
Sensors and Actuators Reports 4 (2022) 100075

Available online 10 January 2022
2666-0539/© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

Multimodal sensing and therapeutic systems for wound healing and 
management: A review 

Shao-Hao Lu a,1, Mohamadmahdi Samandari b,1, Caihong Li c, Huijie Li c, Dongjin Song d,*, 
Yi Zhang e,*, Ali Tamayol b,*, Xueju Wang f,* 

a Department of Materials Science and Engineering, University of Connecticut, Storrs, CT 06269, USA 
b Department of Biomedical Engineering, University of Connecticut Health Center, Farmington, CT 06030, USA 
c Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA 
d Department of Computer Science and Engineering, University of Connecticut, Storrs, CT 06269, USA 
e Department of Biomedical Engineering, Polymer Program, Institute of Materials Science, University of Connecticut, Storrs, CT 06269, USA 
f Department of Materials Science and Engineering, Polymer Program, Institute of Materials Science, University of Connecticut, Storrs, CT 06269, USA  

A B S T R A C T   

Wounds especially chronic ones significantly affect the quality of patients’ life and present a severe financial burden for the healthcare industry. Timely and effective 
management of wounds, such as diagnosing wound parameters, treating various wound symptoms, and reducing infection at the wound noninvasively, is very 
important for accelerating wound healing and relieving patients’ pain. Recent years have seen significant efforts dedicated to developing technologies for monitoring 
various biomarkers vital to the wound healing process including temperature, pressure, pH, and the infection status to assist with the diagnosis and treatment of 
wounds, as well as advanced wound therapies such as on-demand and local drug delivery. This review paper introduces recent progress on multimodal sensing and 
therapeutic systems for wound healing. Specifically, we focus on physical sensing (temperature, moisture, pressure, and strain), chemical sensing (pH, uric acid, and 
cytokine), as well as therapeutic systems for wound management (active drug delivery systems based on external stimulations and non-drug stimulations). In 
addition, leveraging advanced analytic techniques, i.e., machine learning and deep learning, for data-driven assessment and management of the wound healing 
process has been discussed.   

1. Introduction 

As the largest organ, skin plays important roles in protecting human 
body from environmental pathogens and chemicals as well as in pre-
venting dehydration and thermal shock [1–3]. Due to various factors 
including physical damage from daily activities, traumatic events and 
burns, long-term exposure to excessive loading, and diseases, the 
integrity of the skin tissue, however, can be broken or can generate 
defects, which is addressed as a wound. Underlying conditions such as 
diabetes and ischemia can alter the skin properties and make it more 
susceptible to physical impacts [4–8]. When a wound cannot be repaired 
normally and completely, it is defined as a chronic wound (such as 
diabetic foot ulcers and pressure injuries), which sustains disordered 
repairing processes and fails to resolve after 30 days [9–11]. Chronic 
wounds present grave health burdens for individuals afflicted with the 
condition, and improper treatment can lead to limb amputations or even 
premature deaths. Meanwhile, they present a severe financial burden for 
the healthcare industry [12], costing over $20 billion annually and 

affecting 5.7 million people in the U.S. [13]. Due to the aging of the 
population and the increasing incidence of chronic diseases, the preva-
lence of chronic wounds and healthcare costs are expected to grow [14]. 

Wound healing is a dynamic and continuous process, which can be 
divided into four overlapping stages: (1) hemostasis: stopping bleeding 
at the injured area that is then infiltrated by immune cells removing 
debris and pathogens [15,16], (2) inflammation: removing the 
contaminating microorganisms and debris [17,18], (3) proliferation: 
filling the wound defects and covering the wound surface as fibroblasts 
proliferate [19,20], and (4) remodeling: strengthening the wound tissue 
as capillaries merge into stable vessels [21]. Once wounds progress 
through all the four integrated stages, the full recovery of the structural 
and functional integrity of the skin will be achieved. However, wound 
healing could be delayed by persistent inflammation or repeated in-
fections, which eventually results in the chronicity of wounds [22]. The 
factors affecting wound healing could be classified into two categories: 
systemic factors and local factors. The systemic factors are related to the 
overall health state of the individual, including age, chronic diseases, 
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nutritional status, and vascular insufficiency. The local factors are 
directly related to the characteristics of the wound itself, including 
desiccation, infection, external pressure, and trauma [17,23]. Some 
major injuries or underlying conditions such as diabetes could nega-
tively impact the activity of the cells at the injury site and lead to 
impaired wound healing [4–8]. An approach to effectively manage 
wound healing is crucial to help patients recover from chronic pain and 
reduce the burden on the public healthcare system. 

Current wound care decisions are usually based on guidelines 
regarding the type and location of the wound, underlying conditions, 
and visual inspection by healthcare providers [24]. However, this 
strategy has not been very effective and chronic wounds are the leading 
cause of limb amputation. The lack of detailed knowledge about the 
wound environment has become one of the challenges in clinical wound 
care for making better decisions and personalization of the treatments 
[25,26]. Recent advances in wearable electronics and intelligent patches 
have attracted much attention for monitoring the surrounding envi-
ronment of wounds due to their advantages including flexibility [27,28], 
stretchability [29,30], real-time monitoring, noninvasiveness, high 
sensitivity [31,32], and high stability [33,34]. For example, biochemical 
and physiological properties such as potential hydrogen (pH), glucose, 
inflammatory factors, and temperature, which are correlated to the 
wound status, have been monitored in situ using wearable patches. 
Specially, during the Covid-19 pandemic, the cancelation in outpatient 
clinics has driven the development of telemedicine for wound treat-
ments and self-changing wound dressing [14]. For effective personali-
zation of treatments, advanced drug delivery tools are needed to allow 
on-demand and local delivery of therapeutics at the desired time [35]. 
In addition, considering the multifactorial pathologies causing impaired 
wound healing, monotherapies have not been successful in inducing 
tissue repair [36]. Therefore, wearable bandages should allow the de-
livery of multiple drugs with independent kinetics. Furthermore, inte-
grating advanced data processing techniques (e.g., a machine-learning 
framework) with sensing and actuation will highly accelerate wound 
healing and promote the revolution in the wound treatment. 

Much recent groundbreaking work has been dedicated to fully 
monitoring and understanding the wound healing process and effec-
tively treating the wound. This review paper is meant to provide an 
overview of recent efforts in wound monitoring and management. The 
review is organized in the following manner: First, physical sensing will 
be detailed. Then, studies on chemical sensing will be presented, fol-
lowed by wound management. Finally, advanced analytical techniques 
including machine learning and deep learning for wound assessment 
and management will be discussed. 

2. Physical sensing for wound monitoring 

Physical parameters of the wound site are important indicators of the 
wound progression status and therefore could serve as significant inputs 
for wound treatment. In this section, we will review physical sensing of 
wounds including temperature, moisture, pressure, and strain. 

2.1. Temperature sensing 

Temperature is one of the most commonly recorded physical markers 
in the body because rates of many enzymatic reactions are temperature 
dependent. In particular, temperature is related to the inflammation and 
infection states of wounds [37], and has been adopted as a classic sign of 
the Clinical Signs and Symptoms Checklist (CSSC) to standardize the 
assessment of chronic wounds worldwide [38]. The range for the tem-
perature at the skin is from 31.1 ◦C to 36.5 ◦C. At the wound site, a 
prolonged temperature increase of at least 1.11 ◦C could be due to in-
fections and metabolic activity changes. Specifically, a peri‑wound 
temperature increase of 3 ◦C to 4 ◦C has been observed to be correlated 
with signs and symptoms of infection within 40 participants that have 
chronic leg ulcers [39]. In the cases with clinically diagnosed wound 

infection, temperature differential between the wound and healthy skin 
increased to 4–5 ◦C, and returned to 0.8–1.1 ◦C after an adequate 
treatment with antibiotics [40]. Thus, the peri‑wound skin temperature 
could be used as a useful reference for monitoring the infection symp-
toms and treatment status. 

