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ABSTRACT
Detecting abnormal activities in real-world surveillance videos is
an important yet challenging task as the prior knowledge about
video anomalies is usually limited or unavailable. Despite that many
approaches have been developed to resolve this problem, few of
them can capture the normal spatio-temporal patterns effectively
and efficiently. Moreover, existing works seldom explicitly con-
sider the local consistency at frame level and global coherence of
temporal dynamics in video sequences. To this end, we propose
Convolutional Transformer based Dual Discriminator Generative
Adversarial Networks (CT-D2GAN) to perform unsupervised video
anomaly detection. Specifically, we first present a convolutional
transformer to perform future frame prediction. It contains three
key components, i.e., a convolutional encoder to capture the spatial
information of the input video clips, a temporal self-attention mod-
ule to encode the temporal dynamics, and a convolutional decoder
to integrate spatio-temporal features and predict the future frame.
Next, a dual discriminator based adversarial training procedure,
which jointly considers an image discriminator that can maintain
the local consistency at frame-level and a video discriminator that
can enforce the global coherence of temporal dynamics, is employed
to enhance the future frame prediction. Finally, the prediction error
is used to identify abnormal video frames. Thoroughly empirical
studies on three public video anomaly detection datasets, i.e., UCSD
Ped2, CUHK Avenue, and Shanghai Tech Campus, demonstrate the
effectiveness of the proposed adversarial spatio-temporal modeling
framework.
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1 INTRODUCTION
With the rapid growth of video surveillance data, there is an in-
creasing demand to automatically detect abnormal video sequences
in the context of large-scale normal (regular) video data. Despite
a substantial amount of research effort has been devoted to this
problem [3, 8, 13, 14, 16, 19, 22, 31, 34], video anomaly detection,
which aims to identify the activities that do not conform to reg-
ular patterns in a video sequence, is still a challenging task. This
is because real-world abnormal video activities can be extremely
diverse while the prior knowledge about these anomalies is usually
limited or even unavailable.

With the assumption that a model can only generalize to data
from the same distribution as the training set, abnormal activities
in the test set will manifest as deviance from regular patterns. A
common approach to resolve this problem is to learn a model that
can capture regular patterns in the normal video clips during the
training stage, and check whether there exists any irregular pattern
that diverges from regular patterns in the test video clips. Within
this framework, it is crucial to not only represent the regular ap-
pearances but also capture the normal spatio-temporal dynamics to
differentiate abnormal activities from normal activities in a video
sequence. This serves as an important motivation for our proposed
methods.

Early studies have used handcrafted features to represent video
patterns [13, 16, 19, 29]. For instance, Li et al. [13] introduced mix-
tures of dynamic textures and defined outliers under this model
as anomalies. These approaches, however, are usually not optimal
for video anomaly detection since the features are extracted based
upon a different objective.
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Recently, deep neural networks are becoming prevalent in video
anomaly detection, showing superior performance over handcrafted
feature based methods. For instance, Hasan et al. [8] developed a
convolutional autoencoder (Conv-AE) to model the spatio-temporal
patterns in a video sequence simultaneously with a 2D CNN. The
temporal dynamics, however, are not explicitly considered. To
better cope with the spatio-temporal information in a video se-
quence, convolutional long short-term memory (LSTM) autoen-
coder (ConvLSTM-AE) [17, 27] was proposed to model the spatial
patterns with fully convolutional networks and encode the tempo-
ral dynamics using convolutional LSTM (ConvLSTM). ConvLSTM,
however, suffers from computational and interpretation issues. A
powerful alternative for sequence modeling is the self-attention
mechanism [33]. It has demonstrated superior performance and
efficiency in many different tasks, e.g., sequence-to-sequence ma-
chine translation [33], time series prediction [24], autoregressive
model based image generation [23], and GAN-based image synthe-
sis [39]. However, it has seldom been employed to capture regular
spatio-temporal patterns in the surveillance videos.

More recently, adversarial learning has shown impressive
progress on video anomaly detection. For instance, Ravanbakhsh
et al. [25] developed a GAN based anomaly detection approach
following conditional GAN framework [10]. Liu et al. [14] proposed
an anomaly detection approach based on future frame prediction.
Tang et al. [31] extended this framework by adding a reconstruc-
tion task. The generative models in these two works were based
on U-Net [26]. Similar to Conv-AE, the temporal dynamics in the
video clip were not explicitly encoded and the temporal coherence
was enforced by a loss term on the optical flow. Moreover, the
potential discriminative information in the form of consistency at
frame-level and global coherence of temporal dynamics in video
sequences were not fully considered in previous works.

