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Abstract

Prognostics or early detection of incipient faults by
leveraging the monitoring time series data in complex
systems is valuable to automatic system management
and predictive maintenance. However, this task is chal-
lenging. First, learning the multi-dimensional hetero-
geneous time series data with various anomaly types is
hard. Second, the precise annotation of anomaly incip-
ient periods is lacking. Third, the interpretable tools to
diagnose the precursor symptoms are lacking. Despite
some recent progresses, few of the existing approaches
can jointly resolve these challenges. In this paper, we
propose MCDA, a deep multi-instance contrastive learn-
ing approach with dual attention, to detect anomaly
precursor. MCDA utilizes multi-instance learning to
model the uncertainty of precursor period, and employs
recurrent neural network with tensorized hidden states
to extract precursor features encoded in temporal dy-
namics as well as the correlations between different pairs
of time series. A dual attention mechanism on both
temporal aspect and time series variables is developed
to pinpoint the time period and the sensors the pre-
cursor symptoms are involved in. A contrastive loss is
designed to address the issue that annotated anomalies
are few. To the best of our knowledge, MCDA is the
first method studying the problem of ‘when’ and ‘where’
for the anomaly precursor detection simultaneously. Ex-
tensive experiments on both synthetic and real datasets
demonstrate the effectiveness of MCDA.

1 Introduction

Complex physical systems are prevalent in modern man-
ufacturing industry. Monitoring behaviors of these
large-scale systems generates massive time series data,
such as the readings of sensors distributed in a power
plant, and the flow intensities of system logs from the
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Figure 1: The framework of MCDA.

cloud computing facilities in Google, Yahoo! and Ama-
zon [1]. The unprecedented growth of the monitoring
data increases the demand for automatic and timely de-
tection of incipient anomalies as well as precise discov-
ery of precursor symptoms. It has been reported that
1 minute of downtime in an automotive manufacturing
plant could result in as much as $20,000 cost [2]. Hence
an early detection and diagnosis of system anomaly is
crucial to avoid serious money waste and business loss.

Due to its practical importance, there have been
intensive interests in developing algorithms to detect
time series anomalies [3–8]. However, the vital task
of anomaly precursor detection is underexplored. An
anomaly precursor represents early symptoms of an up-
coming anomaly. Both anomaly and precursor are ac-
tually anomalies. The major difference is the severity
from the system operators’ point of view. When the pre-
cursors show up, the system usually still runs properly.
In the precursor, the time series values of the involved
variables change mildly. As time goes by, the minor
abnormal devices will propagate their effects to more
devices and trigger the observable anomaly. Anomaly
precursor detection aims to answer the question that in
which particular time periods and on which exact sen-
sors the early symptoms show up. Detecting precursor
is useful for early prediction of anomalies, which can
effectively facilitates the circumvention of serious prob-
lems. An example is shown in Fig. 1. There are three
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sensors and their signals are monitored over time. An
anomaly event is reported in the right-most blue dashed
interval. The precursor shows up in the red dotted rect-
angle and Sensor 1 & 3 are involved in the precursor (as
illustrated by the red boxes). Only the anomaly is an-
notated. It is unknown which small time series segment
contains the precursor.

The detection of anomaly precursor is challenging.
First, obtaining precise annotation of precursor period
is infeasible in practice. Usually, only visible anomaly
events can be reported by the system operators or
security reporting systems [9], and they are scarce.
Second, it is hard to answer which sensors are involved
in the precursor symptoms, especially for the complex
systems with a large amount of sensors. Finally,
previous studies [10] suggest that in addition to the
temporal dynamics in the raw multivariate time series,
the correlations (interactions) between pairs of time
series (sensors) are essential to characterize the system
status. How to consider both temporal dynamics
and correlations between time series for characterizing
precursors is also challenging.

Some recent progresses have been made on anomaly
precursor detection [11, 12]. However, none of these
precursor detection methods can pinpoint both the
time period and the sensors the symptoms are involved
in. Usually, the anomaly precursor only occurs on
some particular sensors rather than all of them. One
approach that can be used to capture precursors is
multi-instance learning (MIL) [13–15]. MIL assumes
that a set of data instances are grouped in the forms
of bags and the bag-level labels are available but the
instance-level labels are not. As shown in Fig. 1, a
small time series segment is considered as an instance.
MIL can be utilized to detect the instances that contain
the precursors by utilizing the labels of annotated
anomalies. However, the MIL itself does not consider
the temporal pattern of time series data.

