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ABSTRACT
Detecting abnormal activities in real-world surveillance videos is
an important yet challenging task as the prior knowledge about
video anomalies is usually limited or unavailable. Despite that many
approaches have been developed to resolve this problem, few of
them can capture the normal spatio-temporal patterns effectively
and efficiently. Moreover, existing works seldom explicitly con-
sider the local consistency at frame level and global coherence of
temporal dynamics in video sequences. To this end, we propose
Convolutional Transformer based Dual Discriminator Generative
Adversarial Networks (CT-D2GAN) to perform unsupervised video
anomaly detection. Specifically, we first present a convolutional
transformer to perform future frame prediction. It contains three
key components, i.e., a convolutional encoder to capture the spatial
information of the input video clips, a temporal self-attention mod-
ule to encode the temporal dynamics, and a convolutional decoder
to integrate spatio-temporal features and predict the future frame.
Next, a dual discriminator based adversarial training procedure,
which jointly considers an image discriminator that can maintain
the local consistency at frame-level and a video discriminator that
can enforce the global coherence of temporal dynamics, is employed
to enhance the future frame prediction. Finally, the prediction error
is used to identify abnormal video frames. Thoroughly empirical
studies on three public video anomaly detection datasets, i.e., UCSD
Ped2, CUHK Avenue, and Shanghai Tech Campus, demonstrate the
effectiveness of the proposed adversarial spatio-temporal modeling
framework.
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1 INTRODUCTION
With the rapid growth of video surveillance data, there is an in-
creasing demand to automatically detect abnormal video sequences
in the context of large-scale normal (regular) video data. Despite
a substantial amount of research effort has been devoted to this
problem [3, 8, 13, 14, 16, 19, 22, 31, 34], video anomaly detection,
which aims to identify the activities that do not conform to reg-
ular patterns in a video sequence, is still a challenging task. This
is because real-world abnormal video activities can be extremely
diverse while the prior knowledge about these anomalies is usually
limited or even unavailable.

With the assumption that a model can only generalize to data
from the same distribution as the training set, abnormal activities
in the test set will manifest as deviance from regular patterns. A
common approach to resolve this problem is to learn a model that
can capture regular patterns in the normal video clips during the
training stage, and check whether there exists any irregular pattern
that diverges from regular patterns in the test video clips. Within
this framework, it is crucial to not only represent the regular ap-
pearances but also capture the normal spatio-temporal dynamics to
differentiate abnormal activities from normal activities in a video
sequence. This serves as an important motivation for our proposed
methods.

Early studies have used handcrafted features to represent video
patterns [13, 16, 19, 29]. For instance, Li et al. [13] introduced mix-
tures of dynamic textures and defined outliers under this model
as anomalies. These approaches, however, are usually not optimal
for video anomaly detection since the features are extracted based
upon a different objective.
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Recently, deep neural networks are becoming prevalent in video
anomaly detection, showing superior performance over handcrafted
feature based methods. For instance, Hasan et al. [8] developed a
convolutional autoencoder (Conv-AE) to model the spatio-temporal
patterns in a video sequence simultaneously with a 2D CNN. The
temporal dynamics, however, are not explicitly considered. To
better cope with the spatio-temporal information in a video se-
quence, convolutional long short-term memory (LSTM) autoen-
coder (ConvLSTM-AE) [17, 27] was proposed to model the spatial
patterns with fully convolutional networks and encode the tempo-
ral dynamics using convolutional LSTM (ConvLSTM). ConvLSTM,
however, suffers from computational and interpretation issues. A
powerful alternative for sequence modeling is the self-attention
mechanism [33]. It has demonstrated superior performance and
efficiency in many different tasks, e.g., sequence-to-sequence ma-
chine translation [33], time series prediction [24], autoregressive
model based image generation [23], and GAN-based image synthe-
sis [39]. However, it has seldom been employed to capture regular
spatio-temporal patterns in the surveillance videos.

More recently, adversarial learning has shown impressive
progress on video anomaly detection. For instance, Ravanbakhsh
et al. [25] developed a GAN based anomaly detection approach
following conditional GAN framework [10]. Liu et al. [14] proposed
an anomaly detection approach based on future frame prediction.
Tang et al. [31] extended this framework by adding a reconstruc-
tion task. The generative models in these two works were based
on U-Net [26]. Similar to Conv-AE, the temporal dynamics in the
video clip were not explicitly encoded and the temporal coherence
was enforced by a loss term on the optical flow. Moreover, the
potential discriminative information in the form of consistency at
frame-level and global coherence of temporal dynamics in video
sequences were not fully considered in previous works.