In this paper, to better capture the regular spatio-temporal pat-
terns and cope with the potential discriminative information at
frame-level and in video sequences, we propose Convolutional
Transformer based Dual Discriminator Generative Adversarial Net-
works (CT-D2GAN) to perform unsupervised video anomaly detec-
tion. We first present a convolutional transformer to perform future
frame prediction. The convolutional transformer is essentially a
encoder-decoder framework consisting of three key components,
i.e., a convolutional encoder to capture the spatial patterns of the
input video clip, a novel temporal self-attention module adapted for
video temporal modeling that can explicitly encode the temporal
dynamics, and a convolutional decoder to integrate spatio-temporal
features and predict the future frame. Because of the temporal
self-attention module, convolutional transformer can capture the
underlying temporal dynamics efficiently and effectively. Next, in
order to maintain the local consistency of the predicted frame and
the global coherence conditioned on the previous frames, we adapt
dual discriminator GAN to deal with video frames and employ an
adversarial training procedure to further enhance the prediction
performance. Finally, the prediction error is adopted to identify ab-
normal video frames. Thoroughly empirical studies on three public
video anomaly detection datasets, i.e., UCSD Ped2, CUHK Avenue,
and Shanghai Tech Campus, demonstrate the effectiveness of the
proposed framework and techniques.

2 RELATEDWORK
The proposed Convolutional Transformer based Dual Discriminator
Generative Adversarial Networks (CT-D2GAN) is closely related
to deep learning based video anomaly detection and self-attention
mechanism [33].

Note that we focus our discussions on methods based on unsu-
pervised settings, which are efficient in generalization without the
time-consuming and error-prone process of manual labeling. We
are aware that there are numerous works on weakly supervised
or supervised video anomaly detection, e.g., Sultani et al. (2018)
proposed a deep multiple instance ranking framework using video-
level labels and achieves better performance than convolutional
auto-encoder (Conv-AE) based method [8], but it employs both
normal and abnormal video clips for training which is different
from our setting.

Deep neural networks based video anomaly detection methods
demonstrate superior performance over traditional methods based
on handcrafted features. Hasan et al. (2016) developed Conv-AE
method to simultaneously learn the spatio-temporal patterns in a
video with 2D convolutional neural networks by concatenating the
video frames in the channel dimension. The temporal information
is mixed with the spatial information in the first convolutional layer,
thus not explicitly encoded. Xu et al. (2017) proposed appearance
andmotionDeepNet (AMDN) to learn video feature representations,
which however still requires a decoupled one-class SVM classifier
applied on learned representation to generate anomaly score. Dong
et al. (2019) proposed a memory-augmented autoencoder (MemAE)
that uses a memory module to constrain the reconstruction.

More recently, adversarial learning has demonstrated flexibility
and impressive performance in multiple video anomaly detection
studies. A generative adversarial networks (GANs) based anomaly
detection approach [25] was developed following cGAN frame-
work of image-to-image translation [10]. Specifically, it employs
image and optical flow as source domain and target domain, and
vice versa, and trains cross-channel generation through adversarial
learning. The reconstruction error is used to compute anomaly
score. The only temporal constraint is imposed by the optical flow
calculation. Liu et al. (2018) proposed an anomaly detection ap-
proach based on future frame prediction in GAN framework and
U-Net [26]. Similar to Conv-AE, the temporal information is not
explicitly encoded and the temporal coherence between neighbor-
ing frames is enforced by a loss term on the optical flow. Tang et al.
(2020) extended the future frame prediction framework by adding
a reconstruction task. One way to alleviate the temporal encoding
issue in video spatio-temporal modeling is to use convolutional
LSTM autoencoder (ConvLSTM-AE) based methods [4, 17, 27, 38],
where the spatial and temporal patterns are encoded with fully
convolutional networks and convolutional LSTM, respectively. De-
spite its popularity, ConvLSTM suffers from issues such as large
memory consumption. The complex gating operations add to the
computational cost and complicate the information flow, making
interpretation difficult.

A more effective and efficient alternative for sequence modeling
is the self-attention mechanism [33], which is essentially an atten-
tion mechanism relating different positions of a single sequence to
compute a representation of the sequence, in which the keys, values,



and queries are from the same set of features. Some related appli-
cations include autoregressive model based image generation [23],
GAN-based image synthesis [39].