To address the challenges, we propose a deep
multi-instance contrastive learning approach with dual
attention (MCDA). MCDA aims to locate and learn the
representations of precursors and then uses them to de-
tect the precursors in future time series data. To utilize
the label of annotated anomalies for tracking precursors,
the MIL framework is applied. Specifically, we organize
the time series data in the forms of instances and bags.
For each annotated anomaly, its immediately preceding
bag is regarded as positive1; other bags are regarded as
negative. For example, in Fig. 1, Bag 1 is considered
as positive and Bag 2 is negative. Based on the stan-

1Please see discussion in the supplementary materials for
dealing with the case where no precursor exists.

dard assumption of MIL, the positive bag contains at
least one positive instance (i.e., a segment containing
precursors), while instances in a negative bag should all
be negative. In this manner, we basically try to locate
the instance that are close to the upcoming anomalies
to model the precursors. To model the temporal behav-
ior of time series data of each instance, an LSTM net-
work with tensorized hidden states is developed. The
time series data of an instance is fed into this LSTM
network to extract the features of the instance. Our
LSTM network incorporates a time-dependent correla-
tion module to learn features encoding both temporal
dynamics and the correlations between pairs of time se-
ries. Moreover, a dual attention mechanism on both
temporal aspect and time series variables on top of the
hidden states in the LSTM network is developed. It
can pinpoint during which time instances the precursor
symptoms show up and what sensors are involved. To
address the issue that annotated anomalies are few, we
leverage the idea of contrastive learning [16] to design a
bag pair contrastive loss. Its basic idea is to make the
representations of the bags from system normal period
be dissimilar from the ones of annotated anomaly bags.
After the model is trained, the future time series data
can be fed to it for automatically learning representa-
tions of precursors, which can then be immediately used
for determining whether an anomaly event will happen.
The major contributions are summarized as follows.

• We study a novel problem of anomaly precursor
detection, with the aim to detect both when (what
time periods) and where (which sensors) the pre-
cursors are.

• We propose MCDA. MCDA combines MIL and ten-
sorized LSTM with a time-dependent correlation
module for the end-to-end learning of precursors.
It is also developed with a dual attention mod-
ule and a contrastive loss to produce robust and
interpretable results. MCDA is the first method
studying the problem of ‘when’ and ‘where’ for the
anomaly precursor detection simultaneously.

• We perform extensive experiments on both real-
world and synthetic datasets. The results validate
the effectiveness of MCDA and its superiority over
other competitors.

2 The Problem

N time series is denoted by X = (x1, · · · , xT ) ∈ RN×T ,
where xt = (x1t , · · · , xNt )> ∈ RN and T is the number
of time steps. A time series segment is defined as an
instance denoted by Ek = (xtk , · · · ,xtk+I−1) ∈ RN×I ,
where tk is its starting time step and I is its time
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interval length. A bag is a set of instances denoted
by B = {E1, · · · ,En}. As shown in Fig. 1, there are
six instances. Bag 1 and Bag 2 contain three instances
respectively. The bag label is denoted by Y . Y=1
indicates the bag is positive; otherwise, negative. For
simplicity, the length of all instances and the instance
number in different bags are set to fixed values in
this paper. A precursor Z is the time series data
from involved variables during the interval of a specific
instance prior to the anomaly that satisfies

(2.1) P (Y = 1|Z) > ξ,

where ξ is a threshold defined by users or learned from
data. Formally, the precursor is formulated as

(2.2) Z = (x
[l1···lM ]
tz , · · · ,x[l1···lM ]

tz+I−1) ∈ RM×I ,

where x
[l1···lM ]
t = (xl1t , · · · , x

lM
t )> ∈ RM . M is the

number of involved variables for the anomaly. l1 · · · lM
are the indexes of these variables. 1 6 l1, , , lM 6 N . tz
is the starting time step of the instance that contains the
precursor. Given time series data X ∈ RN×T and bag
label Y , the anomaly precursor detection is to detect
the precursor Z, i.e., to detect l1 · · · lM and tz.