Traditional temperature measurement methods, including those 
through an examiner’s hand during physical assessment and through 
conventional mercury or electronic thermometers, suffer from draw-
backs including limited diagnostic accuracy and difficulty in being 
attached to the wound surface. Recent advances in flexible electronics 
and wireless data communication have enabled flexible temperature 
sensors suitable for real-time, noninvasive monitoring of temperature 
changes during the wound healing process. In addition, stretchable 
temperature sensors for on-skin electronics are realized by utilizing 
platinum (Pt) nanofiber networks [41], elastomeric reduced graphene 
oxide (rGO)/polyurethane (PU) composite fibers [42], and gold 
(Au)-coated conductive nanomeshes [43]. Numerous methods and 
various thermal-sensitive materials are used for measuring temperature 
(Fig. 1A), such as conductive polymer ink (e.g., PEDOT:PSS [44–47]), 
carbon-based nanomaterials (e.g., carbon nanotube (CNT) forest [48] 
and reduced graphene oxide hydrogel (rGOH) [49]), and their com-
posites (carbon nanotube/SnO2 [50] and MXene/Fe3O4/graphene 
[51]). Also, temperature sensors could be made transparent by using 
materials like liquid crystals [52], ionogels [53] and hydrogels (Fig. 1B) 
[54]. Many common flexible temperature sensors are based on the 
principle of electrical resistance changes in response to temperature. The 
temperature sensitivity is defined by the temperature coefficient of 
resistance (TCR): 

TCR =
ΔR/R0

ΔT
× 100%, (1)  

where R0 is the initial resistance of the temperature sensor, ΔR is the 
total resistance change upon temperature variation, ΔT [44,45,51,55]. 
For example, a flexible integrated sensing platform (FISP) composed of a 
flexible temperature sensor chip (FSC) and a controlled printed circuit 
board (CPCB) were used to monitor local temperature [56]. Conductive 
hydrogels were used to sense temperature and, in the meanwhile, could 
promote the healing of the infected chronic wounds with electrical 
stimulation [57]. More recently, a flexible wound healing system was 
developed for real-time, noninvasive wound temperature monitoring 
(Fig. 1C–E) [58]. The hardware was designed in a Band-Aid shape with a 
double-layer structure: an upper flexible temperature-sensing layer 
consisting of the temperature sensor and circuits, and a lower collagen 
chitosan dermal equivalent for skin regeneration. An app on a smart-
phone was used to receive, display, and analyze the measured wound 
temperature in real time. Furthermore, it was applied to a pig skin 
wound model to measure the temperature change during the entire 
wound regeneration process, which revealed three main phases of 
temperature fluctuation: the rising phase (below 39 ◦C), the plateau 
phase (39–39.5 ◦C), and the falling phase (below 39 ◦C), which were 
accompanied by significant biological events, including inflammatory 
cell infiltration and wound healing. The development of flexible tem-
perature sensors for wireless, real-time wound monitoring and the cor-
relation of temperature measurements to the wound progression status 
represent a significant advance in wound healing. 

2.2. Moisture sensing 

Moisture has been treated as an essential part of the wound healing 
environment. Maintaining an appropriate level of moisture at the 
interface between a wound and a dressing is critical for effective wound 
healing. This is because a wet wound environment could possibly lead to 
maceration and wound deterioration, while too little moisture will dry 
out the wound and impede healing [59,60]. Effective management of 
wound moisture can reduce the time of wound healing and the 
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frequency of dressing change, which in turn reduces wound care time 
and improves patient comfort [61]. Achieving the desired moisture level 
in the wound environment had relied on appropriate clinical judgement 
and dressing selection from an extensive range of dressing types and 
materials, which could be subjective [62]. 

There has been a significant effort in the research community to 
develop wearable devices to assist with objective assessment of the 
wound status for wound care professionals to perform moist treatment 
of wounds. In particular, a moisture sensor has been developed to 
monitor moisture levels in real time [63], which was subsequently 
commercialized by Ohmedics (Ohmedics Ltd, Glasgow, UK) as the 
WoundSense™ sensor (Fig. 2A) [64]. It is a sterile, disposable moisture 
sensor that is placed on the wound within the dressing, thereby allowing 

monitoring the moisture status without affecting the dressing [64]. The 
sensor detects the moisture content of the wound through low-current 
electrical impedance measurements, which are conducted via a pair of 
silver chloride electrodes printed on a flexible, biocompatible polymer. 
A meter attached to the sensor provides an easy-to-understand five-drop 
moisture scale, where a reading of 1 means the dressing is very dry, 5 
means the dressing is very wet, and a reading of 3 indicates ideal 
moisture conditions for healing [64]. Fig. 2B shows that as the mass of 
liquid in the dressing falls below 50% of the initial value, the impedance 
measured by the electrodes begins to increase [63]. More recently, a 
moisture sensor based on carbon-zinc (Zn) and carbon-manganese di-
oxide (MnO2) was used to detect moisture that is related to the 
absorbing capacity of the dressing to inform the frequency of dressing 

Fig. 1. (A) A flexible temperature sensor composed of a silk fibroin substrate, photolithographically micropatterned sericin/PEDOT:PSS electrodes and a sericin/rGO 
temperature sensitive layer [44]. (B) A stretchable temperature sensor based on a transparent hydrogel thin film [54]. (C) Schematic illustration of the application 
scenario of a flexible wound healing system for real-time, noninvasive wound temperature monitoring [58]. (D) Pig full-thickness incisional wound model and system 
implantation for the system shown in (C) [58] (E) Plots of temperature vs. time for two weeks’ wound healing [58]. 
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change [65]. 
In addition, various flexible humidity sensors have been developed, 

which can be potentially considered for applications in human healing. 
The sensors are based on the mechanism that water molecules alter the 
electron transfer pathway of sensing materials and/or form hydrogen 
bonds with sensing materials [66]. Most humidity-sensitive materials in 

flexible humidity sensors are composites, such as polyvinyl alcohol 
(PVA)/MXene nanofibers [67], cerium oxide/graphitic carbon nitride 
(CeO2/g-C3N4) [68], palladium (Pd)-modified HNb3O8 nanosheets [69]. 
Humidity sensors could also be made transparent by using cellulose 
nanofibers [70] and silk fibroin [71]. The carbon-related materials (e.g. 
carbon nanotubes (CNTs) [66,72,73], graphene [74] and graphene 

Fig. 2. (A) WoundSense sensor for moisture monitoring in the wound bed: (a) sensor underneath dressing, (b) sensor after dressing, and (c) measurement with a 
WoundSense meter [64]. (B) Relationship between the percentage of liquid lost from the dressing and the measured impedance via paired silver/silver chloride 
electrodes embedded in the dressing [63]. (C) Transparent humidity sensors with perovskite-structured SrTiO3 (STO) composites [73]. (D) A breathable nanomesh 
humidity sensor composed of parylene C-encapsulated PVA polymer chains and a discrete gold surface [76]. (E) Schematic illustration of the humidity sensing 
mechanism including the chemisorption of hydroxyl ions (OH− ) at low humidity conditions, and the physisorption of water molecules followed by proton hopping at 
high humidity conditions [79]. 
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oxide [75]) are commonly incorporated into composite materials to 
increase their conductivity and sensitivity, as shown in Fig. 2C. A 
breathable nanomesh humidity sensor that can provide good conformal 
contact on human skin was reported by using biocompatible polymer 
nanofiber (PVA polymer chains encapsulated by Parylene C) and a 
discrete gold layer (Fig. 2D) [76]. Stretchable, transparent humidity 
sensors are further implemented for the applications of body-attachable 
(skin-attachable) electronics by using bilayer double-network hydrogels 
[77], rGO/PU composites, and WS2 semiconducting films [78]. 

Transition metal dichalcogenides, such as WS2 and MoS2, are considered 
promising candidates for humidity sensing materials because their 
inherent defects in the two-dimensional (2D) layered structure provide 
abundant active sites for water molecule absorption [79,80]. The hu-
midity sensing mechanism of transition metal dichalcogenides are 
shown in Fig. 2E. Under low humidity conditions, water molecules are 
dissociated (H2O → H++ OH− ) and the generated hydroxyl ions (OH− ) 
are chemisorbed on the defect sites of the MoS2 surface. In high hu-
midity environments, additional water molecules are physisorbed on the 

Fig. 3. Schematic illustrating the structure and sensing mechanism of (A) A piezoresistive pressure sensor with PDMS/MWCNTs composites patterned with mi-
crostructures [94], (B) A capacitive pressure sensor consisting of MXene nanocomposite dielectric and a 3D network electrode (3DNE) [98], and (C) A triboelectric 
pressure sensor composed of styrene butadiene rubber (SBR) and patterned poly(dimethylsiloxane) (PDMS) [102]. (D) An LC (inductor-capacitor) pressure sensor 
consisting of a pyramidal PDMS layer and a spiral inductor for wireless wound monitoring [105]. (E) Measured resonant frequency vs. applied pressure when the 
LC-sensor-embedded bandage was attached to a pork and a foam, respectively [105]. 
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hydroxyl ions and then excess protons diffuse through hydrogen bond 
networks between adjacent water molecules. The proton hopping pro-
cess, known as the Grotthuss mechanism, might contribute to increased 
conductivity and higher sensitivity of the humidity sensors at high hu-
midity levels [79]. Integrating the developed moisture/humidity sensors 
with other types of sensors for wound monitoring would provide 
important inputs to guide the medical decision from healthcare 
professionals. 

