, an intuitive choice is to apply
federated averaging to aggregate the treatment policy networks
and learnable prototype sets. However, the treatment demonstra-
tions can be heterogeneous across hospitals, leading to different
disease treatment skills. To enable better knowledge sharing under
federated learning, we follow the fashion in [10] and perform clus-
tering to identify the memberships of parameterized vectors from
all hospitals. As such, similar prototypical knowledge is aligned
on the server side, which enhances local skill learning. After train-
ing, each hospital owns a common treatment policy and a unique
prototype set, where we can easily associate each parameterized
vector with a meaningful segment in local training data, thus yield-
ing a prototype that is readily interpretable. Note that local data
privacy is preserved as the global server does not access the data
or its representation during the whole process. Now, each hospital
can detect a new patient’s symptoms, and provide the underlying
skill with interpretations by analyzing the data that it is familiar
with, where the contextual treatment policy can recommend proper
medications based on the patient’s status and inferred skill. Our
contributions are highlighted as follows:
• We propose a federated interpretable skill learning frame-
work via imitation, i.e., FedSkill, which exploits the segment-
level expert demonstrations from multiple clients and pro-
duces representative and transferable skills.
• The skill learning model learns to construct faithful skills to
explain the underlying rationale of varying demonstrations
for an imitation learning task, which is innovative compared
to the existing imitation learning techniques.
• To the best of our knowledge, this is the first work that
equips the federated imitation learning framework with a
self-explainable structure for downstream tasks. The pro-
posed FedSkill framework provides an alignment of global
skillful information and preserves local interpretability in a
privacy-preserving manner.
• Experiments and analysis on a synthetic dataset and two
benchmark DTR datasets demonstrate that FedSkill provides
better performance than state-of-the-art imitation models
under federated learning setting, together with reasonable
explanations towards the recommended treatments.

The remainder of this paper is organized as follows. Section II
reviews the existing literature related to our federated interpretable
skill learning framework. Section III presents the methodology of
our framework. The datasets, experimental setup, evaluation and
analysis are described in Section IV. Section V concludes our paper.

2 RELATEDWORK
2.1 Imitation Learning
Existing imitation learning methods can be generally partitioned
into three categories, behavior cloning (BC) [1, 9], inverse rein-
forcement learning (IRL) [13, 23, 27, 46], and adversarial imitation
learning (AIL) [11, 31, 37, 42, 47]. Recent studies have heightened
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the importance of AIL in alleviating the issues in high dimensional
state-action space [44]. It exploits the expert’s demonstration by
learning its distribution to give the implicit reward signal based on
an adversarial structure, which is scalable and typically boosts the
performance of learned policy in large and complex environments.
Nevertheless, the experts’ behaviors in real-world tasks often illus-
trate strong variability among multiple modes, and most existing
methods that provide a flat policy are insufficient. These methods
don’t account for the variability of expert trajectories and fail to
present an interpretable structure of multi-mode demonstrations.

To resolve this issue, some methods construct a contextual policy
and learn the context information to represent the variability of
expert demonstrations at the step [29], segment [36] and trajectory
level [20], respectively. One branch of existing methods models the
variation of the underlying demonstration trajectory as a latent skill
variable in graphical models where the association between state
and meaningful representation is enforced by information-theoretic
regularization [20, 29]. The other branch models the hierarchy of
imitation learning with the formulation of high-level represen-
tations as skills and low-level policies, so that the variability is
automatically addressed and explained by the interactions between
high-level guidance and low-level behaviors [36]. However, these
methods provide ad-hoc or limited explanations by manipulating
the latent contextual information, which is insufficient for reason-
ing skills and actions existing in the varying patterns. Our proposed
method also uses a contextual policy for imitation learning, but the
learned context is explicitly explainable as one can always trace
back to the associated original training segments for explaination.

2.2 Prototype Learning for Sequence Data
As aforementioned, our work naturally relates to interpretable mod-
eling methods for sequence data. Recent studies in this field have
switched the focus from post-hoc interpretation methods [16] that
learn to fit explanations from inferred results, to self-explainable
methods that provide end-to-end built-in interpretations for their
own outputs. Besides the well-known attention-based interpreta-
tion mechanism [6], the prototype learning methods also achieve
satisfactory performance and gives explicit interpretations for se-
quence data classification [25, 26]. These methods learn a set of
parameters to represent exemplar sequences in the representation
space via specific optimization objectives designed for interpre-
tation. After training converges, these parameters are associated
with the original data as prototypes. As such, the prediction can be
inferred and explained by the similarity between the associated pro-
totypes and input data in the representation space, which is closely
related to the case-based reasoning process. Instead of providing
interpretations for the low-dimension sequences (e.g., univariate
time series, protein sequences), our method focuses on capturing
and interpreting the skills existing in varying patterns of shorter
segments but with more complex behaviors.