3 Deep Multi-Instance Contrastive Learning
with Dual Attention

The framework of MCDA is shown in Fig. 1. The time
series data is organized in the forms of instances and
bags based on MIL. The immediately preceding bag
for an annotated anomaly is considered as positive,
i.e., Y = 1; otherwise, negative. The transformed
representation of an instance Ek is generated by

(3.3) Gk = f(Ek) = f(xtk , · · · ,xtk+I−1) ∈ RN×d,

where f(·) represents the tensorized LSTM and d is the
hidden dimensionality for each sensory variable. The
transformed representation of a bag B is generated by

(3.4) Q = g(B) = g(G1, · · · ,Gn),

where g(·) represents the attention-based MIL pooling.
The bag representations with their labels are further uti-
lized to optimize the objective function. Then the future
data is fed into the model to generate representations
of the testing bags. MCDA calculates how similar they
are to the representations of positive bags extracted in
the training phase. If the distance between a testing
bag and the labeled positive bag, such as Euclidean dis-
tance, is lower than a threshold δ, we regard the testing
bag as positive; otherwise as negative.

3.1 Time Series Data in the MIL Framework
Anomaly precursor detection is a weakly-supervised
learning task, i.e., only anomaly event label is available
but the corresponding precursor period remains uncer-
tain. MIL is a good match for dealing with this task.
In MIL setting, data instances are organized in different
groups called bags. A binary label Y ∈ {0, 1} is associ-
ated with a bag B = {E1, · · · ,En}. Y = 1 indicates the
bag is positive and Y = 0 indicates negative. MIL as-
sumes that each instance in B is with an individual label,
i.e., y1, · · · , yn, and yk ∈ {0, 1}, but the instance labels
are not available. Based on the assumption of MIL, the
relation between the bag label and the instance labels is
described in Eq. (3.5). We apply the MIL technique to
the bag of time series segment instances to infer which
instances contain the precursor, i.e., when exactly the
precursor symptoms show up.

(3.5) Y =

{
0, if

∑n
k=1 yk = 0;

1, otherwise.

A simple example of applying MIL to the time se-
ries data is shown in Fig. 1. In Fig. 1, the time series
data is generated from three sensory variables and an
anomaly period is annotated. The time interval of a bag
is chopped into a bunch of time series segments (i.e., in-
stances) with a sliding window. The bag immediately
preceding a labeled anomaly period is considered pos-
itive (Bag 1 in Fig. 1), which indicates it contains at
least one anomaly precursor; otherwise, the bag is con-
sidered negative (Bag 2 in Fig. 1). The instance that
contains anomaly precursor symptoms is considered as
positive. We can utilize MIL to infer the instances that
contain the precursor, but MIL itself does not consider
the temporal pattern of time series data.

3.2 Interpretable LSTM Networks The LSTM
network is a powerful approach to capture the temporal
behavior of sequential data. However, the typical LSTM
cannot learn the independent representation for each
sensory variable exclusively based on the data from that
variable. To learn which sensory variables are responsi-
ble for the anomaly, and at the same time encode the
correlation information between different pairs of time
series, a novel LSTM with tensorized hidden states is
proposed. The idea of tensorizing LSTM has been used
in some recent work [17] and has shown its advantages
for sequential tasks. Our model differs from them in
two crucial ways. First, the hidden state explicitly con-
tains the correlation information between sensory vari-
ables, which helps MCDA detect the precursor of the
anomaly resulting from the correlation change between
sensory variables, which is verified in Sec. 4.2.3. Second,
our model is able to detect both the time period and the
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Figure 2: The derivation of cell updating matrix C̃t.
There are two sensory variables. The dimensionality of
the hidden state for each variable is four.

sensors that the precursor symptoms are involved in.
The intuition behind our tensorized LSTM is that

we use a state matrix Ht = (h1
t , · · · ,h

N
t )> ∈ RN×d to

represent the hidden state of all variables. hl
t ∈ Rd is

the hidden feature for the l-th variable. We ensure that
all the data used to generate hl

t is exclusively related to
the l-th variable. To consider the correlation, we feed a
variable correlation matrix Mt = (m1

t , · · · ,mN
t )> into

our model, where ml
t ∈ RN indicates the correlation

between the l-th variable and others at time t. Our
LSTM unit is described in Eqs. (3.6)-(3.9). Given
the input data x1,x2, ... ∈ RN and Mt, a cell matrix
Ct ∈ RN×d and a state matrix Ht are calculated.