In this work, based on related works, we introduce the convolu-
tional transformer by extending the self-attention mechanism to
video sequence modeling and develop a novel self-attention mod-
ule specialized for spatio-temporal modeling in video sequences.
Compared to existing approaches for video anomaly detection, the
proposed convolutional transformer model has the advantage of
being able to explicitly and e�ciently encode the temporal infor-
mation in a sequence of feature maps, where the computation of
attentions can be fully parallelized via matrix multiplications. Based
on the convolutional transformer, a dual discriminator generative
adversarial networks (D2GAN) approach is developed to further
enhance the future frame prediction through enforcing local consis-
tency of the predicted frame and the global coherence conditioned
on the previous frames. Note that the proposed D2GAN di�ers from
existing works on dual discriminator based GAN which have been
applied to di�erent scenarios [5, 21, 35, 37].

3 CT-D2GAN
In this section, we �rst introduce the problem formulation and
input to our framework. Then, we present the motivation and tech-
nical details of the proposed CT-D2GAN framework including con-
volutional transformer, dual discriminator GAN, the overall loss
function, and lastly the regularity score calculation. An overview
of the framework is illustrated in Figure 1.

In CT-D2GAN, a convolutional transformer is employed to gen-
erate future frame prediction based on past frames, an image dis-
criminator and a video discriminator are used to maintain the local
consistency and global coherence.

3.1 Problem Statement
Given an input representation of video clip of length) , i.e., � =
¹�C� ) ¸ 1• ”””• �Cº 2 R� � F � 2� ) , where� , F , 2 are the height, width
and number of channels, we aim to predict the¹C¸ 1º-th frame
as �̂Ç 1 2 R� � F � 2 and identify abnormal activities based upon
the prediction error,i.e., 4MSE•C= 1

� �F �2
Í 2

8=1 k�̂:•:•8•Ç1 � �:•:•8•Ç1k2
� ,

where�:•:•8•Ç1 2 R� � F .

3.2 Input
As appearance and motion are two characteristics of video data, it is
common to explicitly incorporate optical �ow together with the still
images to describe a video sequence [28], e.g.optical �ow has been
employed to represent video sequences in the cGAN framework [25]
and used as a motion constraint [14].

In this work, we stack image with pre-computed optical �ow
maps [2, 9] in channel dimension as inputs similar to Simonyan et
al. [28] for video action recognition and Ravanbakhsh et al. [25] for
video anomaly detection. The optical �ow maps consist of a horizon-
tal component, a vertical component and a magnitude component.
To be noted that, the optical �ow map is computed from the previ-
ous image and current image, thus does not contain future frame
information. Therefore, the input can be given as� 2 R� � F � 4� ) ,
and we used 5 consecutive frames as inputs,i.e., ) = 5, similar to
Liu et al. [14].

3.3 Convolutional Transformer
Convolutional transformer is developed to obtain a future frame
prediction based on past frames. It consists of three key components:
a convolutional encoder to encode spatial information, a temporal
self-attention module to capture the temporal dynamics, and a
convolutional decoder to integrate spatio-temporal features and
predict future frame.

3.3.1 Convolutional Encoder.The convolutional encoder [15] is
employed to extract spatial features from each frame of the video.
Each frame of the video is �rst resized to256� 256and then
fed into the convolutional encoder. The convolutional encoder
consists of 5 convolutional blocks. And the convolutional block
follows common structure in CNN. All the convolutional kernels
are set as3 � 3 pixels. For brevity, we denote a convolutional
layer with stride Band number of �lters= as ConvB•=, a batch
normalization layer as BN, a scaled exponential linear unit [12] as
SELU, and a dropout operation with dropout ratioAas dropoutA.
The structure of the convolutional encoder is: [Conv1•64-SELU-
BN]-[Conv2•64-SELU-BN-Conv1•64-SELU]-[Conv2•128-SELU-BN-
Conv1•128-SELU]-[Conv2•256-SELU-BN-dropout0”25-Conv1•256-
SELU]-[Conv2•256-SELU-BN-dropout0”25-Conv1•256-SELU] , where
each [�] represents a convolutional block.

At the ;-th convolutional block conv; , � ;
C� 8 2 R� ; � F ; � 2; • 8 2

»0• ”””•)� 1¼denotes the input feature maps to the self-attention
module with� ; ,F ; ,2; as the height, width, and number of channels,
respectively. The temporal dynamics among the spatial feature
maps of di�erent time steps will be encoded with temporal self-
attention module.