2.3 Federated Learning
In recent years, federated learning has attracted significant atten-
tion in the AI research community as it enables collaborative learn-
ing from multiple data sources in a privacy-preserved fashion. Fed-
erated Averaging (FedAvg) [24] is the most commonly used ag-
gregation mechanism among the existing methods because of its

simplicity and effectiveness in a wide range of federated environ-
ments. In order to tackle the data heterogeneity issues, another
widely-used method, Federated Proximal(FedProx) [19] improves
the local updates in FedAvg by regularizing the 𝐿2 distance between
local and global models. Moreover, performing global clustering
provides another solution to tackle the heterogeneous data dis-
tribution [4, 10, 28, 32, 45], facilitating various downstream tasks.
Enlightened by their success, we also adopt federated clustering
for a better alignment of skillful information toward the inference
and reasoning of imitation learning tasks.

Note that the most recent works have started exploring the idea
of federated prototype learning [8, 33]. There are two main differ-
ences between our method and their works. Firstly, the prototype in
these studies is defined as certain forms (e.g., mean) of the data rep-
resentation generated by the feature encoding networks, while the
so-called prototype in our method is just model parameters during
training. Therefore, our method has much fewer privacy concerns
regarding data leakage than the existing methods. Secondly, these
works’ research focus is to address the heterogeneous data distri-
bution and improve the performance of the global model. While
our method can demonstrate robustness in heterogeneous data
environments, our motivation for using prototypes is to provide
interpretation without violating privacy requirements.

3 METHODOLOGY
In this section, we present the FedSkill framework that performs
skill learning by imitating expert demonstrations from multiple
clients. We first state the problem we aim to study. Then, we give
the detailed architecture design of the interpretable skill learning
model over a single client. Finally, we develop the federated inter-
pretable skill learning and introduce the training procedures over
different local clients and the global server, which renders local
interpretability while preserving data privacy.

3.1 Problem Formulation
3.1.1 Learning Intrepretable Skills under Federation. We brief the
federated interpretable skill learning framework (as shown in Fig-
ure 3) as follows: Suppose there is a set of clients C with |C| clients,
each client aims to learn an interpretable skill learning model in-
cluding a client-specific prototype layer (referring to the learnable
prototype set in Figure 1) connecting the other learning compo-
nents that generate segment representation and perform imitation
learning task, respectively. A set of parameterized vectors in the
prototype layer learn from segment representations so as to estab-
lish the prototypes and construct skill embedding that provides
contextual information for imitation learning.

On the server side, all client models are aggregated based on
our designed mechanism so that similar prototypical information
is aligned. After global and local training, parameterized vectors
of each client will be translated to interpretable prototypes via the
association in the representation space of local training data. As
such, each client can explain the skills based on the most similar
prototypes in the reasoning process.

3.1.2 Segment-level Trajectory Exploitation. As aforementioned,
we exploit segment-level expert demonstrations to perform imita-
tion learning tasks based on the intuition that the obtained skills are
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Figure 2: The illustration of the proposed interpretable skill learn-
ing model via imitation.

representative and more transferable. For this purpose, we divide
each trajectory into multiple non-overlapped segments of length
𝑚, resulting in a set of segments {[(𝑠 (𝑖 )𝑡 , 𝑎

(𝑖 )
𝑡 )]𝑚𝑡=1}

𝑁
𝑖=1, where 𝑁 is

the number of segments from all trajectories. In the segment, each
state comes with the previous𝑚 − 1 steps of states from the same
trajectory, which encodes temporal dynamics up to the current step.
As such, the skill transitions across consecutive segments are also
captured in the model learning. Padding of the initial state in the
input is performed in the exploitation process when necessary.

3.2 Interpretable Skill Learning Model
The proposed interpretable skill learning model consists of a con-
volution layer to encode the temporal dynamics from the input
segment, a prototype layer to generate skill embedding, and a con-
textual imitation learning layer to perform primitive actions, as
shown in Figure 2.

3.2.1 Convolution Layer for Segment Representation. Given the in-
put segment to the model at the step 𝑡 , [𝑠𝑡−𝑚+1, · · · , 𝑠𝑡−2, 𝑠𝑡−1, 𝑠𝑡 ] ∈
R𝑚×𝑑 , where 𝑑 denotes is the feature dimension of each state, we
extract its representation r𝑡 via a 2-D convolution layer Conv (·),
which simultaneously encodes the feature and temporal dynamics:

r𝑡 = Conv (s𝑡−𝑚+1:𝑡 ) = tanh(CATℎ−1𝑖=0 (W𝑖 ★ s𝑡−𝑚+1:𝑡 + 𝑏𝑖 ))

where r𝑡 ∈ Rℎ×1, ℎ is the number of kernels; W𝑖 ∈ R𝑚×𝑑 and 𝑏𝑖 ∈
R are the weight and the bias term for 𝑖-th 2D convolution kernel,
respectively; ★ is a 2D cross-correlation operator, CAT denotes the
concatenation operator.

We use a convolution-based encoder to generate segment rep-
resentation, rather than recurrent-based [5, 12] and transformer-
based [35] encoders as it is empirically more effective and efficient
in extracting salient information for segments that typically have
shorter lengths. Note that graph structure learning methods[18, 39]
can also explicitly model the structured feature interactions at the
segment level, which will be explored in our future work.