C̃t = tanh(Wx ∗ xt + Wh ⊗N Ht−1 + Wcorr ⊗N Mt + Bc)

(3.6)

 ft
it
ot

 =

σσ
σ

 {W[xt ⊕ vec(Ht−1)⊕ vec(Mt)] + b},(3.7)

Ct = mat(ft � vec(Ct−1) + it � vec(C̃t)),(3.8)

Ht = mat(ot � tanh(vec(Ct))),(3.9)

where Wx ∈ RN×d, Wh ∈ RN×d×d, Wcorr ∈ RN×d×N ,
W ∈ R3Nd×(N+Nd+NN), Bc ∈ RN×d, b ∈ R3Nd are
parameters. ft, it, ot ∈ RNd are forget, input, out-
put gates respectively, and their values are in the range
of [0,1]. σ(·) represents the element-wise sigmoid ac-
tivation function. ⊕ denotes concatenation operator,
� denotes element-wise multiplication. vec(·) concate-
nates the rows of a matrix into a vector. mat(·) re-
shapes a vector into a matrix with size N × d. Wx =
(w1

x, · · · ,wN
x )> is a transition matrix. Wh = (W1

h,
· · · ,WN

h )> is a transition tensor, where Wl
h ∈ Rd×d.

Wcorr = (W1
corr, · · · ,W

N
corr)> is a transition tensor,

where Wk
corr ∈ Rd×N . Mt is a localized correlation

matrix at time t, which is figured out by the input data
around time t represented by (xt−s, · · · , xt, · · · ,xt+s)

>

∈ RN×(2s+1), where 2s+ 1 is the size of the local input
data. Note that 2s+1 <= I. In this paper, we use Pear-
son correlation coefficient to calculate Mt. Note that
other correlation metrics can also be adopted. Eq. (3.6)
calculates the cell updating matrix C̃t = (c̃1t , · · · , c̃Nt )>,
where c̃lt ∈ Rd. c̃lt is generated exclusively from the data

xt H΄
t-1

W΄
f

i΄tf΄t o΄t

T
W΄

i W΄
o

Mt

Figure 3: The diagram of the gate calculation process
for the forget gate ft, input gate it and output gate ot.

related to the l-th variable. The calculation process is
shown in Fig. 2. Wx ∗xt captures the information from
the input data and is defined by

(3.10) Wx ∗ xt = (w1
xx

1
t , · · · ,wN

x x
N
t )>.

Wh ⊗N Ht−1 captures the information from the previ-
ous hidden state and is defined by

(3.11) Wh ⊗N Ht−1 = (W1
hh1

t−1, · · · ,W
N
h hN

t−1)>,

where ⊗N indicates the tensor product along the axis
of N . Wcorr ⊗N Mt captures the information from the
correlation, defined by

(3.12) Wcorr ⊗N Mt = (W1
corrm

1
t , · · · ,W

N
corrm

N
t )>.

Eqs.(3.7) calculate the three gates and the process
is shown in Fig. 3, where Wf = W1:Nd,∗,Wi =
WNd+1:2Nd,∗,Wf = W2Nd+1:3Nd,∗. The calculation of
all three gates utilizes xt, Ht−1 and Mt, so as to utilize
the cross-correlation between input variables. Eq. (3.8)
updates the cell state Ct. Eq. (3.9) calculates the new
hidden state. The hidden state Ht at the last time step
is used as the transformed representation for the input
instance. Note that the gates only scale Ct−1 and C̃t,
so the variable-wise data organization is kept in Ht.

3.3 Dual Attention Mechanism Based on our
LSTM, we can get the transformed representations of
all instances with the exclusive feature for each sensory
variable, but we do not know which instances and which
variables the anomaly precursor is more involved in. Be-
cause it is capable of adaptively capturing the pertinent
information [18] attention mechanism is a natural fit for
achieving these two goals. Thus we propose a dual at-
tention mechanism and its diagram is shown in Fig. 4.
Our work is the first one to apply attention mechanism
to find out both ‘when’ and ‘where’ for the anomaly
precursor.

Assume the transformed representation of instance
Ek is denoted by Gk = (g1

k, · · · , gN
k )>, where gl

k ∈ Rd.
Inspired by [14] that combines tanh(·) with the gating
mechanism to enhance the non-linearity, we use the
following attention mechanism to extract the attention
values for different instances.
(3.13)

αk =
exp{w>(tanh(V vec(Gk)>)� σ(U vec(Gk)>))}∑n
i=1 exp{w>(tanh(V vec(Gi))> � σ(U vec(Gi))>)} ,
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Figure 4: The diagram of the dual attention mechanism.
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the feature representation for each variable.

where w ∈ RS , V ∈ RS×(Nd), U ∈ RS×(Nd) are
parameters. n is the instance number of a bag and S is
a hyper-parameter. σ(·) is the gating mechanism part.
To extract the attention values for different sensory
variables, we design the following attention mechanism.