2.3. Pressure sensing 

Real-time monitoring of external pressure exerted on the skin is 
critical for chronic wound healing, especially diabetic foot ulcers (DFUs) 
and pressure ulcers. Take DFUs for example, they are a major compli-
cation of diabetes, and are hard-to-heal wounds that affect millions of 
people (2.49 million) in the U.S [81,82], with yearly incidence ranging 
from 2% to 6% [83] and average annual Medicare expenditure of $29.16 
billion [84]. DFUs significantly impact the quality of patients’ life as 
they are slow to heal (78 days on average), frequently recur (40% of 
DFUs recur within 1 year of healing) and add additional costs. A 
mainstay of all DFU therapies is mechanical offloading to relieve pres-
sure and stress on the affected foot (usually on the planar surface) [85, 
86], which can be accomplished through non-weight bearing (like using 
a walker), the use of an adaptive footwear, or the application of 
non-removable total contact casting [87]. However, patients’ adherence 
to offloading recommendations has been measured as low as 2.2%, 
which causes significant delay in this chronic wound healing and poses a 
big challenge for effective treatment. Furthermore, nerve damage in 
DFU patients causes dramatically decreased sensation capabilities of 
pain and pressure, which poses additional challenges for effective off-
loading. Therefore, there is an urgent need to develop technologies for 
monitoring pressures on DFUs in real time to improve patients’ adher-
ence to offloading recommendations. Pressure ulcers are localized in-
juries to the skin and its underlying tissues and are usually initiated by 
external forces, such as pressure, shear, friction, or their combinations 
[88]. The prolonged pressure blocks circulation, causes the death of skin 
and underlying tissues, and impairs the wound healing [89]. Patients 
with immobility and limited activity are at risk for pressure ulcers [88, 
90]. 

The emergence of wearable pressure sensors could significantly 
enhance the pressure monitoring capability of skin and wound sites. 
Pressure sensors can be classified into four different types based on their 
sensing mechanism [91]: piezoresistive [92–95], capacitive [96–101], 
triboelectric [102,103], and piezoelectric [95,104]. Piezoresistive 
pressure sensors change their resistance when the applied pressure 
compresses the voids/pores of the patterned structure and therefore 
increases the pathways of electrons between two electrodes (Fig. 3A) 
[94]. Piezoresistive sensors are the earliest commercial type of pressure 
sensors due to their simple construction and operation principle [91,94]. 
However, piezoresistive sensors need to be powered by an external 
power source for continuous monitoring, which makes them more 
power-consuming than other types of pressure sensors [95]. A capacitive 
pressure sensor, consisting of a dielectric layer sanwiched by two elec-
trodes (Fig. 3B), varies its capacitance when external pressure deforms 
the sandwich structure and decreases the distance between the upper 
and lower electrodes [98]. Capacitive sensors have several advantages 
including high resolution, good dynamic response, and low power 
consumption. However, there are still some challenges in the develop-
ment of high-performance capacitive pressure sensors. For example, 
their sensitivity is limited by the sensing area (sensitivity rapidly de-
clines as the sensing area decreases), and they are also defenseless 
against electromagnetic interference and parasitic capacitance [91,98]. 
Piezoelectric pressure sensors generate electric charges and change their 
resistance by the piezoelectric effect of materials like self-orientation 
ZnO nanorods and β phase polyvinylidene fluoride (PVDF) membranes 
[104]. Triboelectric pressure sensors are composed of a pair of 

negatively and positively charged materials, such as styrene butadiene 
rubber (SBR) and poly(dimethylsiloxane) (PDMS). With the triboelectric 
effect, the voltage is generated by the change of the contact surface area 
between negatively and positively charged materials due to the external 
pressure (Fig. 3C) [102]. Triboelectric and piezoelectric sensors are 
self-powered pressure sensors and are more sensitive to dynamic pres-
sure signals because they can convert mechanical stimuli into electrical 
signals [102,104]. However, huge mechanical deformations could cause 
unstable pressure sensitivity of triboelectric and piezoelectric sensors, 
which limits their application as wearable sensors on human’s joints 
[91,102]. 

Flexible pressure sensors have been developed for potential appli-
cations in wound monitoring. For example, an inductor-capacitor (LC) 
wireless pressure sensor was designed and fabricated to monitor the 
mechanical pressure on the skin wound, as shown in Fig. 3D [105]. 
PDMS was used as the dielectric layer of the capacitive pressure sensor, 
with silver conductive ink printed as spiral inductors for remote detec-
tion via a readout coil. The device was then embedded in a commercial 
bandage and applied to foam and pork skin respectively for evaluating 
its functionality (Fig. 3E). The results show the measured resonant fre-
quency as a function of pressure in the range of 0–200 mmHg when the 
bandage is in contact with a pork skin and a foam, respectively. By 
utilizing the flexible electronic component and the passive wireless de-
vice, the smart bandage with the pressure sensing capability can 
potentially help manage wound conditions and improve patient comfort 
[105]. Despite the significant efforts in developing flexible pressure 
sensors, evaluation of their functionality on real patients (like those with 
DFUs and pressure injuries) is still less conducted, although it would 
offer significant guidance for the offloading and the healing of these 
chronic wounds. In addition, extending the measurement range of 
pressure sensors while maintaining a high resolution is desired to 
accommodate a variety of scenarios. 

2.4. Strain sensing 

Skin tears are traumatic wounds (sudden or unexpected injuries) 
resulting from shear and friction forces. Old age, impaired mobility, 
falls, and accidental injuries are the most prevalent risk factors of skin 
tears [106,107]. In addition, external shear and friction forces can also 
lead to delayed or interrupted healing [108]. To remove the risk factors 
that can cause skin tears or disrupt wound healing, wearable strain 
sensors are developed to track the movements and activities of the 
elderly and patients. Hydrogel [109–124], ionogel [125], graphene 
[126–131], and carbon nanomaterials [126,132–135] are the commonly 
used materials sensitively responding to strain changes. 

The gage factor (GF), a parameter used to compare the strain sensi-
tivity of different sensing materials, is defined by the following equa-
tions: 

GF =
ΔR/R0

ε , ε =
ΔL
L0

, (2)  

where R0 is the initial resistance of the strain sensor, ΔR is the resistance 
change upon the applied strain (ε) [136,137]. The resistance response to 
the strain change is caused by structural evolution of conductive net-
works composed of strain-sensing materials (carbon nanotubes and 
graphene filled porous polydimethylsiloxane, CNT-GR/PDMS), as illus-
trated in Fig. 4A-C. With the increase in tensile strain, the GF value 
decreased from 182.5 to 45.6, then increased to 70.6 and 186.5 (Fig. 4A 
region I- IV). The corresponding structure evolution was shown in 
Fig. 4C, indicating the “point contact” (step iii), “area contact” (step iv), 
and breakage (step v) of the conductive network [126]. By finding a 
suitable material and strain range, we can improve the stretchability 
(applied strain) and GF value of wearable strain sensors and further 
enhance the performance of skin/wound monitoring. Recently, a zwit-
terionic skin sensor was developed to continuously monitor strain and 

S.-H. Lu et al.                                                                                                                                                                                                                                    