3.2.2 Prototype Layer for Skill Embedding Generation. As afore-
mentioned, there is a set of 𝑘 parameterized vectors in the prototype
layer, P = [p1, p2, · · · , p𝑘 ] ∈ R𝑘×ℎ , whose dimensionality is iden-
tical to zt. Each vector is optimized to be representative and close
to a set of similar segments in the representation space, where the
optimization objectives will be introduced later.

During the forward pass, the similarity between the segment rep-
resentation r𝑡 and each parameterized vector is first evaluated by an
exponential function based on their 𝐿2 distance: exp(− ∥r𝑡 − p· ∥22),
which bounds the similarity value to a unit range. To measure the
relative similarity, all evaluated scores are re-scaled by their sum,
and the final pairwise similarity score for the segment representa-
tion and 𝑖-th vector, 𝑠𝑖𝑚(r𝑡 , p𝑖 ) ∈ R, is given as:

𝑠𝑖𝑚r𝑡 ,p𝑖 =
exp(− ∥r𝑡 − p𝑖 ∥22)∑𝑘
𝑖=1 exp(− ∥r𝑡 − p𝑖 ∥22)

.

All relative similarity scores are concatenated to a similarity vector
W𝑠𝑖𝑚 ∈ R𝑘×1 as W𝑠𝑖𝑚 = [𝑠𝑖𝑚r𝑡 ,p1 , 𝑠𝑖𝑚r𝑡 ,p2 , · · · , 𝑠𝑖𝑚r𝑡 ,p𝑘 ], which
imply the importance of the corresponding vectors in the skill
embedding generation. Thus, the skill embedding 𝑒𝑡 ∈ R1×ℎ is gen-
erated by the weighted combination of all parameterized vectors:

e𝑡 = W𝑇
𝑠𝑖𝑚 · P

Note that the segment representation r𝑡 is not directly used in
the final form of a skill embedding. Instead, we use the parame-
terized vectors to reconstruct the skill information preserved by
the segment representation, which renders a flexible interpretation
structure. In the reasoning process, all parameterized vectors p are
projected to prototypes that are the segment representations of lo-
cal training data, thus the underlying skill of a segment is explained
by similar prototypes with high weights. It is also worth noting
that the above process follows a fashion of soft-skill combination,
which can be altered to a hard-skill selection by adopting a Gumbel-
Softmax mechanism[14]. We find that the soft-skill combination
provides better flexibility and generalizability when encountering
a new pattern in a complex task environment.

3.2.3 Imitation Learning Layer. In the imitation learning layer, we
build a contextual policy based on the behavior cloning (BC)method
that learns a mapping from state 𝑠𝑡 to action 𝑎𝑡 in a supervised
manner. The contextual policy is parameterized by 𝜃 and denoted
as 𝜋𝜃 (𝑎𝑡 |e𝑡 , 𝑠𝑡 ), which takes the concatenation of skill embedding
and the state as the input. As aforementioned, the skill embedding
captures the varying patterns of expert trajectories and guides the
agent to perform primitive action more accurately:

𝑎𝑡 ← 𝜋𝜃 (𝑎𝑡 |e𝑡 , 𝑠𝑡 )

Note that our model is similar to existing imitation learning meth-
ods that contextualize the policy with a latent code or a formulated
sub-goal to address the variability of expert trajectories. However,
only our method is capable of providing an explicit interpretation
of the varying patterns in the reasoning process.

3.2.4 Learning Objectives for Better Interpretability. The learning
objectives consist of two aspects, a segment-level imitation learning
objective and three objectives that reinforce the interpretability of
the final prototypes and skills in these non-overlapped segments.
Next, we introduce each component based on a batch of segments
in the training data: {[(𝑠 (𝑖 )𝑡 , 𝑎

(𝑖 )
𝑡 )]𝑚𝑡=1}

𝑛
𝑖=1, with batchsize 𝑛 and

segment length𝑚.
In this paper, we focus on the setting of replicating the experts’

discrete actions, thus the first objective is to minimize the below
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Figure 3: An illustration of the proposed FedSkill. The server performs federated averaging on the parameters in convolution and imitation
layers. The client-specific parameterized vectors are aggregated by clustering and matching to the centroids of the corresponding clusters.

loss of imitation learning with BC:

L𝑖𝑚 =

𝑛∑︁
𝑖=1

𝑚∑︁
𝑡=1

𝜋𝐸

(
𝑎
(𝑖 )
𝑡 | 𝑠 (𝑖 )𝑡

)
log𝜋𝜃

(
𝑎
(𝑖 )
𝑡 | e(𝑖 )𝑡 , 𝑠

(𝑖 )
𝑡

)
,

where 𝜋𝐸 denotes the expert policy that generates demonstrations.
The second objective regularizes the non-overlapped segment

representation to be adjacent to its closest prototype, which en-
forces a clustering structure of segments in the representation space.
This is achieved by minimizing the smallest 𝐿2 distance between
each non-overlapped r(𝑖 )𝑡=𝑚 and all parameterized vectors in P:

L𝑐 =
𝑛∑︁
𝑖=1

min
p𝑗 ∈P




r(𝑖 )𝑡=𝑚 − p𝑗



2
2
.