(3.14) βl
k =

exp{w̃>(tanh(Ṽ(gl
k)>))� σ(Ũ(gl

k)>))}∑N
i=1 exp{w̃>(tanh(Ṽ(gl

k))> � σ(Ũ(gl
k)>)}

,

where w̃ ∈ RS̃ , Ṽ ∈ RS̃×d, Ũ ∈ RS̃×d are parameters.
N is the variable number and S̃ is a hyper-parameter.
βl
k indicates the attention values of the l-th variable for

the k-th instance.
Based upon the representations of instances and

the attention values, we can construct the transformed
representation for a bag using an attention-based MIL
pooling. The attention values of the instances in bag
B = {E1, · · · ,En} are denoted by ααα = (α1, · · · , αn)>.
Here, we use the representation of the instance with the
largest instance attention value to represent the whole
bag. Suppose the index of the largest α is

(3.15) k∗ = arg max(αk) s.t.
∑
k

αk = 1,

where k = 1, · · · , n. The variable values for instance
Ek∗ are denoted by βββk∗ = (β1

k∗ , · · · , βN
k∗)>. If the

representation of Ek∗ is Gk∗ = (g1
k∗ , · · · ,gN

k∗)>, then
the representation of bag B can be derived by 2

(3.16) Q = Gk∗ ∗ βββk∗ = (g1
k∗β

1
k∗ , · · · ,gN

k∗β
N
k∗)> ∈ RN×d.

In case that multiple instances jointly characterize a
type of precursor symptom, we only need to reformulate
the bag representation to Q = α1(G1∗βββ1) + α2(G2∗βββ2)
+ · · · + αn(Gn ∗ βββn).

3.4 Objective Function Given the transformed
representations of bags denoted by Q1, · · · , QM , where

2The operation ∗ is defined the same as the one in Eq. (3.10).

Table 1: Description of the datasets for Task 1

Dataset SC28C1 SC28C2 SC34C1 SC34C2 SC29C1

# positive bag 125 165 175 165 170
# negative bag 125 165 175 165 170

# features 42 42 42 42 42
length of bag 200 200 200 200 200

M is the number of bag, and the bag labels Y1, · · · , YM ,
the objective function of MCDA is

(3.17) minJ = Jcont + λJreg.

Jcont =
∑

i,j{(1− Pij)
1
2D

2
ij + Pij

1
2{max(0, η −

Dij)}2} is the bag pair contrastive loss. i, j are the
bag indexes. Pij is the pair label. Pij = 1 if Yi =
Yj ; otherwise 0. Dij = D(Qi,Qj) is the bag distance.
η is a threshold. It makes the representations of two
bags with the same label be similar and the ones with
different labels be dissimilar by minimizing Jcont. Here,
we use contrastive loss considering its superiority on
cases where the labeled data is few3, which is quite
common for anomaly detection task. Note that other
loss functions can also be adopted, such as triplet loss
[19]. Jreg is an regularization term and prevents our
model from overfitting. λ is a hyperparameter.

4 Experiments

4.1 Datasets and Baseline Methods We evaluate
MCDA on both synthetic and real datasets. One real
dataset is Showcase provided by a major retail chain
company4. The data are real-time sensor monitoring
time series of refrigerator system in different showcases
from different stores. Each showcase contains 42 sen-
sory time series monitoring temperature, air pressure,
humidity, etc, from Feb 12, 2013 to Sept 15, 2016. Each
of them includes 814,535 time-step records. Three show-
cases, SC28, SC29 and SC34, are reported with the same
type of anomaly event with precursor periods annotated
by domain experts. Another is a real cyber-physical
system data [3] generated from manufacturing industry.
This dataset contains time series collected from 1625
electric sensors installed on different components of the
cyber-physical system. The total length is 1400 time
steps. The anomaly occurred at the 210-th time step.

To verify the advantage of MCDA, we conduct ex-
periments on three tasks. Task 1 is precursor time series
detection (T1) to test whether MCDA can outperform
the baseline methods for detecting the time series seg-
ment containing anomaly precursors. Task 2 is anomaly

3Please see discussion in the supplementary materials for
dealing with the case where annotated anomalies are few.

4For privacy, we remove sensitive descriptions of the data.
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Table 2: Precursor detection accuracy (%) results.