Sensors and Actuators Reports 4 (2022) 100075

7

other indicators like temperature and glucose to promote the healing of 
chronic wounds (Fig. 4D) [138]. The sandwich-structured sensor was 
composed of two layers of zwitterionic hydrogels with thermo-sensitive 
and glucose-responsive polymers and one interlayer of insulation elas-
tomers. The strain and other indicators could be measured in real time 
by detecting the resistance of lower and upper layers as well as their 
capacitance. Furthermore, in vivo wound healing test was performed on 
diabetic mouse wounds (Fig. 4E-F), and the results demonstrated that 
the sensor system enabled continuous real-time monitoring of multiple 

indicators including strain [138]. 
In addition, stretchability of sensors is a significant attribute for 

physical sensing of wounds under moving conditions. To accomodate 
this need, stretchable electronic skin (E-skin) for pressure and strain 
detection is constructed using deep eutectic solvent (DES) gel [139], 
polyvinyl alcohol/cellulose nanofibril (PVA/CNF) hydrogel, and gra-
phene oxide (GO)-doped PU nanofiber with PEDOT coating [140]. 
Stretchable ionic skins with strain sensing capabilities have been studied 
for human motion monitoring [77,139,141]. Furthermore, stretchable 

Fig. 4. (A) The sensitivity (gage factor, GF) of a strain sensor in different strain ranges [126]. (B) SEM image showing porous conductive polymer composites with 
synergistic CNTs-GR conductive networks [126]. (C) Schematic of structure evolution with increasing tensile strains [126]. (D) Schematic illustration of a zwit-
terionic skin sensor that can continuously and simultaneously monitor the strain, temperature and glucose indicators [138]. (E) Schematic photograph of real-time 
monitoring on a diabetic mouse wound [138]. (F) Resistance and capacitive response curves in terms of temperature (T), glucose concentration (G), and strain (S) 
that are continuously monitored and distinguished in real time [138]. 
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multisensory systems are developed to achieve multifunctional biosignal 
sensing by integrating temperature, humidity, strain, and pressure sen-
sors [142,143]. 

The advances in real-time monitoring of physical parameters in the 
wound bed have significantly facilitated the evaluation of the wound 
progression and wound healing. Future work of testing the sensors in 

vivo/on patients as well as integrating multiple types of sensors into one 
functional system is still needed to further enhance the functionality of 
these sensors in wound healing. In addition, developing sensors with the 
measurement range and resolution relevant to the wounds under a va-
riety of scenarios (e.g., to accommodate the diversity of patients) are 
also desired. 

Fig. 5. Wearable pH sensors for wound monitoring. (A) A bandage-like, wearable potentiometric sensor for continuous monitoring of wound pH. [155] (B) A 
wireless thread-based pH sensor for monitoring the wound conditions [156]. (C) A flexible pH-responsive hydrogel fiber patch for monitoring epidermal wound 
conditions [157]. (D) A wearable, wireless wound dressing for online monitoring and on-demand release of antibiotics to wound site [159]. (E) A hydrogel-based 
multifunctional dressing for colorimetric pH sensing and controlled release of antibiotics [160]. 
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3. Chemical sensing for wound monitoring 

Among the previously mentioned wound healing stages, the chemi-
cal biomarkers of wound exudates change significantly, such as pH, 
cytokines and uric acid [144–146], which provide useful biochemical 
indications for the wound healing status and presence of infection [147, 
148]. For example, the hard-to-heal wound bed exhibits an alkaline pH 
of 7.15 to 8.9 [149–151]. Cytokines are indicators of inflammation 
during the wound healing process [152]. Current methods for profiling 
the concentration of these important biochemical biomarkers in wound 
exudates often rely on laboratory testing, such as enzyme-linked 
immunosorbent assays (ELISAs), which are time-consuming, instru-
ment-intensive, and requires a high level of technical skills. Recent de-
velopments in skin-integrated bioelectronics and biosensors open the 
door for developing wearable biochemical sensors for in situ wound 
monitoring [153,154], without the need for conventional laboratory 
analysis. In this section, we will focus on the recent developments of 
wearable biochemical sensors for monitoring pH, uric acid, and cyto-
kines in wound exudates. 

pH sensor. A chronic wound bed usually exhibits a pH of 7.15–8.9. 
However, it is beneficial to have an acidic environment such as pH 4–7 
for wound healing since an acidic environment can support fibroblasts 
proliferation, improve angiogenesis and epithelialization of the wound 
skin, and prevent bacterial colonization for an open wound [149]. 
Wearable potentiometry or colorimetric pH sensors could provide 
important indications on the status of a wound, bacterial infections, and 
therapeutic management. Guinovart et al. reported a bandage-like, 
wearable potentiometric sensor for continuous monitoring of wound 
pH [155]. This wearable smart bandage uses electropolymerized poly-
aniline on printed carbon as a working electrode, and polyvinyl butyral 
polymer (PVB) modified Ag/AgCl as a reference electrode (Fig. 5A). 
Both working and reference electrodes were integrated onto a com-
mercial adhesive bandage. The pH-sensitive sensor shows a Nernstian 
sensitivity of 58.0 ± 0.3 mV/pH, mechanical durability, high repeat-
ability, and reproducibility. Nevertheless, the data acquisition of this 
wearable potentiometric sensor still relies on a laboratory electro-
chemical analyzer system. To fill this gap, Punjiya et al. reported a 
wireless thread-based pH sensor for monitoring the wound conditions 
[156] (Fig. 5B). The pH sensing threads were fabricated using a simple 
dip coating process to functionalize cotton threads with conductive 
carbon ink and polyaniline (PANI) nanofibers. The sensor exhibits a 
super-Nernstian pH sensitivity of 72 mV/pH and a fast response time (<
2 min). Importantly, a customized CMOS potentiostat readout IC, an 
Arduino Nano, and a Bluetooth module were developed for the wireless 
data transmission to a smartphone user interface. This wireless data 
transmission enables the potential applications of the sensor beyond the 
conventional laboratory environments for continuous wound moni-
toring and timely medical interventions. Compared with potentiometric 
pH sensing that relies on the deprotonation of H+ on conductive polymer 
PANI, colorimetric sensing, in which pH-sensitive dyes are loaded into a 
matrix/substrate, provides a simple and low-cost approach for pH 
sensing in the wound beds. For example, Tamayol et al. developed a 
flexible pH-responsive hydrogel fiber patch for monitoring epidermal 
wound conditions [157] (Fig. 5C). The patch fabrication starts with the 
loading of pH-responsive dyes onto mesoporous microparticles, fol-
lowed by the incorporation into Na-alginate fibers using a coaxial 
microfluidic chip. The smartphone camera and colorimetric image 
analysis provide a quantitative mapping of pH. This epidermal patch can 
be applied as wound dressings for low-cost and continuous monitoring 
of pH without the need for costly instruments. The real-time monitoring 
of wound pH can be integrated with active drug delivery time for the 
closed-loop, on-demand wound monitoring and treatments [158]. The 
active drug delivery system was triggered through a thermo-responsive 
drug carrier and a miniaturized Joule heater. Similarly, Xu et al. re-
ported a wearable, wireless wound dressing that can not only monitor 
temperature, pH, and uric acid on a wound site but also provide the 

on-demand release of antibiotics to wound site [159] (Fig. 5D). The 
smart wound dressings combined the near field communication module 
to achieve wireless monitoring purposes. Mirani et al. reported a 
hydrogel-based multifunctional dressing, named GelDerm, that couples 
the colorimetric pH sensor with controlled release of antibiotic agents 
[160] (Fig. 5E). 

Uric acid sensor. The concentration of uric acid is strongly correlated 
with the wound status and infection. For example, studies have shown 
that the elevated concentration of uric acid in wound fluid correlates 
with wound severity in chronic venous leg ulcers [161]. The current 
wearable sensor for monitoring uric acid is usually based on the enzy-
matic oxidation reaction of uric acid in the presence of uricase on a 
working electrode. For instance, Kassal et al. pioneered the development 
of a wearable uric acid sensor by immobilizing the uricase on a Prussian 
blue modified carbon electrode [162] (Fig. 6A). The electrochemical 
detection of uric acid starts with the oxidation of uric acid, which gen-
erates allantoin and hydrogen peroxide. The generated hydrogen 
peroxide is reduced on the Prussian blue modified carbon electrode, and 
the reduction current is proportional to the concentration of uric acid 
(Fig. 6B). Fig. 6C and D show the chronoamperograms and linearity of 
the wearable uric acid sensor over the physiologically relevant con-
centration of uric acid from 100 to 800 µM. Similarly, the Bhansali group 
developed a wearable enzymatic uric acid sensor for continuous wound 
monitoring [163] (Fig. 6E). Unlike immobilizing uricase on a carbon 
electrode, in this study, the enzyme was entrapped into a cationic 
polymer matrix for enhanced stability [163] (Fig. 6F). In this study, 
ferrocene carboxylic acid is used as a redox electron shuttle to interface 
the graphite electrode and uricase (Fig. 6F). The monitoring of uric acid 
is based on the redox reaction of ferrocene carboxylic acid on the 
enzymatic electrode (Fig. 6G). Importantly, the uricase entrapped 
electrode shows a superior response towards the detection of uric acid 
mainly due to the increased diffusion of analytes toward the working 
electrode (Fig. 6H). Nevertheless, these existing studies still use enzyme, 
uricase, and multiple steps surface functionalization. A recent study 
demonstrates a novel wearable uric acid sensor for sweat monitoring 
based on the direct oxidation of uric acid on laser-induced porous gra-
phene surfaces [164], which could be adapted for the wound healing 
applications. 