In this paper, to better capture the regular spatio-temporal pat-
terns and cope with the potential discriminative information at
frame-level and in video sequences, we propose Convolutional
Transformer based Dual Discriminator Generative Adversarial Net-
works (CT-D2GAN) to perform unsupervised video anomaly detec-
tion. We first present a convolutional transformer to perform future
frame prediction. The convolutional transformer is essentially a
encoder-decoder framework consisting of three key components,
i.e., a convolutional encoder to capture the spatial patterns of the
input video clip, a novel temporal self-attention module adapted for
video temporal modeling that can explicitly encode the temporal
dynamics, and a convolutional decoder to integrate spatio-temporal
features and predict the future frame. Because of the temporal
self-attention module, convolutional transformer can capture the
underlying temporal dynamics efficiently and effectively. Next, in
order to maintain the local consistency of the predicted frame and
the global coherence conditioned on the previous frames, we adapt
dual discriminator GAN to deal with video frames and employ an
adversarial training procedure to further enhance the prediction
performance. Finally, the prediction error is adopted to identify ab-
normal video frames. Thoroughly empirical studies on three public
video anomaly detection datasets, i.e., UCSD Ped2, CUHK Avenue,
and Shanghai Tech Campus, demonstrate the effectiveness of the
proposed framework and techniques.

2 RELATEDWORK
The proposed Convolutional Transformer based Dual Discriminator
Generative Adversarial Networks (CT-D2GAN) is closely related
to deep learning based video anomaly detection and self-attention
mechanism [33].

Note that we focus our discussions on methods based on unsu-
pervised settings, which are efficient in generalization without the
time-consuming and error-prone process of manual labeling. We
are aware that there are numerous works on weakly supervised
or supervised video anomaly detection, e.g., Sultani et al. (2018)
proposed a deep multiple instance ranking framework using video-
level labels and achieves better performance than convolutional
auto-encoder (Conv-AE) based method [8], but it employs both
normal and abnormal video clips for training which is different
from our setting.

Deep neural networks based video anomaly detection methods
demonstrate superior performance over traditional methods based
on handcrafted features. Hasan et al. (2016) developed Conv-AE
method to simultaneously learn the spatio-temporal patterns in a
video with 2D convolutional neural networks by concatenating the
video frames in the channel dimension. The temporal information
is mixed with the spatial information in the first convolutional layer,
thus not explicitly encoded. Xu et al. (2017) proposed appearance
andmotionDeepNet (AMDN) to learn video feature representations,
which however still requires a decoupled one-class SVM classifier
applied on learned representation to generate anomaly score. Dong
et al. (2019) proposed a memory-augmented autoencoder (MemAE)
that uses a memory module to constrain the reconstruction.

More recently, adversarial learning has demonstrated flexibility
and impressive performance in multiple video anomaly detection
studies. A generative adversarial networks (GANs) based anomaly
detection approach [25] was developed following cGAN frame-
work of image-to-image translation [10]. Specifically, it employs
image and optical flow as source domain and target domain, and
vice versa, and trains cross-channel generation through adversarial
learning. The reconstruction error is used to compute anomaly
score. The only temporal constraint is imposed by the optical flow
calculation. Liu et al. (2018) proposed an anomaly detection ap-
proach based on future frame prediction in GAN framework and
U-Net [26]. Similar to Conv-AE, the temporal information is not
explicitly encoded and the temporal coherence between neighbor-
ing frames is enforced by a loss term on the optical flow. Tang et al.
(2020) extended the future frame prediction framework by adding
a reconstruction task. One way to alleviate the temporal encoding
issue in video spatio-temporal modeling is to use convolutional
LSTM autoencoder (ConvLSTM-AE) based methods [4, 17, 27, 38],
where the spatial and temporal patterns are encoded with fully
convolutional networks and convolutional LSTM, respectively. De-
spite its popularity, ConvLSTM suffers from issues such as large
memory consumption. The complex gating operations add to the
computational cost and complicate the information flow, making
interpretation difficult.

A more effective and efficient alternative for sequence modeling
is the self-attention mechanism [33], which is essentially an atten-
tion mechanism relating different positions of a single sequence to
compute a representation of the sequence, in which the keys, values,



and queries are from the same set of features. Some related appli-
cations include autoregressive model based image generation [23],
GAN-based image synthesis [39].

In this work, based on related works, we introduce the convolu-
tional transformer by extending the self-attention mechanism to
video sequence modeling and develop a novel self-attention mod-
ule specialized for spatio-temporal modeling in video sequences.
Compared to existing approaches for video anomaly detection, the
proposed convolutional transformer model has the advantage of
being able to explicitly and efficiently encode the temporal infor-
mation in a sequence of feature maps, where the computation of
attentions can be fully parallelized via matrix multiplications. Based
on the convolutional transformer, a dual discriminator generative
adversarial networks (D2GAN) approach is developed to further
enhance the future frame prediction through enforcing local consis-
tency of the predicted frame and the global coherence conditioned
on the previous frames. Note that the proposed D2GAN differs from
existing works on dual discriminator based GAN which have been
applied to different scenarios [5, 21, 35, 37].