The third objective reversely regularizes each vector to be similar
to a segment representation by minimizing the smallest 𝐿2 distance
between each p𝑖 and a batch of non-overlapped segment represen-
tations r( 𝑗 )𝑡=𝑚 ∈ R𝑛

def
= [[Conv (s( 𝑗 )

𝑡−𝑚+1:𝑡 )]𝑡=𝑚]
𝑛
𝑗=1, which helps the

downstream projection to evidence segments.

L𝑒 =
𝑘∑︁
𝑖=1

min
r( 𝑗 )𝑡=𝑚∈R𝑛




p𝑖 − r( 𝑗 )𝑡=𝑚



2
2
.

The second and third objectives impose dual regularizations on the
learning of the convolution layer and the prototype layer towards
a clearer representation structure for interpretation.

The last objective enforces a diverse structure of parameterized
vectors to avoid redundancy and improve the generalizability of
resulting prototypes, where the 𝐿2 distance between each pair of
vectors is penalized, with a threshold 𝑑min:

L𝑑 =

𝑘∑︁
𝑖=1

𝑘∑︁
𝑗≠𝑖

max
(
0, 𝑑min −



p𝑖 − p𝑗


2
2

)
As such, the full objective to be minimized can be written as: L =

L𝑖𝑚 + 𝜆1L𝑐 + 𝜆2L𝑒 + 𝜆3L𝑑 , with non-negative weights 𝜆1, 𝜆2, and
𝜆3 being used to balance components towards an optimal solution.

3.3 Federated Interpretable Skill Learning
In this subsection, we introduce the details of the FedSkill frame-
work as shown in Figure 3. On the server side, the global knowledge

alignment is conducted during the training stage; on the client side,
a local prototype projection is applied at the model deployment
stage, which yields interpretability without privacy concerns.

Algorithm 1: Training Algorithm of FedSkill
Input : local datasets 𝐷𝑐 , client set C, number of clusters

𝐾 , number of global epochs 𝑇 , number of local
epochs 𝐸, learning rate 𝜂

Server executes:
Initialize the global interpretable skill learning model W𝑔

that consists of convolution and imitation learning layers
W𝑔

𝜙
, and 𝐾 parameterized vectors P𝑔 , W𝑔 := W𝑔

𝜙
∪ P𝑔

for round 𝑡 = 0 to 𝑇 do
DistributeW𝑔

𝜙
and client-specific PC

for 𝑐 ∈ C do in parallel
W𝑐
𝜙,𝑡+1, P

𝑐
𝑡+1 ← LocalUpdate(𝑐,W𝑐

𝑡 )
end

W𝑔

𝜙,𝑡+1 ←
1
| C |
| C |∑
𝑐=1

W𝑐
𝜙,𝑡+1

P̂1, P̂2, · · · , P̂𝐾 ← Clustering( ⋃
𝑐∈C

P𝑐
𝑡+1)

P̄1, P̄2, · · · , P̄𝐾 ← ClusterMean(P̂1, P̂2, · · · , P̂𝐾 )
PC
𝑡+1 := {P

1
𝑡+1, · · · , P

| C |
𝑡+1} ← Match(P̄1, · · · , P̄𝐾 )

end
return W𝑔

𝜙
, PC

Client executes:
LocalUpdate(𝑐,W𝑐 ) :
for each local epoch 𝑒 = 1 to 𝐸 do

for each batch b of 𝐷𝑐 do
W𝑐 ←W𝑐 − 𝜂∇L(W𝑐 ; b)

end
end
return W𝑐 := W𝑐

𝜙
∪ P𝑐

3.3.1 TrainingMechanisms of FedSkill. The proposed FedSkill frame-
work is illustrated in the left subplot of Figure 3. The global server
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Algorithm 2: Local Prototype Projection of FedSkill
Input : local datasets 𝐷𝑐 , local vector sets P𝑐 , client set C
for 𝑐 ∈ C do in parallel

Get all non-overlapped segment representations of 𝐷𝑐 :
R𝑡𝑟𝑎𝑖𝑛 = [[Conv (s( 𝑗 )

𝑡−𝑚+1:𝑡 )]𝑡=𝑚]
|𝐷𝑐 |
𝑗=1

for each parameterized vector p𝑐
𝑖
∈ P𝑐 do

p𝑖 ← argmin
r( 𝑗 )𝑡=𝑚∈R𝑡𝑟𝑎𝑖𝑛




p𝑖 − r( 𝑗 )𝑡=𝑚



2
2

end
end
return P𝑐 ,∀𝑐 ∈ C

initializes and distributes the global interpretable skill learning
model to local clients at the beginning of global training. As afore-
mentioned, the model is partitioned into two sets of parameters,
one set is denoted as P𝑔 , containing the parameterized vectors in
the prototype layer. The other set is denoted as W𝑔 , containing the
weights of the convolution layer and imitation learning layer.

For each global epoch, the server aggregates the local mod-
els from clients after local training. We use existing mechanisms
(FedAvg[24] and FedProx[19]) to aggregate W𝑔 that generates seg-
ment representation and the final action. However, the parameter-
ized vector sets can differ a lot due to the heterogeneity of expert
demonstrations across different clients. This discrepancy will lead
to a misalignment between local and global skills and thus aggre-
gating P𝑔 with FedAvg[24] or FedProx[19] may yield sub-optimal
prototypes for inference and reasoning.