Cytokine sensor. Although the biosensor technology is undergoing an 
exponential development, flexible and wearable cytokine biosensors 
that are capable of monitoring the wound healing process are limited 
since most wearable sensors for wound monitoring are pH, temperature, 
uric acid, and oxygen sensors [148]. Kim et al. reported a stretchable 
electrochemical biosensor to detect tumor necrosis factor-α (TNF-α) in 
artificial wound exudate (Fig. 7A) [165]. In this study, the TNF-α anti-
body was used as a sensor receptor and differential pulse voltammetry 
was used for the electrochemical signal acquisition. This stretchable 
electrochemical sensor achieves the detection level down to 100 fM in 
PBS solution (Fig. 7B). It should be noted that gold working and counter 
electrodes and Ag/AgCl reference electrode are prepared on a stretch-
able micro-patterned silicone elastomer substrate (Fig. 7A). Such a 
stretchable sensor enables the robust and stable sensing performance 
even after 1000 cycles of stretching and 30% elongation (Fig. 7B), 
suggesting the potential applications to interface with dynamic human 
skin. Nevertheless, this stretchable immunosensor can only measure one 
type of cytokine, and the multiplex monitoring is lacking. Recently, Gao 
et al. pioneered the development of a flexible, wearable multiplexed 
immunosensor, termed VeCare, for the in-situ monitoring of wounds at 
the point of care (Fig. 7C–F) [166]. The VeCare includes three key 
components as follows (Fig. 7C): (1) A Phrynosoma cornutum 
skin-inspired passive microfluidic collection system, thereby enabling 
the wound exudates to be collected and guided into a set of sensor areas, 
(2) An array of sensors that can analyze the inflammatory biomarkers 
(TNF-α, interleukin-6, interleukin-8, and transforming growth 
factor-β1), staphylococcus aureus (S. aureus, a biomarker for microbial 
burden on wounds), temperature and pH, and (3) A wireless data 
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transmission system based on a low-power Bluetooth system to achieve 
real-time data collection, visualization, and clinical management. The 
measurement of inflammatory biomarkers is based on the 
aptamer-electrochemical method. A nanocomposite based on electro-
chemically exfoliated graphene-gold nanoparticles (AuNPs-GP) was 
functionalized on a gold working electrode due to its high conductivity, 
enhanced electron mobility, and superior electrochemical performance. 
The working electrode was then functionalized with methylene blue 
(MB, an electrochemical tag) labeled aptamers, which have high selec-
tivity towards a targeted cytokine or bacteria. The electron transfer 
between the working electrode and redox-active MB was acquired by 
using square wave voltammetry (SWV). In the absence of a target (such 
as cytokine), the aptamer is folded, which results in a high electron 
transfer rate. In the presence of a targeted analyte, in contrast, the 
conformation change of aptamer modulates the electron transfer be-
tween MB and the working electrode and decreases the current. The 
background-subtracted peak current decreased with the increase of the 
concentration of measured cytokines. The VeCare shows good sensi-
tivity, selectivity, minimal interference, and high reproducibility to-
wards the measurement of TNF-α, interleukin-6, interleukin-8, 
transforming growth factor-β1, and S. aureus within the physiologically 
relevant range in wound fluids (Fig. 7D). The VeCare indicated a good 
biocompatibility in a mice wound model and a clinical application for 
monitoring wound exudates for patients with venous ulcers (Fig. 7E–F). 
Nevertheless, the long-term and continuous monitoring of cytokines is 
still challenging. To tackle this challenge, future work should focus on 
the following aspects: (1) the development of reversible bioreceptor of 
the sensor, thereby enabling the continuous monitoring, (2) improving 
the sensitivity and selectivity due to the ultralow concentrations of cy-
tokines in wound exudates and their diverse chemical environment, and 
(3) developing biofouling resistance coatings for long-term monitoring 
in complex wound beds. 

4. Wound management 

As described previously, wound healing is based on the sequence of 
biological events that if not occur effectively, tissue repair can be halted. 
Chronic wounds typically suffer from multiple pathologies, and most of 

the times, multiple therapeutics are needed to eliminate pathologies or 
encourage physiological processes. To this end, the wound healing 
therapies have been focused on the paradigm of “what therapeutics” and 
“when to be delivered”. Many researchers have developed dressings that 
allow the local delivery of therapeutics to the wound bed. These ther-
apeutics could range from a single protein or small molecule to cells and 
blood derived products [167]. 

An optimal drug delivery system should release specific therapeutic 
agents corresponding to the spatiotemporal physiological requirements 
throughout wound healing stages. Drug delivery systems can be classi-
fied into passive, active, and smart systems, either incorporating smart 
materials reacting to wound biomarkers or integrated sensing/delivery 
systems [25]. Passive approaches utilize a continuous release of drugs 
from the wound dressing, controlled by the inherent release kinetic of 
the specific drug from the dressing network. On the other hand, active 
systems employ an external stimulus (e.g., temperature, electrical 
signal, light, etc.) for on-demand induction of the release. Finally, smart 
systems detect the need for a specific drug based on various biomarkers 
in the wound environment and trigger the release of the drugs when 
required [168]. 

A passive drug delivery relies on the diffusion of the therapeutic 
factor through the drug carrier to reach the wound bed. Various organic 
(such as liposomes and hydrogels) and inorganic (such as ceramics, 
carbon nanotubes, and metallic particles) drug carriers have been 
developed for drug delivery in wound healing applications [3,169–172]. 
The main goal of passive drug delivery systems is to control the release 
kinetics based on carrier pore size, hydrophilicity, degradability, and its 
relative electrostatic charge compared to the drug. Generally, a sus-
tained release of the therapeutic is preferred over a burst release, due to 
reduced local availability of the drug throughout the required period of 
time when it is applied with a burst release [173]. Polyesters, hydrogels, 
and liposomes are the most widely used materials implemented as drug 
carriers in wound healing applications [174–178]. Nanoparticles can be 
utilized to better penetrate the wound bed and offer larger surface area 
to volume ratio in comparison to their microsized counterparts. There 
are several comprehensive review papers discussing the advantages and 
shortcomings of passive drug delivery systems and will not be covered 
here [179–181]. 

Fig. 6. Wearable uric acid sensors for wound monitoring. (A) Optical image of a wearable enzymatic uric acid sensor. (B) Working principle of the wearable uric acid 
sensor. (C) The chronoamperograms and (D) linearity of the wearable uric acid sensor over the physiologically relevant concentration from 100 to 800 µM [162]. (E) 
A wearable enzymatic uric acid sensor for continuous wound monitoring. (F) Schematics for the surface functionalization of working and reference electrodes. (G) 
Working principle of the enzymatic uric acid sensor. (H) The uricase entrapped electrode shows a superior response towards the detection of uric acid [163]. 
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Recently, there have been a few studies that demonstrated the 
importance of the point of delivery and spatial distribution of thera-
peutics on wound healing [182,183]. While skin injuries are accessible 
and in the first glance, topical delivery of therapeutics should ensure 
their delivery to the target cells, chronic wounds are covered by eschar, 
occasionally exude, and their environment is rich with proinflammatory 
cytokines and enzymes. These characteristics can potentially lower the 
local availability and effectiveness of therapeutics [184]. 

In this section, first we will review the devices that allow delivery of 
drugs in an on-demand fashion. We will also discuss strategies for 
improving the spatial distribution of therapeutics within the wound bed. 
After that, we will highlight other types of stimulations that can improve 
wound healing and will discuss some of the advanced dressings that 
locally applied these stimulations. 