3 CT-D2GAN
In this section, we first introduce the problem formulation and
input to our framework. Then, we present the motivation and tech-
nical details of the proposed CT-D2GAN framework including con-
volutional transformer, dual discriminator GAN, the overall loss
function, and lastly the regularity score calculation. An overview
of the framework is illustrated in Figure 1.

In CT-D2GAN, a convolutional transformer is employed to gen-
erate future frame prediction based on past frames, an image dis-
criminator and a video discriminator are used to maintain the local
consistency and global coherence.

3.1 Problem Statement
Given an input representation of video clip of length 𝑇 , i.e., 𝐼 =

(𝐼𝑡−𝑇+1, ..., 𝐼𝑡 ) ∈ Rℎ×𝑤×𝑐×𝑇 , where ℎ, 𝑤 , 𝑐 are the height, width
and number of channels, we aim to predict the (𝑡 + 1)-th frame
as 𝐼𝑡+1 ∈ Rℎ×𝑤×𝑐 and identify abnormal activities based upon
the prediction error, i.e., 𝑒MSE,𝑡 = 1

ℎ ·𝑤 ·𝑐
∑𝑐
𝑖=1 ∥𝐼:,:,𝑖,𝑡+1 − 𝐼:,:,𝑖,𝑡+1∥2𝐹 ,

where 𝐼:,:,𝑖,𝑡+1 ∈ Rℎ×𝑤 .

3.2 Input
As appearance and motion are two characteristics of video data, it is
common to explicitly incorporate optical flow together with the still
images to describe a video sequence [28], e.g. optical flow has been
employed to represent video sequences in the cGAN framework [25]
and used as a motion constraint [14].

In this work, we stack image with pre-computed optical flow
maps [2, 9] in channel dimension as inputs similar to Simonyan et
al. [28] for video action recognition and Ravanbakhsh et al. [25] for
video anomaly detection. The optical flowmaps consist of a horizon-
tal component, a vertical component and a magnitude component.
To be noted that, the optical flow map is computed from the previ-
ous image and current image, thus does not contain future frame
information. Therefore, the input can be given as 𝐼 ∈ Rℎ×𝑤×4×𝑇 ,
and we used 5 consecutive frames as inputs, i.e., 𝑇 = 5, similar to
Liu et al. [14].

3.3 Convolutional Transformer
Convolutional transformer is developed to obtain a future frame
prediction based on past frames. It consists of three key components:
a convolutional encoder to encode spatial information, a temporal
self-attention module to capture the temporal dynamics, and a
convolutional decoder to integrate spatio-temporal features and
predict future frame.

3.3.1 Convolutional Encoder. The convolutional encoder [15] is
employed to extract spatial features from each frame of the video.
Each frame of the video is first resized to 256 × 256 and then
fed into the convolutional encoder. The convolutional encoder
consists of 5 convolutional blocks. And the convolutional block
follows common structure in CNN. All the convolutional kernels
are set as 3 × 3 pixels. For brevity, we denote a convolutional
layer with stride 𝑠 and number of filters 𝑛 as Conv𝑠,𝑛 , a batch
normalization layer as BN, a scaled exponential linear unit [12] as
SELU, and a dropout operation with dropout ratio 𝑟 as dropout𝑟 .
The structure of the convolutional encoder is: [Conv1,64-SELU-
BN]-[Conv2,64-SELU-BN-Conv1,64-SELU]-[Conv2,128-SELU-BN-
Conv1,128-SELU]-[Conv2,256-SELU-BN-dropout0.25-Conv1,256-
SELU]-[Conv2,256-SELU-BN-dropout0.25-Conv1,256-SELU] , where
each [·] represents a convolutional block.

At the 𝑙-th convolutional block conv𝑙 , 𝐹 𝑙
𝑡−𝑖 ∈ Rℎ𝑙×𝑤𝑙×𝑐𝑙 , 𝑖 ∈

[0, ...,𝑇 − 1] denotes the input feature maps to the self-attention
module with ℎ𝑙 ,𝑤𝑙 , 𝑐𝑙 as the height, width, and number of channels,
respectively. The temporal dynamics among the spatial feature
maps of different time steps will be encoded with temporal self-
attention module.