To this end, we propose a knowledge alignment mechanism
on the server side, as shown in the right subplot of Figure 3. Af-
ter receiving 𝑘 × |C| parameterized vectors, the server performs
clustering (e.g., K-means and Gaussian Mixture Models with 𝐾
clusters/components, where we adopt 𝐾 = 𝑘) to identify the mem-
bership of each vector, and the vectors containing similar prototyp-
ical/skillful representations are aligned to the same cluster. After
that, the centroid vector that represents a mode of skill is obtained
by the mean of all vectors that belongs to the same cluster. Finally,
each local vector is matched by the global centroid vector based on
the identified membership, and distributed back to local clients. As
a result, each client owns a specific vector set that best represents
the prototypical information from its own data through the entire
training process, where the skillful knowledge is shared and aligned
across different clients. The detailed training algorithm of FedSkill
is presented in Algorithm 1.

3.3.2 Local Prototype Projection. Even if the training is completed
and the local parameterized vector is well-regularized to be skillful,
the returned local client model is not readily interpretable. This is
because these vectors are just close approximations (due to L𝑒 in
Section 3.2.4) and do not associate with any actual data that rep-
resents explicit prototypes. To enable the interpretability of each
client’s skill learning model, we perform local prototype projection
to each parameterized vector, by assigning it to the training seg-
ment that has the smallest 𝐿2-distance in the representation space.
The detailed process is depicted in Algorithm 2. Only after this stage
are the vectors translated to explicit prototypes the local model can

Table 1: Statistics of Datasets

Dataset #Trajectories #Features #Actions

Comorbidity 8447 47 23
Sepsis 11419 43 5
Grid-world 14195 4 4

capture the varying patterns and construct a meaningful skill em-
bedding based on these prototypes. We emphasize that this step is
crucial but privacy-sensitive. That is why we only perform this step
once for each client during the inference and reasoning stage (un-
like [25] that performs it every few training epochs). This preserves
the privacy of expert demonstrations, as no data or representations
are leaked to the global server and other clients.

4 EXPERIMENTS
In this section, we evaluate the effectiveness of the proposed Fed-
Skill framework. Specifically, we first introduce the datasets, evalu-
ation metrics, and experiment setups including training details and
model specifications of FedSkill and related baseline methods. Then,
we compare FedSkill with 4 state-of-the-art baselines over 3 datasets
to demonstrate its effectiveness and interpretation capability.

4.1 Datasets and Evaluation Metrics
4.1.1 Datasets and Evaluation Metrics. We evaluate our method
on two benchmark datasets for dynamic treatment recommenda-
tions (DTR) and a synthetic grid-world dataset. The DTR datasets
are two subsets of a public Electronic Health Record database
MIMIC-III [15]. It contains the records of 43,000 unique patients
in intensive care units between 2001 and 2012, which covers 6,695
diseases and 4,127 medications. A sequence of the patient states
and the doctor’s medications form a demonstration trajectory. The
patient state consists of static features of demographics and admis-
sion information, and dynamic features of historical treatment, lab
test values as well as vital signs. We follow the sepsis-3 criteria[30]
to extract the demonstration trajectories of the sepsis patients and
follow the procedures in [2] to extract the demonstration trajecto-
ries of patients with comorbidity. Note that the Sepsis data contains
the trajectories of survival and deceased patients, while only the
survival trajectories are used to evaluate the methods. The synthetic
data is sampled from an expert agent in the 13 × 13 grid-world[3]
environment, which has four rooms separated by walls and con-
nected through four hallways. The expert agent can choose among
four directions: up, down, left, and right. We define the task that
the agent at the starting state performs exploration to reach the
target state, where the staring states and target states are initialized
in two different rooms along the left diagonal. Table 1 summarizes
the three datasets’ statistics. The segment length for Comorbidity,
Sepsis, and Grid-world datasets are set as 2,4,8, respectively. The se-
lection of segment length is based on the empirical pattern analysis
of three datasets with aligned performance evaluations.

To evaluate the learnedmodel regarding the consistency between
the predicted actions and those from expert demonstrations, we
adopt three commonly used metrics: the Jaccard coefficient, the
micro and macro average of AUC-ROC scores, denoted as Jaccard,
MI-AUC, and MA-AUC, respectively. Note that we follow [37] and



FedSkill: Privacy Preserved Interpretable Skill Learning via Imitation KDD ’23, August 6–10, 2023, Long Beach, CA, USA

Table 2: Hyperparameters of Interpretable Skill Learning Model

Dataset #Prototypes #Dimension 𝜆1 𝜆2 𝜆3 dmin

Comorbidity 28 48 0.15 0.15 0.05 0.8
Sepsis 30 64 0.20 0.15 0.05 1.0
Grid-world 20 4 0.25 0.25 0.15 1.0

evaluate the models only on positive trajectories where the expert
succeeds in fulfilling the task, when negative ones are available.