4.1. Systems for on-demand drug delivery 

There is a significant push towards the personalization of wound care 
products and strategies. To achieve this goal, systems that can deliver 
therapeutics on demand or actively are needed [25,185]. The efforts in 
this area have been divided into two approaches: (1) strategies that 
utilize smart materials that respond to the changes in the environmental 
conditions within the wound site and release therapeutics to regulate the 
environment [186,187]; (2) systems that utilize external stimulations 

for initiating and maintaining the release of therapeutics. In this section, 
we will focus on the second approach and readers are referred to recent 
reviews on smart materials for wound healing applications [188,189]. 

External stimulations that are selected for activating the drug release 
should be safe, specific, without side effects, and different from signals 
generated by host body. The stimulation commonly used by researchers 
include temperature change, electric field, and light [3,25]. 

Thermo-responsive drug delivery systems have been widely utilized 
for on-demand delivery of therapeutics. In these systems, thermo- 
responsive polymers such as poly(N-isopropylacrylamide) (PNIPAm), 
chitosan, and Pluronic are used as drug carriers and are interfaces with 
heaters that locally elevate the temperature [190,191]. In one notable 
study [36], a thermo-responsive textile dressing was engineered in 
which every single thread on the patch was a heater coated by a layer of 
alginate hydrogel carrying PNIPAm-PEG copolymers loaded with a 
specific drug (Fig. 8A). Different drugs were loaded on different threads 
and each thread could be stimulated separately. Furthermore, the dosing 
of the drugs could be controlled by the rate and number of activated 
threads (Fig. 8B). To demonstrate the potential of this system, an animal 
study was performed by loading a vascular endothelial growth factor 
(VEGF) in the dressing. Interestingly, results showed an enhancement of 
granulation and wound closure in diabetic animals (Fig. 8C,D). How-
ever, the limitation of thermo-responsive drug delivery systems is that 
the target temperature should not be too high to irritate the tissue or 

Fig. 7. Wearable cytokine sensors for wound monitoring. (A) Schematic illustration of the working principle and fabrication process of a stretchable electrochemical 
biosensor to detect TNF-α in artificial wound exudates. (B) The calibration curves of the electrochemical biosensor to detect TNF-α in PBS solution and human serum 
under various strains [165]. (C) Schematic illustration of a wearable multiplexed immunosensor, termed VeCare, for the in-situ monitoring of wound at the point of 
care. (D) The calibration curves of VeCare towards the measurement of various biomarkers within the physiologically relevant range in wound fluids. (E) 
Biocompatibility study of VeCare in mouse wound model. (F) A clinical application example for monitoring wound exudates for patients with the venous ulcer [166]. 
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Fig. 8. Examples of systems for on-demand delivery of drugs for wound healing application. (A) Schematic of a textile dressing where different threads in the 
dressing were loaded with a dose of a specific drug and could be triggered independent of other threads in the dressings. (B) Effect of the number of triggered threads 
on the quantity of the released drugs. (C) The application of a typical dressing on diabetic mice with full thickness skin injuries. (D) The comparison of the thickness 
of granulation tissue 10 days post-surgery [36]. (E,F) Two-module dressing with integrated microneedle arrays benefiting from micropumps for the delivery of a 
precise volume of drugs. (G) The delivery of VEGF as an angiogenic factor for the treatment of diabetic wounds clearly showed the benefit of microneedle mediated 
drug delivery in inducing tissue regeneration [183]. 
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deactivate the drugs. On the other hand, the selection of the critical 
temperature close to the body temperature carries the risk of unwanted 
drug release in warm climates. 

Another stimulus used for active drug delivery in wound healing 
applications is the electrical signal. In one example, researchers engi-
neered a dressing with electrodes coated by layers of hydrogel carrying 
pH responsive drug carriers [185]. The application of electrical current 
between the electrodes was shown to locally change the pH at the vi-
cinity of the electrodes, triggering the release of the drug. The short-
coming of this strategy is that pH in the wound environment can change 
over time and therefore the drug release could be affected by that, 
negatively impacting the programmed release kinetics. Electrical fields 
can also be directly used for the delivery of therapeutics to the wound 
bed. If charged molecules or drug carriers are used, then by application 
of an electrical field, therapeutics can be delivered intradermally [192, 
193]. This strategy has shown to be effective in the delivery of genes and 
drugs to the wound bed and consequently improving wound healing. 

While the utilization of different external stimulations could assist 
the delivery of therapeutics to the wound beds, these strategies always 
carry the risk of unwanted drug release and suffer from the need for 
bulky equipment and complex designs, which complicate the regulatory 
process. One of the most robust strategies for precise temporal control 

over the drug release is the delivery of liquids via micropumps. In a 
notable example, a two-module dressing was engineered consisting of an 
electronic module containing reservoirs, micropumps, control and 
wireless communication units, as well as a dressing module with inte-
grated 3D printed hollow microneedles to deliver drugs into the wound 
bed [183]. Multiple drugs could be loaded into the electronic module 
and then pumped toward the dressing module to be delivered to wounds 
(Fig. 8E,F). The delivery of therapeutics could be precisely programmed 
and controlled, independent of environmental conditions. To better 
control the spatial distribution of therapeutics and enhance the pene-
tration of the drugs into the wound bed, microneedle arrays were inte-
grated to the dressing module. During the animal studies, the delivery of 
VEGF via microneedles showed a significant enhancement in diabetic 
wound healing in comparison to their delivery topically (Fig. 8G). 
However, the shortcoming of this strategy is that it works with drug 
solutions and therefore the delivery of hydrophobic molecules could be 
challenging. 

Active drug delivery systems can be integrated with biosensors to 
engineer smart wound dressings. One of the goals of engineering smart 
wound care products is to reduce the need for visits to healthcare fa-
cilities and decrease the time between the occurrence of an abnormality 
in wound healing and administration of therapeutics [25,168]. In this 

Fig. 9. Smart systems with integrated sensors for on-demand drug delivery. (A-F) A pH responsive smart dressing for treatment of infected wounds. (A) The working 
mechanism of the device. The device consisted of a two-layer patch, in which the top layer is embedding heating elements, while the bottom layer is a thermo- 
responsive hydrogel and a flexible pH sensing array. The platform also has a separate wireless communication module. (B) The release of florescent drugs from 
thermo-responsive drug carriers upon thermal stimulation. (C) Drug release profile from microcarriers encapsulated in PBS or alginate matrix. (D) Quantitative 
results of thermally released drugs from the hydrogel [194]. (E,F) Bandage activation upon pH change and decreased viability of bacteria in vitro. (G–J) A tem-
perature responsive smart dressings for treatment of infection in wounds. (G) The operation mechanism of the platform where a flexible temperature sensor detects 
infection induced hyperthermia and the integrated LED triggers antibiotic release. (H) The in vivo application of the integrated platform in an animal model of full 
thickness injury. (I) The plot of wound temperature measured by the integrated sensor (black) compared to an analogue thermometer (red). (J) Statistical analysis of 
the bacterial load treated with different conditions showing the effectiveness of the platform in lowering the density of bacteria [195]. 
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case, automated devices that can process the wound conditions and 
decide on the need for the delivery of therapeutics could achieve this 
goal. In a pioneering study, a smart and automated dressing was engi-
neered in which the dressing was equipped with pH sensors for the 
monitoring of the wound bed [194]. The changes in the pH could 
indicate the colonization of wound with pathogens. The platform had an 
integrated hydrogel layer carrying antibiotic loaded thermo-responsive 
drug carriers. Upon changes of the pH at the wound environment, the 
dressing could trigger an integrated heater starting the release of anti-
biotics (Fig. 9A,B). The release of antibiotics could be adjusted by con-
trolling the patch temperature (Fig. 9C,D). The released antibiotics were 
potent, and the platform was shown to be effective in eradication of 
bacteria in a biomimetic in vitro model (Fig. 9E,F). 