3.3.2 Temporal Self-attentionModule. To explicitly encode the tem-
poral information in the video sequence, we extend self-attention
mechanism in the transformer model [33] and develop a novel tem-
poral self-attention module to capture the temporal dynamics of
the multi-scale spatial feature maps generated from the convolu-
tional encoder. This section applies to all layers, thus we omit the
layer for clarity. An illustration of the multi-head temporal self-
attention module is shown in the upper panel of Figure 1. Spatial
Feature Vector.We first use global average pooling (GAP) to ex-
tract a feature vector f𝑡 from the feature map 𝐹𝑡 extracted in the
convolutional encoder. The feature vector in current time step f𝑡
will be used as part of the query and each historical feature vector
f𝑡−𝑖 , 𝑖 ∈ [1,𝑇 − 1] will be used as part of the key to index spatial
feature maps.
Positional Encoding. Different from sequence models such as
LSTM, self-attention does not model sequential information inher-
ently, therefore it is necessary to incorporate temporal positional
information into the model. We generate a positional encoding
vector PE ∈ R𝑑𝑝 following [33]:

PE𝑝,2𝑖 = sin(𝑝/100002𝑖/𝑑𝑝 )

PE𝑝,2𝑖+1 = cos(𝑝/100002𝑖/𝑑𝑝 )
(1)

where 𝑑𝑝 denotes the dimension of PE, 𝑝 denotes the temporal po-
sition and 𝑖 ∈ [0, ... , (𝑑𝑝/2−1)] denotes the index of the dimension.
Empirically, we fix 𝑑𝑝 = 8 in our study.
Temporal Self-Attention.We concatenate the positional encod-
ing vector with the spatial feature vector for each time step and use
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Figure 1: The architecture of the proposed CT-D2GAN framework. (Upper panel) The convolutional transformer generator is
consisted of a convolutional encoder, a temporal self-attentionmodule, and a convolutional decoder.Multi-head self-attention
is applied on the feature maps 𝐹𝑡 extracted from convolutional encoder: 𝐹𝑡 is transformed to multi-head feature maps 𝐹 (k)

𝑡 via
a convolutional operation; within each head, we apply a global average pooling (GAP) operation on 𝐹

(𝑘)
𝑡 to generate a spatial

feature vector by aggregating over spatial dimension, and concatenate the positional encoding (PE) vector; we then compare
the similarity 𝐷cos between query q(𝑘)𝑡 and memory m(𝑘)

𝑡 feature vectors and generate the attention weights by normalizing
across time steps using softmax 𝜎 ; the attended feature map 𝐻

(ℎ)
𝑡 is a weighted average of the feature maps at different time

steps; the final attended map 𝐻MH
𝑡 is the concatenation over all the heads; the final integrated map 𝑆𝑡 is a weighted average of

the query 𝐹MH
𝑡 and the attended feature maps according to a spatial selective gate (SSG). 𝑆𝑡 is decoded to the predicted future

frame with the convolutional decoder. (Lower panels) The image discriminator (left) and video discriminator (right) used in
our dual discriminator GAN framework.

the concatenated vectors as the queries and keys, and the feature
maps as the values in the setting of self-attention mechanism. For
each query frame at time 𝑡 , the current concatenated feature vec-
tor q𝑡 = [f𝑡 ; PE] ∈ R𝑐𝑙+𝑑𝑝 is used as query, and compared to the
feature vector of each frame from the input video clip i.e. memory
m𝑡−𝑖 = [f𝑡−𝑖 ; PE] ∈ R𝑐𝑙+𝑑𝑝 , 𝑖 ∈ [1, ...,𝑇 − 1] using cosine similarity:

𝐷 (q𝑡 ,m𝑡−𝑖 ) =
q𝑡 ·m𝑡−𝑖

∥q𝑡 ∥∥m𝑡−𝑖 ∥
. (2)

Based on the similarity between q𝑡 and m𝑡−𝑖 , we can generate
the normalized attention weights 𝑎𝑡,𝑖 ∈ R across the temporal
dimension using a softmax function:

𝑎𝑡,𝑡−𝑖 =
exp(𝛽𝐷 (q𝑡 ,m𝑡−𝑖 ))∑

𝑗 ∈[1...𝑇−1] exp(𝛽𝐷 (q𝑡 ,m𝑡−𝑗 ))
, (3)

where a positive temperature variable 𝛽 is introduced to sharpen the
level of focus in the softmax function and is automatically learned

in the model through a single hidden densely-connected layer with
the query as the input.