Dataset SC28C1 SC28C2 SC34C1 SC34C2 SC29C1

Kmeans 57.2±3.1 62.7±1.2 72.1±1.7 63.7±2.2 64.5±0.9
GAKK 54.0±2.4 50.6±1.0 50.9±1.8 52.3±1.4 56.4±0.6
LSTM-AE 54.0±0.0 58.7±2.1 64.9±1.6 62.1±1.5 63.8±0.4
DAGMM 35.6±1.1 63.9±2.5 61.4±0.8 58.2±3.8 47.6±2.9
DTW 45.2±1.6 69.7±1.3 59.7±2.3 73.7±1.8 81.5±2.1
L2 44.8±1.2 66.4±2.2 67.1±2.8 66.3±2.2 65.2±1.7
SAX 58.8±1.6 42.1±3.9 37.6±1.9 36.6±2.1 69.9±5.6
SVM 49.2±2.3 76.1±0.9 72.8±2.7 65.0±1.7 74.2±2.8
MI-SVM 46.8±0.7 84.5±0.7 74.3±0.4 74.2±0.5 81.2±0.2
MCDA-V 52.4±2.5 67.0±1.8 65.0±2.2 63.6±1.4 77.1±1.7
MCDA-MIL 49.6±1.9 50.6±1.3 72.6±1.1 66.7±1.5 75.9±1.5
MCDA-M 51.6±2.1 50.0±1.0 64.3±1.9 62.7±2.3 83.2±2.4

MCDA 59.2±2.5 85.2±1.4 77.4±2.1 76.1±1.9 92.6±1.7

detection (T2) to test whether MCDA can detect the
anomaly effectively and earlier compared to the base-
line methods. Task 3 is interpreting precursor (T3) to
test whether MCDA can detect the time period and the
sensory variables of the precursor.

The baseline methods are summarized in the sup-
plementary materials. Kmeans and GAKK [20] group
time series segments into two clusters. The predicted
label of a segment is the same as the label of its corre-
sponding cluster and the cluster label is determined by
the major segments. DTW [21] and L2 implement the
kNN vote for time series based on dynamic time warping
and euclidean distance respectively. SAX realizes the
nearest neighbor classification based on SAX represen-
tation [22]. SVM classifies the segments into the abnor-
mal ones and the normal ones. MI-SVM [13] is a popular
MIL approach. It modifies the standard SVM formula-
tion so that the constraints on instance labels corre-
spond to the MIL assumption. Kmeans, GAKK, DTW,
L2, SAX and SVM are implemented by the tslearn pack-
age5. LSTM-AE [23] uses the reconstruction error to
detect anomalies. DAGMM [5] regards the time series
data with high energy as anomalies.

To evaluate the different components in MCDA, we
study its variants. MCDA-V is the variant without ap-
plying attention mechanism to the sensory variables. It
generates the transformed representations of instances
by tensorized LSTM and constructs bag representations
based on multi-instance pooling. MCDA-MIL is the
variant without applying attention mechanism to the
instances. It extracts bag representations by tensorized
LSTM directly, instead of utilizing MIL. MCDA-M does
not consider the correlation information between sen-
sory variables by removing Mt.

In our experiments, for Showcase and Cyber-
physical system, the instance length is set to 50 and 5

5https://github.com/rtavenar/tslearn

Table 3: Precursor detection F1-measure (%) results.

Dataset SC28C1 SC28C2 SC34C1 SC34C2 SC29C1

DTW 9.3±1.6 62.7±1.4 36.3±2.6 69.3±2.9 80.4±1.9
L2 8.0±1.2 56.8±2.1 54.5±2.8 55.0±2.8 52.7±2.1
SAX 60.8±1.9 41.5±5.2 37.2±2.7 40.0±2.4 67.9±3.2
SVM 36.2±2.3 77.9±0.9 73.8±2.7 65.7±1.7 73.8±2.8
MI-SVM 46.8±0.5 86.2±0.9 73.6±0.3 73.7±0.8 81.1±0.3
MCDA-V 67.6±2.5 75.1±2.5 74.0±1.9 73.2±2.0 81.3±1.2
MCDA-MIL 66.8±1.9 50.6±1.4 76.3±0.8 64.1±0.8 80.5±1.7
MCDA-M 62.1±2.7 66.5±2.1 72.5±1.5 66.4±1.8 85.6±2.2

MCDA 70.9±1.7 87.0±2.4 78.7±2.3 78.3±2.2 93.1±1.5

time steps respectively, the bag length is set to 200 and
20 time steps respectively and the size of the sliding win-
dow to generate instances is set to 10 and 1 time step
respectively. The learning rate is set to 10−3 initially
and decreases during the training. λ is set to 0.5. η is set
to 10. d, S, and S̃ are set to 15. s is set to 1. They are
determined by grid-search from {0.125, 0.25, 0.5, 1, 2, 4},
{1, 2, 5, 10, 15, 20} and {5, 10, 15, 20} respectively. The
`2 regularization is adopted for Jreg. For all supervised
methods, we randomly select 1/5 of the training set as
validation set to determine the best hyper-parameters.
MCDA is optimized by Adam [24]. The code of MCDA
and the data used are available6.