4.2 Experiment Setup
4.2.1 Settings of Imitation Learning Models. We compared our in-
terpretable skill learning model with the following 4 baseline imita-
tion learning methods:
• Behavior Cloning (BC) [1]: It divides the trajectories into
state-action pairs and learns a policy from the step-wise
expert demonstrations via supervised learning.
• GAIL [11]: GAIL learns a policy in an adversarial manner,
where the policy network serves as a generator to mimic
expert trajectories and receives the reward signal provided
by the discriminator.
• ACIL [37]: ACIL exploits the information from both positive
and negative trajectories by introducing another cooperative
discriminator and training objective based on GAIL, so that
the distributions of the experts’ and learned demonstrations
are far from that of negative ones.
• ConvBC: We implement a contextual policy network con-
ditioned on the segment representation, where the repre-
sentation is generated by convolution neural networks that
capture the varying patterns in trajectories.

For fair comparisons, the policy networks of the above methods are
the same 3-layer Multilayer Perceptron (MLP) with the same neu-
ron size and activation function at each layer. The discriminators in
GAIL and ACIL are also the same 3-layer MLP. The three datasets
are split for training/validation/testing sets by a ratio of 6/2/2, based
on the IDs of trajectories. The batch sizes for Comorbidity, Sep-
sis, and Grid-world datasets are 64, 64, and 256, respectively. The
detailed hyperparameter configurations of our interpretable skill
learning model for three datasets are presented in Table 2 (selected
based on the best performance on the validation set).

4.2.2 Settings of Federated Frameworks. Based on the above imi-
tation learning models, we implement several federated imitation
learning baselines under FedAvg [24] and FedProx [19] frameworks.
We also implement two variants based on the FedSkill, FedSkillAvg
and FedSkillProx for the comparison of performance under different
federated mechanisms. K-means clustering is used in knowledge
alignment. The experiments are performed under three clients with
equal data partition, which is also performed at the granularity
of trajectory. The number of local training epochs is 3, where the
Adam optimizer[17] is used for the local model update.

4.3 Performance Evaluation
The performance evaluation results of FedSkill and baselines are
shown in Table 3. As there are no negative trajectories in the ex-
tracted Comorbidity and Grid-world datasets, the performance

of ACIL is not reported. Moreover, for the variants of FedSkill,
we report the final performance of the global model that doesn’t
have the interpretation capability (i.e., FedSkillAvg (Global) and
FedSkillProx (Global)), as well as the averaged performance of client
models that perform local prototype projection (i.e., FedSkillAvg
(Local) and FedSkillProx (Local)). As the FedSkill contains a client-
specific parameter set for prototype learning, the notion of the
global model does not exist. Thus we only report the clients’ aver-
age performance, i.e., FedSkill.

According to the results on three datasets, several observations
can be made. First, The GAIL outperforms BC on three datasets,
which demonstrates the advantage of adversarial imitation learning.
ACIL has slightly better performance than GAIL, as it refines the
policy by preventing it from taking actions that lead to undesired
results in negative trajectories. Second, the Conv-BC outperforms
other baselines by a clear margin as it captures the variability of
different trajectories in the representation space, which is help-
ful for downstream imitation learning tasks. Third, our proposed
method and variants constantly achieve the best or second-best
results on two DTR datasets, which shows the advantage of our
proposed FedSkill technique in complex tasks. Besides, the FedSkill
generally results in the best performance of client models compared
to other variants, suggesting the importance of skill alignment in
global information utilization. Compared to our method, ConvBC
sometimes gains an advantage as it does not impose constraints on
representation space. Meanwhile, it is not able to render an inter-
pretable structure to explain the underlying skills in the demonstra-
tion trajectories. Our method also demonstrates its effectiveness
in simple tasks from simulated environments, even if it slightly
compromises the performance to obtain interpretability. To sum-
marize, our method achieves state-of-the-art performance while
maintaining the capability of skill discovery and interpretation.

4.4 Interpretable Prototypes under Federation
Next, we present how our method renders interpretable prototypes
that establish the later reasoning process. Our demonstration is
based on the DTR data.

4.4.1 Representative Prototype Learning under Federated Learning.
We compare the representation space of local training data from the
same client, which is generated by our method and ConvBC, respec-
tively. The visualization of segment representations via t-SNE [34]
and PCA plots are shown in Figure 4. The dots and stars stand for
segments and prototypes in the representation space, where the
color indicates the statistics of ground truth action segments. We
use the mode value for the analysis of Comorbidity data, and the
mean value for that of Sepsis data as different actions in Sepsis
indicate different treatment levels based on the same medication
(intravenous(IV) fluid). We can observe that Federated ConvBC
somewhat separates segment representations that contain different
expert behaviors, but these segments are loosely structured and dis-
tributed in the dispersed representation space. As aforementioned,
this method does not have the notion of prototypes and thus fails
to interpret the varying patterns.

In contrast, the segment representations generated by our model
form clear clusters for different skills. Moreover, most prototypes
are correctly projected and consistently matched to the nearby
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Table 3: Performance comparison of different methods. The results are reported based on 5 rounds of experiments. Note that the performance
of ACIL is not reported ("—") on Comorbidity and Grid-world datasets since they do not have negative trajectories.