The final attended feature maps 𝐻𝑡 are a weighted sum of all
feature maps 𝐹 using the attention weights in Eq. (3):

𝐻𝑡 =
∑

𝑖∈[1,...,𝑇−1]
𝑎𝑡,𝑡−𝑖 · 𝐹𝑡−𝑖 . (4)

Multi-head Temporal Self-Attention. Multi-head self-
attention [33] enables the model to jointly attend to information
from different representation subspaces at different positions. We
adapt it to spatio-temporal modeling by first mapping the spatial
feature maps to 𝑛ℎ = 8 groups, each using 32 1 × 1 convolutional
kernels. For each group of feature maps with dimension 𝑐ℎ = 32,
we then perform the single head self-attention as described in the
previous subsection and generate attended feature maps for head 𝑘



as 𝐻 (𝑘)
𝑡 :

𝐻
(𝑘)
𝑡 =

∑
𝑖∈[1,...,𝑇−1]

𝑎
(𝑘)
𝑡,𝑡−𝑖 · 𝐹

(𝑘)
𝑡−𝑖 , (5)

where 𝐹 (𝑘)
𝑡−𝑖 ∈ Rℎ𝑙×𝑤𝑙×𝑐ℎ is the transformed feature map at frame

𝑡 − 𝑖 for head 𝑘 , 𝑎 (𝑘)
𝑡,𝑡−𝑖 is the corresponding attention weight. The

final multi-head attended feature map 𝐻MH
𝑡 ∈ Rℎ𝑙×𝑤𝑙×(𝑐ℎ ·𝑛ℎ) is

the concatenation of the attended feature maps from all the heads
along the channel dimension:

𝐻MH
𝑡 = Concat(𝐻 (1)

𝑡 , ... , 𝐻
(𝑛ℎ)
𝑡 ). (6)

In this way, the final attended feature maps not only integrate
spatial information from the convolutional encoder, but also cap-
ture temporal information from multi-head temporal self-attention
mechanism.
Spatial Selective Gate. The aforementioned module extends the
self-attention mechanism to the temporal modeling of 2D image
feature maps, however, it comes with the loss of fine-grained spa-
tial resolution due to the GAP operation. To compensate this, we
introduce spatial selective gate (SSG), which is a spatial atten-
tion mechanism to integrate the current and historical informa-
tion. The attended feature maps from the temporal self-attention
module and the feature maps of the current query are concate-
nated, on which we learn a spatial selective gate using a sub-
network NSSG with structure: Conv1,256-BN-SELU-Conv1,256-BN-
SELU-Conv1,256-BN-SELU-Conv1,256-Conv1,256-Sigmoid. The final
output is a pixel-wise weighted average of the attended maps
𝐻MH
𝑡 and the current query’s multi-head transformed feature maps

𝐹MH
𝑡 ∈ Rℎ𝑙×𝑤𝑙×(𝑐ℎ ·𝑛ℎ) , according to 𝑆𝑆𝐺 :

𝑆𝑡 = 𝑆𝑆𝐺 ◦ 𝐹MH
𝑡 + (1 − 𝑆𝑆𝐺) ◦ 𝐻MH

𝑡 (7)

where ◦ denotes element-wise multiplication.
We add SSG at each level of temporal self-attention module. As

the spatial dimensions are larger at shallow layers and we want
to include contextual information while preserving the spatial res-
olution, we use dilated convolution [36] with different dilatation
factors at the 4 convolutional blocks in the sub-network NSSG,
specifically from conv2 to conv5, the dilation factors are (1,2,4,1),
(1,2,2,1), (1,1,2,1), (1,1,1,1). Note that SSG is computationally more
efficient than directly forwarding the concatenated feature maps to
the convolutional decoder.

3.3.3 Convolutional Decoder. The outputs of the temporal self-
attention module 𝑆𝑡 are fed into the convolutional decoder. The
convolutional decoder predicts the video frame using 4 transposed
convolutional layers with stride 2 on the feature maps in a reverse
order of the convolutional encoder. The fully-scaled feature maps
then go through one convolutional layer with 32 filters and one
convolutional layer with 𝑐 filters of size 1× 1 that maps to the same
size of channels 𝑐 in the input. In order to predict finer details, we
utilize the skip connection [26] to connect the spatio-temporally
integrated maps at each level of the convolutional encoder to the
corresponding level of the convolutional decoder, which allows the
model to further fine-tune the predicted frames.

3.4 Dual Discriminator GAN
We propose a dual discriminator GAN using both an image dis-
criminator and a video discriminator to further enhance the future
frame prediction of convolutional transformer via adversarial train-
ing. The image discriminator 𝐷𝐼 critiques on whether the current
frame is generated or real just on the basis of one single frame to
assess the local consistency. The video discriminator 𝐷𝑉 performs
critique on the prediction conditioned on the past frames to assess
the global coherence. Specifically, we stack the past frames with
current generated or real frame in the temporal dimension and
the video discriminator is essentially a video classifier. This idea of
combining local and global (contextual) discriminator is similar to
adversarial image inpainting [37] but is used in a totally different
context.