4.2 Experimental Results

4.2.1 Performance of Precursor Time Series
Detection (Task 1) We compare MCDA and other
methods in terms of their performance of detecting the
bags containing the precursors, i.e., positive bags. The
performance is evaluated by accuracy and F1-measure
[5]. Based on SC28, SC29 and SC34 that are marked
with precursors, we generate positive bags (time series
segments with length 200 time steps) by sampling the
sliding windows on the original time series data. For
each of them, we randomly sample the same number of
negative bags with the same length in system normal
period. We use sliding window with stride 10 to chop
a bag into instances, which results in 16 instances in
each bag. There are two precursor cases in SC28 and
SC34, and one in SC29, thus we generate 5 kinds of
positive bags. The dataset description is summarized in
Table 1. The name of SC28C1 indicates it is based on
precursor case 1 in showcase 28. The naming convention
is similar for others. For the supervised methods, we
use SC28C1, SC28C2 as the training set and test on
SC34C1, SC34C2, SC29C1, and use SC34C1, SC34C2
as training and then test on SC28C1, SC28C2. The
threshold δ for MCDA to detect the positive bag is set

6https://tinyurl.com/yd8tn76b
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(a) LSTM-AE (b) DAGMM (c) MCDA

Figure 5: Anomaly detection results on Showcase 28. Red dots indicate the time of anomalies labeled by users.

to the median value of all the distances between testing
bags and the labeled positive bag.

Tables 2 and 3 show the results. From Table 2,
MCDA achieves the best performance, which verifies the
advantage of MCDA to detect the anomaly precursor.
The supervised methods outperform the unsupervised
ones in general. This is because the label information
utilized in supervised methods can help extracting dis-
criminative precursor features more accurately. MCDA
outperforms MI-SVM, which indicates focusing on the
relevant sensory variables can improve the detection
performance. MCDA outperforms MCDA-V, indicating
the importance of attention mechanism on learning bet-
ter precursor feature. MCDA outperforms MCDA-MIL,
indicating the effectiveness of multi-instance technique
in capturing most relevant time period when precur-
sors show up. By comparing MCDA with MCDA-M,
we see the necessity of leveraging the correlations be-
tween sensory variables. Without considering the corre-
lation change, the performance degrades. Similar obser-
vations are observed in Table 3. Note that there is no
F1-measure results of Kmeans, GAKK, LSTM-AE and
DAGMM because they are not supervised methods.

4.2.2 Performance of Anomaly Detection (Task
2) We evaluate the effectiveness of MCDA on the task
of on-line early anomaly detection. We compare MCDA
with LSTM-AE and DAGMM. Figs. 5 shows the results
on the Showcase data. The red dots indicate the
time of anomalies labeled by users. Higher anomaly
score indicates higher probability of anomaly. We use
Showcase 34 as the training data for MCDA and show
the detection results on the data of Showcase 28, which
has two reported anomalies. The results on other
showcases are similar thus are omitted. According to
Figs. 5(a) and 5(b), both LSTM-AE and DAGMM can
only detect the second anomaly. In Fig. 5(c), MCDA
succeeds in detecting incipient faults of both anomalies
with less false positives, which verifies its effectiveness
to detect anomaly precursors. Similar observations can
be made on Cyber-physical system dataset that are
included in the supplementary materials.

4.2.3 Interpreting When and Where of Precur-
sors (Task 3) We use the Showcase 28 data to eval-
uate the ability of MCDA to detect the anomaly pre-
cursor. One positive bag is shown in the upper part
of Fig. 6(a). The precursor annotated by domain ex-
perts is located in the last several time steps. The blue
line at bottom of Fig. 6(a) indicates the attention val-
ues generated by MCDA for different instances. We can
see that the attention value of the last period is signif-
icantly larger than others, which demonstrates MCDA
detects the time location of precursor successfully. The
six variables with the highest attention values in the last
instance are shown in Fig. 6(b). They changed sharply
during the interval of precursor, which indicates they are
highly correlated with the anomaly afterwards. The six
variables with the lowest are shown in Fig. 6(c) and they
keep constant. The variable attention of these twelve
variables is shown in Fig. 6(d). The attention values
of the six variables in Fig. 6(b) are larger than that of
the variables in Fig. 6(c), especially in the last two in-
stances. Based on the annotation of domain experts,
the six variables in Fig. 6(b) are the sensors related to
the anomaly, which verifies the ability of MCDA to de-
tect the sensor location of precursor. Results on another
positive bag and synthetic data are shown in the sup-
plementary materials.