Method Aggregation Comorbidity Sepsis Grid-world

Jaccard MI-AUC MA-AUC Jaccard MI-AUC MA-AUC Jaccard MI-AUC MA-AUC

BC FedAvg 0.6161±0.0105 0.9415±0.0014 0.9287±0.0015 0.5263±0.0011 0.7862±0.0004 0.7640±0.0002 0.9170±0.0021 0.9648±0.0002 0.9643±0.0002
FedProx 0.6084±0.0072 0.9403±0.0010 0.9278±0.0004 0.5275±0.0012 0.7870±0.0009 0.7643±0.0012 0.9188±0.0040 0.9645±0.0005 0.9641±0.0004

GAIL FedAvg 0.6271±0.0059 0.9417±0.0025 0.9280± 0.0026 0.5303±0.0012 0.7887±0.0008 0.7660±0.0005 0.9233±0.0011 0.9650±0.0003 0.9647±0.0003
FedProx 0.6211±0.0082 0.9416±0.0017 0.9282±0.0014 0.5305±0.0015 0.7879±0.0007 0.7651±0.0006 0.9245±0.0028 0.9651±0.0003 0.9647±0.0003

ACIL FedAvg — — — 0.5310±0.0018 0.7883±0.0007 0.7656±0.0005 — — —
FedProx — — — 0.5312±0.0008 0.7889±0.0008 0.7660±0.0005 — — —

ConvBC FedAvg 0.6780±0.0083 0.9551±0.0014 0.9422±0.0016 0.5517±0.0014 0.8106±0.0014 0.7856±0.0006 0.9255±0.0031 0.9659±0.0007 0.9655±0.0009
FedProx 0.6738±0.0115 0.9540±0.0028 0.9398±0.0024 0.5514±0.0022 0.8125±0.0014 0.7875±0.0019 0.9287±0.0019 0.9664±0.0015 0.9661±0.0017

FedSkillAvg (Global) 0.6771±0.0060 0.9531±0.0013 0.9401±0.0012 0.5513±0.0013 0.8068±0.0014 0.7855±0.0016 0.9218±0.0053 0.9652±0.0015 0.9651±0.0016
FedSkillAvg (Local) 0.6742±0.0082 0.9527±0.0018 0.9390±0.0015 0.5508±0.0011 0.8060±0.0021 0.7849±0.0012 0.9198±0.0026 0.9648±0.0012 0.9641±0.0015
FedSkillProx (Global) 0.6658±0.0142 0.9514±0.0028 0.9377±0.0036 0.5515±0.0016 0.8071±0.0024 0.7846±0.0011 0.9216±0.0040 0.9651±0.0010 0.9648±0.0014
FedSkillProx (Local) 0.6654±0.0138 0.9510±0.0033 0.9373±0.0041 0.5491±0.0005 0.8052±0.0042 0.7828±0.0038 0.9203±0.0021 0.9649±0.0012 0.9641±0.0009

FedSkill 0.6803±0.0083 0.9543±0.0009 0.9404±0.0011 0.5511±0.0013 0.8083±0.0015 0.7858±0.0014 0.9201±0.0066 0.9650±0.0017 0.9644±0.0018

Figure 4: Visualizations of segment representations and prototypes
from the same client (Leftmost two columns: Sepsis dataset; Right-
most two columns: Comorbidity dataset)

segments for each cluster. Although some mixed-up segments and
mismatched prototypes with different treatment levels exist in Sep-
sis data, the deviation is within a similar level. The visualization
results demonstrate that our method is able to exploit the variabil-
ity of expert behaviors and render representative prototypes that
contain skillful information.

4.4.2 Effective Prototype-Segment Association. To further demon-
strate the effectiveness of projection and interpretability of learned
prototypes under federated learning, we use the Sepsis data as the
context and provide the cross-client visualizations of the raw seg-
ments that are associated with prototypes, as shown in Figure 5
(a-b). Each segment is presented as a heat map describing how the
state feature in the vertical axis changes across different steps in
the horizontal axis, where the color indicates the magnitude of
min-max scaled features. In addition to the prototypes, their neigh-
boring segments in the representation space are also presented. We
have two main observations based on the visualizations. First, the
patterns of prototype segments that represent different treatment
levels can be generally distinguished, and some similarities between

prototype and neighboring segments can be observed. This obser-
vation enhances our previous conclusion that our method learns
representative prototypes. Second, we find that some prototypes in-
dicating the same treatment level also have similar patterns across
different clients. This demonstrates the effectiveness of FedSkill in
terms of global information exploitation from multiple data silos.

4.5 Case Study: Trajectory Analysis in a
Heterogeneous Environment

In previous discussions, we have shown the capability of FedSkill
regarding the generation of interpretable prototypes that capture
different skills. Now we demonstrate the reasoning process by ana-
lyzing the constructed skill embedding from prototypes. Note that
we simulate a Non-IID data partition scenario on Sepsis data with a
case study to show the effectiveness of FedSkill in a heterogeneous
environment, and compare it with a single client model trained on
its own data. To this end, we follow [8, 21] and use Dirichlet distri-
bution with concentration parameter (0.4, 0.4, 0.4) under 3 clients
to perform data partition based on the mean value of ground truth
actions of trajectories. It results in different action distributions and
different numbers of trajectories across clients simultaneously. We
explore the most skewed client with 6.89%(288) training trajectories
which are dominated by treatment levels 2(106) and 3(167) with a
few of levels 0(7) and 4(8).