The network structures of the two discriminators are kept the
same except that we use 2D operations in image discriminator and
the corresponding 3D operations in the video discriminator. We
use PatchGAN architecture as described in [10] and use spectral
normalization [20] in each convolutional layer. In the 3D version,
the stride and kernel size in the temporal dimension were set at 1
and 2 respectively.

The method in Liu et al. [14] is similar to using the image dis-
criminator only. Different from the video discriminator in Tulyakov
et al. [32], which applies on the whole synthetic video clip, our
proposed video discriminator conditions on the real frames.

3.5 Loss
For the adversarial training, we use the Wasserstein GAN with
gradient penalty (WGAN-GP) setting [1, 7]. The generator 𝐺 is
the mapping : 𝐼 → �̃�𝑡+1. For discriminators, 𝐷𝑉 : (𝐼 , 𝐼𝑡+1) →
𝑝 [(𝐼 , 𝐼𝑡+1) is real] and 𝐷𝐼 : 𝐼𝑡+1 → 𝑝 [𝐼𝑡+1 is real] are video and
image discriminators respectively. The GAN loss is:

𝐿𝑎𝑑𝑣 (𝐺,𝐷𝐼 , 𝐷𝑉 ) = E𝐼 ,̃𝐼𝑡+1 [𝐷𝑉 (𝐼 , �̃�𝑡+1)] − E𝐼 ,𝐼𝑡+1 [𝐷𝑉 (𝐼 , 𝐼𝑡+1)]

+ _E
𝐼 ,𝐼𝑡+1

[(∥∇𝐷𝑉 (𝐼 , 𝐼𝑡+1)∥2 − 1)2]

+ E
�̃�𝑡+1

[𝐷𝐼 (�̃�𝑡+1)] − E𝐼𝑡+1 [𝐷𝐼 (𝐼𝑡+1)]

+ _E
𝐼𝑡+1

[(∥∇𝐷𝐼 (𝐼𝑡+1)∥2 − 1)2]

(8)

where 𝐼𝑡+1 = 𝜖𝐼𝑡+1 + (1−𝜖)�̃�𝑡+1, 𝜖 ∼ 𝑈 [0, 1]. The penalty coefficient
_ is fixed as 10 in all our experiments.

In addition, we consider the pixel-wise 𝐿1 loss of the prediction.
Therefore the total loss 𝐿 is:

𝐿 = 𝐿𝑎𝑑𝑣 + ∥𝐼𝑡+1 − �̃�𝑡+1∥1 (9)

We trained our models on each dataset separately by minimizing
the loss above using ADAM [11] algorithmwith learning rate 0.0002
and a batch size of 5.

3.6 Regularity Score
A regularity score based on the prediction error 𝑒𝑡 is calculated for
each video frame:

𝑟𝑒𝑡 = 1 − 𝑒𝑡 −min𝜏𝑒𝜏
max𝜏𝑒𝜏 −min𝜏𝑒𝜏

(10)

In Hasan et al. [8], 𝑒𝑡 is the frame-wise reconstruction 𝑒MSE,𝑡 . In
Liu et al. [14], 𝑒𝑡 is equivalently negative frame-wise prediction



Table 1: Video anomaly detection datasets details

Dataset Total # frames/clips Training # frames/clips Testing # frames/clips Anomaly Types

UCSD Ped2 4,560/28 2,550/16 2,010/12 biker, skater, vehicle

CUHK Avenue 30,652/37 15,328/16 15,324/21 running, loitering, object throwing

ShanghaiTech 315,307/437 274,516/330 40,791/107 biker, skater, vehicle, sudden motion

PSNR (Peak Signal to Noise Ratio): PSNR = 10log10
max(�̃�𝑡 )
𝑒MSE,𝑡

. In this
study, we use similar setting to the two methods above with: 𝑒𝑡 =
log10𝑒MSE,𝑡 .

4 EXPERIMENTS
In this section, we first introduce the three public datasets used
in our experiments, which follow the same setup as other similar
unsupervised video anomaly detection studies. Then, we report the
video anomaly detection performance and comparison with other
methods. Finally, we perform ablation studies to demonstrate the
contribution of each component and interpret the results based on
the proposed CT-D2GAN.

4.1 Datasets
We evaluate our framework on threewidely used public video anom-
aly detection datasets, i.e., UCSD Ped2 dataset [13] 1, CUHK Avenue
dataset [16] 2, and ShanghaiTech Campus (SH-Tech) dataset [18] 3.
We describe the dataset-specific characteristics and the effects on
video anomaly detection performance, some details can be found
in Table 1:

4.1.1 UCSD Ped2. UCSD Ped2 includes pedestrians, vehicles
largely moving in parallel to the camera plane.

4.1.2 CUHK Avenue. CUHK Avenue includes pedestrians and ob-
jects both moving parallel to or toward/away from the camera.
Slight camera motion is present in the dataset. Some of the anom-
alies are staged actions.