In another study, a flexible two-layer smart bandage was designed 
for on-demand treatment of infected wounds [195]. In the wound 
dressing, the top layer contained a temperature sensor and embedded 
UV lights, while the lower layer interfacing with the wound environ-
ment was a PEG-based hydrogel supplemented with gentamicin, an 
antibacterial drug (Fig. 9G). The PEG-based hydrogel was designed to be 
responsive to UV light, cleaving gentamicin through UV exposure. Upon 
the occurrence of infection, an inflammation state would happen, which 
could increase the temperature of the wound environment. The tem-
perature was detected by the sensor through an integrated wireless 
system, communicating to a cell phone device, programmed for decision 
making. Therefore, excessive heat as a result of infection triggered a 
signal sent from the cell phone to the device for the activation of UV 
lights and the release of antibiotics. Animal studies demonstrated suc-
cessful activation of the system upon infection and treatment of infected 
wound (Fig. 9H–J). However, the limitation of this 
temperature-responsive system as described previously is unexpected 
release of antibiotic when the patient is suffering from fever, or in warm 
weather. 

Overall, while the use of automated dressings seems exciting, it 
should be noted that automated dressings mostly are needed for 
responding to severe complications such as infection or excessive 
inflammation. Any of these issues can easily be treated at the beginning, 
but if left untreated, it could quickly lead to life-threatening complica-
tions, specifically for high-risk patients, for example, those suffering 
from diabetics. However, the successful translation of these technologies 
requires the monitoring of specific markers. In the case of infection, the 
detection of pathogen strain is needed, which can further complicate the 
translation of such systems. 

4.2. Non-drug stimulations for wound healing 

The tissue, infection, moisture, and edge of wound management 
(TIME) has been followed as a standard-of-care [196,197]. As a result, 
the research and clinical efforts have been focused on the removal of 
necrotic tissue, eliminating bacterial load, modulating the tissue mois-
ture level, draining excessive exudate, and encouraging tissue ingrowth. 
The goal of these efforts is focused on effectively treating an existing 
episode of skin injury and preventing its recurrence in the future. Pain 
management is also an important area that affects the quality of life and 
the adherence of the patients to therapies [198–202]. 

Engineering tools have been utilized to develop several tools for 
better management of wounds. Negative wound therapy (NPWT) sys-
tems are one class of engineering tools successfully used in clinical 
wound care [203,204]. In these strategies, the wound will be covered by 
a chamber mostly filled with a foam or porous structure and negative 
pressure will be applied. The negative pressure reduces the compression 
on the wound edge [205]. In addition, these systems are known to 
modulate the environment through inducing macro and micro de-
formations to the wound surface, helping wound debridement and 
extraction of biofilm and wound exudates rich with pro-inflammatory 
cytokines, and creating a gradient of angiogenic factors such as VEGF 
[206]. However, one limitation of such systems is their inability to 

deliver therapeutics and growth factors to the wound bed while under 
negative pressure. Also, it is important that tissue strain is monitored to 
ensure it is not excessive, because excessive strain could have negative 
consequences on both the tissue and effective drug delivery from any 
potential advanced wound dressing. 

Oxygen is an important factor in wound healing and researchers 
have explored strategies for enhancing the level of tissue oxygenation 
[3]. Oxygen is essential for the metabolic activity of cells and their 
growth [207]. The traditional strategy of using hyperbaric oxygen 
therapy (HBOT) has shown some improvement in wound healing, but 
also carries the risk of oxygen poisoning and lung injuries [208]. An 
alternative strategy has been to use topical oxygen therapy (TOT) in 
which a chamber is formed around the wound and filled with air con-
taining a higher concentration of oxygen [209]. To improve the oxygen 
penetration, perfluorocarbon emulsions have been utilized to improve 
the oxygen penetration into the tissue [210]. However, these strategies 
are expensive, challenging to apply, and carry the risk of post-exposure 
complications. Another strategy has been to use oxygen-generating 
materials in engineering dressings. In one example, a fluidic 
based-flexible dressing was engineered in which H2O2 was flown over a 
hydrophobic porous substrate coated with catalyst-sputtered islands 
(Fig. 10A,B) [211]. Catalysts facilitated the production of O2 directly at 
the wound interface. In another study, the team engineered a platform 
capable of both oxygen sensing and generating. Therefore, by moni-
toring the level of oxygen at the wound interface, the dressing could 
generate oxygen on demand to prevent hypoxia (Fig. 10C–E) [212]. 
However, in the animal studies, the platform did not show significant 
improvement in the healing of acute wounds [212]. 

Improving wound healing through encouraging cell ingrowth has 
been a center stone of research efforts. People have utilized different 
types of stimulation to encourage a faster wound closure rate [25]. In 
one example, a flexible enzymatic fuel cell was utilized to generate 
electrical current towards the center of the wound and to direct the 
ingrowth of epithelial cells (Fig. 11A) [213]. The results showed a faster 
wound closure in the animal studies. In another study, an alternating 
discrete electric field was applied by wearable devices (Fig. 11B,C) 
[214]. This strategy showed a wound closure over 3 days in comparison 
to the control groups which took about 12 days (Fig. 11D, E). In another 
study, a stretchable and flexible triboelectric patch was formed to 
electrically stimulate the wound bed (Fig. 11F) [215]. Upon the appli-
cation of the platform on animal models, it was observed that wound 
healing was expedited by the periodic contact and separation between 
the layers (Fig. 11G, H). Piezoelectric materials have also been used as 
nanogenerators for applying electrical stimulation to wounds and 
enhancing wound [216]. 

Biomechanical cues can significantly affect the growth and migration 
of cells [217]. Therefore, applying instructive biomechanical cues have 
been explored for improving wound healing. One of the most common 
strategies for stimulating cells to contribute to wound healing is 
controlled application of ultrasonic waves [218]. In one example, a 
wearable device capable of applying low frequency (20–100 kHz) ul-
trasonic waves were used as a dressing [219]. The platform was applied 
to human subjects suffering from DFUs. The groups receiving the ul-
trasonic stimulation showed a significant improvement in the wound 
healing rate. 

The delivery of different stimulations to wounds have shown a great 
promise in inducing wound healing. However, most of the studies have 
focused on the application of one type of stimulation. The potential 
synergy between biochemical stimulations and other physical stimula-
tions has not been well explored and could further augment the outcome 
of the therapy. 

5. Integration with other advanced technologies for wound 
healing and management 

Wearable biosensors provide a unique opportunity to assess wound 
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healing progress in a continuous, real-time, and non-intrusive manner 
[220]. Based on various types of biosensors, sensing data in the form of 
physiological parameters such as body temperature, pressure, and skin 
moisture level, and chemical parameters such as pH value and inflam-
mation biomarkers can be massively collected from different users 
[221]. Despite the significant advances in biosensors that have been 
made in the past decade, most of the sensing data often contain irregular 
signal noise and some of them may exhibit poor stability since these 
biosensors rely on antibodies or aptamers as bioreceptors [222]. 
Consequently, there is a great need to leverage advanced analytic 
techniques, i.e., machine learning and deep learning, to analyze the data 
collected based on biosensors to better assess and manage the wound 
healing process. 

An effective data-driven wound healing assessment and management 
system will consist of four major components, i.e., data collection, data 
preprocessing, feature extraction or representation, and output (based 
on different assessment tasks) as shown in Fig. 12. For data collection, 
various physiological parameters and chemical parameters will be 

collected via different types of biosensors; for data preprocessing, 
missing values will be handled, noise, redundancy and correlation will 
be assessed, and normalization will be performed if necessary [223]. In 
this section, we mainly focus on discussing existing machine learning 
techniques for feature extraction/representation of biosensor data and 
addressing some practical problems (e.g., classification, prediction, and 
clustering) for wound healing as shown in Fig. 13. 

5.1. Feature extraction/representation 

Although raw sensing data that are continuously recorded can be 
directly used as the input for wound healing assessment systems [222, 
224], they often contain noise and thus could heavily affect the per-
formance of these systems. To resolve this issue, various feature 
extraction methods, e.g., principal component analysis (PCA) [225] or 
linear discriminant analysis (LDA) [226], can be applied. Specifically, 
PCA aims to reduce the dimension of input by preserving the variance of 
the input sensing data while LDA can maximize the inter-class distance 

Fig. 10. Oxygen delivery dressings for wound healing applications. (A) Schematic of the platform operation in utilizing H2O2 for oxygen generation. (B) A 
representative photograph of the platform with 4 spots functionalized with catalysts [211]. (C) Schematic of a dressing with integrated oxygen sensors and generators 
for treatment of foot ulcers. (D) The cross-section of the sensing and generation modules at the wound interface. (E) The mechanisms of oxygen sensing and gen-
eration within the dressing [212]. 
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and minimize the intra-class distance when label information is avail-
able. Moreover, since the raw sensing data are usually time series, 
traditional techniques such as discrete Fourier transform (DCT) [227, 
228], discrete wavelet transform (DWT) [229], and piecewise aggregate 

approximation (PAA) [230] can be used to obtain a compact represen-
tation of the raw time series data in order to facilitate the underlying 
applications. 