We visualize the skills and agent actions on a selected testing
trajectory with 12 steps (3 segments) that has simple clinical pat-
terns for analysis with ease, as shown in the left subplot of Figure 5
(c). Three lab values from the state features are extracted, Total
Protein, PaCO2, and PaO2, which are clinically important criteria
to evaluate patient status. The background of each segment is col-
ored by the treatment level suggested by the learned skills, which is
referred to the same type of prototypes allocating the most weights
in the skill embedding, as shown in Figure 5 (d). In segment 1, the
prototypes of treatment level 0 allocate the most weights (35.11%),
thus the obtained skill suggests no usage of IV fluid in the left sub-
plot, and so on so forth. Next, we analyze the trajectory in detail.
In general, an increased Total Protein/PaO2, as well as a decreased
PaCO2 suggest alleviated symptoms. In this case, the patient is first
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Figure 5: (a-b) Visualizations of prototypes and associated segments across different clients on Sepsis data: For each segment block, the
leftmost segment represents the prototype and others are its neighbouring segments; (c) Illustration of trajectory analysis with Non-IID; (d)
The allocated weights for skill embedding generation in FedSkill.

treated with a small dose of IV fluid in the first segment and the
symptom worsens. Then the patient’s status improves and is finally
cured after constantly using higher doses of IV fluid in the second
and third segments. It is clear that the skill embedding of FedSkill
can capture the transition of lab values and suggest a different dose
of IV fluid for treatment. Besides, the contextual policy network is
able to recommend consistent treatments suggested by the skill em-
bedding. In general, the actions and underlying skills are consistent
to the expert’s demonstrations in this trajectory.

We also visualize the skills and actions rendered by the single
client model for comparison, as shown in the right subplot of Fig-
ure 5 (c). The single client model fails to suggest a proper dose of IV
fluid in the first segment as it learns on a skewed data distribution
with very few cases that represent the patient’s status, which also
leads to deviated treatment recommendations in the second and
third segments. Meanwhile, FedSkill is still able to infer a faithful
skill embedding so as to recommend appropriate treatments in this
case, which suggests its effectiveness under data heterogeneity.

4.6 Base Model Study
We present a base model study on Sepsis dataset to further demon-
strate the importance of learning components in our base inter-
pretable skill learning model.

4.6.1 Hyperparameter study. We first perform an ablation study
on the regularization terms that are designed to enhance inter-
pretability, as shown in the (a-c) of Table 4. It can be observed
that discarding the clustering and diversity constraints (a) in the
representation space (c) degrades the model performance minorly.
However, discarding the evidence constraint (b) makes the model
significantly worse and more unstable as it renders erroneous pro-
totypes for downstream imitation learning tasks. We also evaluate
the effect of using a different number of prototypes, as shown in (d).
It is clear that a single prototype results in inferior performance as it
is inadequate to hold the needed representative skillful information.
As the number of prototypes increases, the performance gets better
and gradually stabilizes within a certain range. Nevertheless, it is
beneficial to keep a compact prototype set for interpretation.

Table 4: Based model study on Sepsis data

Jaccard MI-AUC MA-AUC

Based Model 0.5520±0.0019 0.8077±0.0013 0.7854±0.0005
(a) 𝜆1 = 0 0.5424±0.0023 0.8028±0.0012 0.7800±0.0028
(b) 𝜆2 = 0 0.5065±0.0316 0.7729±0.0271 0.7624±0.0126
(c) 𝜆3 = 0 0.5427±0.0015 0.8007±0.0014 0.7782±0.0014
(d) k = 1 0.5298±0.0018 0.7891±0.0015 0.7656±0.0013
(d) k = 10 0.5438±0.0024 0.8022±0.0009 0.7789±0.0005
(d) k = 20 0.5460±0.0026 0.8038±0.0016 0.7824±0.0011
(d) k = 40 0.5498±0.0016 0.8067±0.0013 0.7851±0.0007
(e) Hard-Skill 0.5390±0.0014 0.7975±0.0006 0.7737±0.0014

4.6.2 Soft-Skill Combination vs. Hard-Skill Selection. We explore
the aforementioned hard-skill selection using a Gumbel-Softmax
[14] component based on the similarity measure. It renders an
inferior result, as shown in (e) of Table 4, even if we adjust the
number of prototypes and tune the hyperparameters. We suggest
that it is not an ideal choice for skill learning to handle unseen
patterns in complex imitation learning environments.

5 CONCLUSIONS
In this paper, we proposed the FedSkill, a privacy-preserved in-
terpretable skill learning framework for imitation learning tasks.
Our proposed interpretable skill learning model is able to explicitly
explain the underlying rationale of the learned skill that existed
in the varying patterns from experts’ demonstrations. Besides, our
designed aggregation mechanism enables the utilization of global
information and preserves local interpretability under the federated
framework. Experiments and thorough empirical studies demon-
strate promising performance as well as good interpretability under
the federated setting.
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