4.1.3 ShanghaiTech. Different from the other datasets, the Shang-
haiTech dataset is a multi-scene dataset (13 scenes), and includes
pedestrians, vehicles, and sudden motions, and the ratios of each
scene in the training set and test set can be different.

4.2 Evaluation
The model was trained and evaluated on a system with an NVIDIA
GeForce 1080 Ti GPU and implemented with PyTorch. To measure
the effectiveness of our proposed CT-D2GAN framework for video
anomaly detection, we report the area under the receiver operating
characteristics (ROC) curve i.e., AUC. Specifically, AUC is calculated
by comparing the frame-level regularity scores with frame-level
ground truth labels.

1http://www.svcl.ucsd.edu/projects/anomaly/dataset.html
2http://www.cse.cuhk.edu.hk/leojia/projects/detectabnormal/dataset.html
3https://github.com/StevenLiuWen/sRNN_TSC_Anomaly_Detection#
shanghaitechcampus-anomaly-detection-dataset

Table 2: Frame-level video anomaly detection performance
(AUC).

Method UCSD Ped2 CUHK SH-Tech

MPPCA+SF [19] 61.3 - -
MDT [13, 19] 82.9 - -

Conv-AE [8] 85.0 † 80.0 † 60.9 †

3D Conv [40] 91.2 80.9 -
Stacked RNN [18] 92.2 81.7 68.0
ConvLSTM-AE [17] 88.1 77.0 -

memAE [6] 94.1 83.3 71.2
memNormality [22] 97.0 88.5 70.5

ClusterAE [3] 96.5 86.0 73.3

AbnormalGAN [25] 93.5 - -
Frame prediction [14] 95.4 85.1 72.8

Pred+Recon [31] 96.3 85.1 73.0

CT-D2GAN 97.2 85.9 77.7
† Evaluated in [14];
-: Not evaluated in the study.
Ordered in publication year. The best performance in
each dataset is highlighted in boldface.

4.3 Video Anomaly Detection
To demonstrate the effectiveness of our proposed CT-D2GAN frame-
work for video anomaly detection, we compare it against 12 dif-
ferent baseline methods. Among those, MPPCA (mixture of prob-
abilistic principal component analyzers) + SF (social force) [19],
MDT (mixture of dynamic textures) [13, 19] are handcrafted fea-
ture based methods; Conv-AE [8], 3D Conv [40], Stacked RNN [18],
and ConvLSTM-AE [17] are encoder-decoder based approaches;
MemAE [6], MemNormality [22] and ClusterAE [3] are recent
encoder-decoder based methods enhanced with memory mod-
ule or clustering; AbnormalGAN [25], Frame prediction [14], and
Pred+Recon [31] are methods based on adversarial training.

Table 2 shows the frame-level video anomaly detection perfor-
mance (AUC) of various approaches. We observed that encoder-
decoder based approaches in general outperform handcrafted fea-
ture based methods. This is because the handcrafted features
are usually extracted based upon a different objective and thus
can be sub-optimal. Within encoder-decoder based approaches,
ConvLSTM-AE outperforms Conv-AE since it can better capture
temporal information.We also notice that adversarial training based
methods perform better than most baseline methods. Finally, our

http://www.svcl.ucsd.edu/projects/anomaly/dataset.html
http://www.cse.cuhk.edu.hk/leojia/projects/detectabnormal/dataset.html
https://github.com/StevenLiuWen/sRNN_TSC_Anomaly_Detection##shanghaitechcampus-anomaly-detection-dataset
https://github.com/StevenLiuWen/sRNN_TSC_Anomaly_Detection##shanghaitechcampus-anomaly-detection-dataset


Figure 2: Examples of video anomaly detection. The blue lines in the line graphs delineate frame-level regularity scores. The
green and red shaded segments in the line graphs indicate the ground truth normal and abnormal video segments respectively.
The frames in the green boxes are regular frames from the regular video segments, the frames in the red boxes are abnormal
frames from abnormal video segments. The abnormal objects are annotated.

proposed CT-D2GAN framework achieves the best performance
on UCSD Ped2 and SH-Tech, and close to the best performance in
CUHK [22]. This is because our proposed model can not only cap-
ture the spatio-temporal patterns explicitly and effectively through
convolutional transformer but also leverage the dual discrimina-
tor GAN based adversarial training to maintain local consistency
at frame-level and global coherence in video sequences. Recent
memory or clustering enhanced methods [3, 6, 22] show good per-
formance and is orthogonal to our proposed framework and can
integrate with our proposed framework in future work to further
improve performance. Examples of video anomaly detection results
overlaid on the abnormal activity ground truth of all three datasets
are shown in Figure 2, along with example video frames from the
regular and abnormal video segments.