Traditional feature extraction approaches, however, may not be able 
to capture the potential complex non-linear relationships among the 
sensing data for specific tasks. Consequently, Recurrent neural networks 
(RNNs) [231, 232], a type of deep neural network specially designed for 
sequence modeling, have received a great amount of attention for time 
series sensing data representation due to their flexibility in capturing 
nonlinear relationships. Traditional RNNs, however, suffer from the 
problem of vanishing gradients [233] and thus have difficulty capturing 
long-term dependencies. Recently, long short-term memory units 
(LSTM) [234] and the gated recurrent unit (GRU) [235] have overcome 
this limitation and achieved great success in various applications, e.g., 
time series classification, forecasting, and anomaly detection. Mean-
while, convolutional neural networks (CNNs) [236] and their variants 
such as dilated causal CNNs [237] also exhibit great success to capture 
the complex nonlinear relationships among the input sensing data. For 
supervised learning tasks, the network’s parameters will be optimized in 
an end-to-end manner specifically tailored to the target task (classifi-
cation, regression, and prediction). For unsupervised learning, 

Fig. 11. Various types of electrical stimulation of wounds. (A) Schematic of the operation of the enzymatic biofuel cell (EBFC) for improving wound healing [213]. 
(B) The mechanism of operation of electrodes applying alternating electrical fields to expedite wound healing. (C) Representative image of dressings with connected 
electrodes (experimental group) and disconnected electrodes (control group). (D,E) Photographs comparing wound closure between the experimental and control 
groups [214]. (F) Schematic of the architecture of the dressing for triboelectric stimulation of the wound. (G,H) The comparison of the wound closure rate in response 
to the dressing with triboelectric stimulation and control group [215]. 

Fig. 12. Machine learning pipeline for wound healing assessment 
and management. 
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autoencoder (AE) [238] or LSTM based encoder-decoder framework 
[239] can be employed to obtain a hidden representation of the input 
sensing data. 

5.2. Machine learning tasks 

For practical wound healing assessment problems, related machine 
learning tasks include classification, prediction, and clustering. 

5.2.1. Classification 
Wound healing classification mainly concerns categorizing the 

phases or types of wounds. Based on the input raw data or extracted 
features, many machine learning techniques can be applied to this task. 
Representative methods include k-nearest neighbor (kNN) [223], deci-
sion tree (DT) [223], support vector machine (SVM) [240], 
Gradient-boosted decision trees (GBDT), and extreme gradient boosting 
(XGBoost) [241]. For instance, based on dielectric spectroscopy sensors, 
Rahmani et al. [242] leverage SVM to classify different types of tissue 
across different samples; In addition, Sattar et al. [224] proposed an IoT 
based intelligent wound assessment system for the assessment of wound 
status and use the information gain statistics of decision tree to assess 
three classes of wound statuses, i.e., good, satisfactory, or alarming. By 
combining cross-entropy loss with CNNs, wound healing classification 
can also be conducted in an end-to-end manner [243]. 

Typical evaluation measures for classification include accuracy, 
precision, recall, and F1 measure. Specifically, we have 

Accuracy =
true positive + false negative

true positive + true negative + false positive + false negative  

Precison =
true positive

true positive + false positive  

Recall =
true positive

true positive + false negative  

F1 =
2⋅Precision⋅Recall
Precision + Recall  

5.2.2. Prediction 
Wound healing prediction (regression) aims to leverage machine 

learning algorithms to pursue the relationships between sensing data 
and the target value [244]. For instance, wound progression researchers 
have traditionally focused on using piecewise linear regression models 
for better interpretable results [245]. Traditional regression techniques, 
e.g., linear regression, logistic regression, support vector regression 
(SVR) [246], random forest (RF) [223], and XGBoost [241] have been or 
can potentially be used to estimate wound healing time [247]. In 
addition, more advanced prediction methods, such as attention-based 
Long-short Term Memory (LSTM) [248], and dilated casual CNNs 
[237], and Transformer [249] can also potentially help improve the 
accuracy of time-to-heal prediction and wound progression trajectory 
forecasting. 

To assess the effectiveness of regression and prediction, mean 
squared error (MSE), mean absolute error (MAE), and mean absolute 
percentage error (MAPE) [248], and the coefficient of determination, i. 
e., R2 [250] can be used. 

5.2.3. Clustering/pattern discovery 
When labels are not available for the wound sensing data, it is 

necessary to explore the underlying patterns and structure of input 
wound sensing data. In this case, traditional clustering approaches, e.g., 
k-means [223], Gaussian mixture model (GMM) [223], hierarchical 
clustering [251], DBSCAN [252], etc., can be applied. For instance, 
Rahmani et al. [242] leverage GMM to discover 4 categories of wounds 
based on the electric loss tangent data. Moreover, autoencoder [238], 
variational autoencoder (VAE) [253], and deep embedding clustering 
(DEC) [254] are also capable of exploring the more sophisticated 
non-linear structural relationships among the sensing data. 

To measure the effectiveness of clustering, clustering accuracy, pu-
rity, mutual information (MI) and normalized mutual information (NMI) 
could be used [223]. 

5.3. Close loop control 

Based on accurate wound assessment, intelligent wound manage-
ment and treatment can be conducted to perform close-loop control. For 
instance, Kiaee et al. [255] showed that the pH value of the local part of 
wounds can be controlled by a patch via electronic adjustment to release 
relevant drugs in this part. Zhao et al. [256] designed a wound patch 
that can precisely control the follow rate in the microfluidic system of 

Fig. 13. Representative feature extraction methods and related machine learning tasks for wound healing assessment.  
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the patch such that the drug release can be adjusted to improve wound 
healing. Recently, Wang et al. [257] also showed that reinforcement 
learning can be used to learn a policy to perform patient treatment 
automatically. 

6. Conclusions and outlook 

Recent years have seen enormous research effort dedicated to 
developing sensing and therapeutic systems for wound monitoring and 
treatment. Various sensing techniques including physical and chemical 
sensing have revealed the importance of real-time monitoring of various 
parameters at the wound site for effective treatment of wounds. This 
review has focused on recent studies dedicated to the monitoring and 
therapeutic systems for wound healing and wound management. It be-
gins with a review on the physical sensing of temperature, moisture, 
pressure and strain, and chemical sensing of pH, cytokine, and uric acid. 
This is followed by a discussion of wound management through on- 
demand, active drug delivery induced by external stimulations like 
temperature change, electric field, and light, as well as non-drug stim-
ulations like oxygen therapies and biomechanical cues, to promote 
wound healing. A data-driven wound healing assessment and manage-
ment system by leveraging machine-learning and deep-learning frame-
works are also detailed. These studies have significantly enhanced next- 
generation wound healing and management technologies. 

Despite significant advances, there is still much to do about effective 
wound healing and management. In particular, most current wound 
sensing devices are based on limited types of sensing capabilities. Inte-
grating a wide range of sensors into wound dressings for simultaneous, 
real-time, high-sensitivity, high-selectivity monitoring of various phys-
ical and chemical indicators, including pH, temperature, oxygen level, 
moisture, mechanical and electrical signals, would provide a wealth of 
key information for the wound progression. Another important area is 
incorporating active sensing and precise actuation functions such as 
drug delivery to enable active responses to variations in the wound 
environment. To realize effective automated systems, specific markers 
for regeneration and complications should be identified and targeted. In 
addition, integrating the active sensing, actuation, with a machine- 
learning framework to monitor and modulate the healing progression 
by delivering specific molecules at specific times under the direction of 
artificial intelligence will accelerate the recovery of the wound. 
Regarding the machine-learning framework, effectively leveraging and 
fusing the multimodal sensing data measured with different types of 
biosensors to make decisions, as well as developing model-agnostic 
methods to interpret the current black-box models by showing feature 
importance and accumulated local effect would be very important. 
Finally, based on accurate wound assessment, how to perform wound 
management optimally to reduce the healing time and increasing the 
healing rate is another critical problem to investigate. 
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