3.3.2 Temporal Self-a�ention Module.To explicitly encode the tem-
poral information in the video sequence, we extend self-attention
mechanism in the transformer model [33] and develop a novel tem-
poral self-attention module to capture the temporal dynamics of
the multi-scale spatial feature maps generated from the convolu-
tional encoder. This section applies to all layers, thus we omit the
layer for clarity. An illustration of the multi-head temporal self-
attention module is shown in the upper panel of Figure 1.Spatial
Feature Vector. We �rst use global average pooling (GAP) to ex-
tract a feature vectorfC from the feature map� Cextracted in the
convolutional encoder. The feature vector in current time stepfC
will be used as part of the query and each historical feature vector
fC� 8, 82 »1•) � 1¼will be used as part of the key to index spatial
feature maps.
Positional Encoding. Di�erent from sequence models such as
LSTM, self-attention does not model sequential information inher-
ently, therefore it is necessary to incorporate temporal positional
information into the model. We generate a positional encoding
vectorPE2 R3? following [33]:

PE?•28 = sin¹?•1000028•3? º

PE?•28̧ 1 = cos¹?•1000028•3? º
(1)

where3? denotes the dimension ofPE, ? denotes the temporal po-
sition and82 »0• ””” •¹3?•2� 1º¼denotes the index of the dimension.
Empirically, we �x 3? = 8 in our study.
Temporal Self-Attention. We concatenate the positional encod-
ing vector with the spatial feature vector for each time step and use



Figure 1: The architecture of the proposed CT-D2GAN framework. (Upper panel) The convolutional transformer generator is
consisted of a convolutional encoder, a temporal self-attention module, and a convolutional decoder. Multi-head self-attention
is applied on the feature maps � Cextracted from convolutional encoder: � Cis transformed to multi-head feature maps � ¹kº

C via

a convolutional operation; within each head, we apply a global average pooling (GAP) operation on � ¹: º
C to generate a spatial

feature vector by aggregating over spatial dimension, and concatenate the positional encoding (PE) vector; we then compare
the similarity � cos between query q¹: º

C and memory m¹: º
C feature vectors and generate the attention weights by normalizing

across time steps using softmax f ; the attended feature map � ¹� º
C is a weighted average of the feature maps at di�erent time

steps; the �nal attended map � MH
C is the concatenation over all the heads; the �nal integrated map ( C is a weighted average of

the query � MH
C and the attended feature maps according to a spatial selective gate (SSG). ( C is decoded to the predicted future

frame with the convolutional decoder. (Lower panels) The image discriminator (left) and video discriminator (right) used in
our dual discriminator GAN framework.

the concatenated vectors as the queries and keys, and the feature
maps as the values in the setting of self-attention mechanism. For
each query frame at timeC, the current concatenated feature vec-
tor qC = »fC;PE¼ 2R2; ¸ 3? is used as query, and compared to the
feature vector of each frame from the input video clipi.e.memory
mC� 8 = »fC� 8;PE¼ 2R2; ¸ 3? • 82 »1• ”””•)� 1¼using cosine similarity:

� ¹qC•mC� 8º =
qC� mC� 8

kqCkkmC� 8k
” (2)

Based on the similarity betweenqC and mC� 8, we can generate
the normalized attention weights0C•82 R across the temporal
dimension using a softmax function:

0C•C� 8 =
exp¹V� ¹qC•mC� 8ººÍ

92»1”””) � 1¼exp¹V� ¹qC•mC� 9ºº
• (3)

where a positive temperature variableVis introduced to sharpen the
level of focus in the softmax function and is automatically learned

in the model through a single hidden densely-connected layer with
the query as the input.

The �nal attended feature maps� C are a weighted sum of all
feature maps� using the attention weights in Eq. (3):

� C=
Õ

82»1•”””•)� 1¼

0C•C� 8 � � C� 8” (4)

Multi-head Temporal Self-Attention. Multi-head self-
attention [33] enables the model to jointly attend to information
from di�erent representation subspaces at di�erent positions. We
adapt it to spatio-temporal modeling by �rst mapping the spatial
feature maps to=� = 8 groups, each using 321 � 1 convolutional
kernels. For each group of feature maps with dimension2� = 32,
we then perform the single head self-attention as described in the
previous subsection and generate attended feature maps for head:
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