Due to the multi-scene nature of SH-Tech dataset, we also an-
alyzed the most ample single scene that constitutes 25% (83/330
clips) of training set and 32% (34/107 clips) of test set, the AUC
is 87.5 which is much better than the overall dataset and reach
similar level with other single-scene datasets. This could imply that
generalizing to less ample scenes is still a challenging task given
unbalanced training set.

Thanks to the convolutional transformer architecture and opti-
mizations including spatial selective gate, our model is computa-
tionally efficient. At inference time, our model runs at 45 FPS on
one NVIDIA GeForce 1080 Ti GPU.

Table 3: Video anomaly detection performance under differ-
ent ablation settings on UCSD Ped2 dataset.

Ablation setting AUC
Conv Transformer 94.2

Conv Transformer + image discriminator 95.7
Conv Transformer + video discriminator 96.9

U-Net + dual discriminator 95.5
CT-D2GAN 97.2

4.4 Ablation Studies
To understand how each component contributes to the anomaly
detection task, we conducted ablation studies with different set-
tings: (1) convolutional transformer only without the adversarial
training (Conv Transformer), (2) Conv Transformer with image
discriminator only, (3) Conv Transformer with video discriminator
only, (4) U-Net based generator (as has been utilized in image-to-
image translation [10] and video anomaly detection [14]) with dual
discriminator, and compare with our full CT-D2GAN model. The
performance comparison can be found in Table 3. We observed
that adversarial training can enhance the performance for anom-
aly detection, either with the image discriminator or the video
discriminator. Video discriminator alone achieves nearly similar
performance as using dual discriminator, but we observed the loss
decreased faster when combined with image discriminator. Using
image discriminator alone was not as effective, and the loss was
less stable. Finally, we observed that CT-D2GAN achieved superior
performance than U-Net with dual discriminator, suggesting that
convolutional transformer can better capture the spatio-temporal
dynamics and thus can make a more accurate detection.

4.5 Interpretation
We illustrate an example of predicted future frame ˜𝑡 + 1 and com-
pare it with the previous frame 𝑡 and the ground truth future frame
𝑡+1 in Figure 3. The prediction performance is poor for the anomaly
(red box). And also we noted that the model is able to capture the
temporal dynamics by predicting the future behavior in normal
part of the image (green box).
Self-attentionweights under perturbation. It is not straightfor-
ward to directly interpret the temporal self-attention weight vector,
as temporal self-attention is applied to an abstract representation
of the video. Therefore, to further investigate the effectiveness of
temporal self-attention, we perturb two frames of the video and
run the inference on this perturbed video segment. For one frame
(Figure 4, red), we added a random Gaussian noise with zero mean



Figure 3: An example showing the future frame prediction
in thenormal part of the image (green box, pedestrian in this
case) wherewe observe themodel capturing the dynamics of
the behavior, and abnormal part of the image (red box, bicy-
cle in this case) where there is large prediction error. From
left to right, we show the last frame in the input video clip
(𝑡 ), the predicted future frame ˜𝑡 + 1, and the ground truth fu-
ture frame 𝑡 + 1.

Figure 4: Temporal self-attentionweights in perturbed video
clip.

and 0.1 standard deviation to the image to simulate the deteriora-
tion in video quality; for another frame (Figure 4, purple), we scaled
the optical flow maps by 0.9 to simulate the frame rate distortion.
We plot the temporal attention weights for the frame right after
the two perturbed frames in Figure 4. The weights assigned to the
perturbed frames are clearly lower than the others, implying less
contribution to the attended map. This suggests that self-attention
module can adaptively select relevant feature maps and is robust
to input noise.

5 CONCLUSIONS
In this paper, we developed Convolutional Transformer based Dual
Discriminator Generative Adversarial Networks (CT-D2GAN) to
perform unsupervised video anomaly detection. The convolutional
transformer which consists of three components, i.e., a convolu-
tional encoder to capture the spatial patterns of the input video clip,
a temporal self-attention module to encode the temporal dynamics,
and a convolutional decoder to integrate spatio-temporal features,
was employed to perform future frame prediction. A dual discrim-
inator based adversarial training approach was used to maintain
the local consistency of the predicted frame and the global coher-
ence conditioned on the previous frames. Thorough experiments on
three widely used video anomaly detection datasets demonstrate
that our proposed CT-D2GAN is able to detect anomaly frames
with superior performance.
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