4.2.4 Effectiveness of Mt The term Mt in the cell
structure enables MCDA to use the variable correlation
to improve its anomaly detection performance. To ver-
ify it, we applied MCDA-M that does not utilize Mt.
We use Showcases 28 and 34 as the training set respec-
tively and test the precursor case from Showcase 29.
The ROC (receiver operating characteristic) curves of
MCDA and MCDA-M are shown in Fig. 7. It is ob-
served the area under the ROC curve of MCDA is larger
than that of MCDA-M, which verifies the effectiveness
of Mt. Besides, from Tables 2, MCDA outperformed
MCDA-M, which also indicates the correlation informa-
tion between sensory variables utilized in MCDA can
improve the anomaly detection performance.
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(d) Variable attention distribu-
tion across instances

Figure 6: The precursor detection result on a positive bag from the Showcase data. The precursor is located in
the last several time steps.

MCDA
MCDA-M

(a) Showcases 28, 29

MCDA
MCDA-M

(b) Showcases 29, 34

Figure 7: Comparison of precursor detection results.

(a) Varying λ (b) Varying η

Figure 8: Parameter sensitive analysis.

4.2.5 Parameter Sensitivity We select two impor-
tant parameters, the regularization term λ in the ob-
jective function and the threshold η in the contrastive
loss, and study how they will affect the performance of
MCDA. We study their influence on the precursor time
series detection. The result is shown in Fig. 8. We
conduct the experiments on the SC29C1 dataset. We
take λ=0.5 and η=10 as the basic setting, which obtains
the best performance. Figs. 8(a)-8(b) show the results
based on different values of λ and η. It is observed that
MCDA is not sensitive to both λ and η.

5 Related Work

There have been intensive interests in developing
anomaly detection methods because of its practical im-
portance [3–8]. The energy based deep models with
two decision criteria for anomaly detection were pro-
posed in [4]. Zong et al. [5] proposed a Gaussian mix-
ture model based anomaly detection method. Precursor
detection has drawn increasing research attention re-
cently [11,12,25]. Ning et al. [25] proposed a multi-task

spatio-temporal correlation graph model for precursor
mining coupled with event forecasting. [12] employed
the gated recurrent unit to detect the precursors for
aviation safety incidents. However, none of these ap-
proaches is able to detect both the time period and the
sensory variables the precursors are involved in.

Multi-instance learning (MIL) is popularly used to
address weakly-supervised learning problem [11, 13–15,
26]. For example, MI-SVM [13] modifies the stan-
dard SVM formulation so that the constraints on in-
stance labels correspond to the MIL assumption that at
least one instance in a positive bag is positive. Ning
et al. [11] utilized MIL to predict the protest events.
Some researchers combined MIL with deep neural net-
works [14,26]. Basically, none of these MIL approaches
is developed for anomaly precursor detection in multi-
variate time series.

Nowadays, the attention technique gets growing
popularity [14,15,18,27,28]. Qin et al. [27] combined the
hidden and cell states of all sensory variables with the
input of the k-th variable to produce the attention value
for the k-th variable. A network architecture that solely
relied on an attention mechanism was proposed in [18].
Our work is also related to some recent work on ten-
sorizing LSTM [17,29]. For example, the authors in [29]
utilized a tensorized hidden state to learn independent
feature representation for different variables. Basically,
these approaches are designed for time series prediction
rather than anomaly precursor detection. Besides, the
hidden state in our model explicitly contains the correla-
tion information between sensory variables, which helps
MCDA detect the precursor of the anomaly resulting
from the correlation change between sensory variables.

6 Conclusion

In this paper, we propose a method MCDA to identify
features of anomaly precursors, which enables detection
of future anomalies in early stage. MCDA incorporates
multi-instance learning to deal with the uncertainty of
precursor period. With the tensorized RNN, MCDA
is able to learn the hidden representations of different
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variables capturing information from a certain variable
of the input, meanwhile considers the correlation of pair-
wise time series. Its dual attention module enables
MCDA to interpret when and where the precursor
symptoms show up. Extensive experimental results
demonstrate the effectiveness of MCDA.
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