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Abstract Signed directed social networks, in which the

relationships between users can be either positive (indi-

cating relations such as trust) or negative (indicating rela-

tions such as distrust), are increasingly common. Thus the

interplay between positive and negative relationships in

such networks has become an important research topic.

Most recent investigations focus upon edge sign inference

using structural balance theory or social status theory.

Neither of these two theories, however, can explain an

observed edge sign well when the two nodes connected by

this edge do not share a common neighbor (e.g., common

friend). In this paper, we develop a novel approach to

handle this situation by applying a new model for node

types and use the proposed model to perform link sign

prediction and link ranking. Initially, we analyze the local

node structure in a fully observed signed directed network,

inferring underlying node types. The sign of an edge

between two nodes must be consistent with their types; this

explains edge signs well even when there are no common

neighbors. We show, moreover, that our approach can be

extended to incorporate directed triads, when they exist,

just as in models based upon structural balance or social

status theory. We compute Bayesian node types within

empirical studies based upon partially observed Wikipedia,

Slashdot, and Epinions networks in which the largest net-

work (Epinions) has 119K nodes and 841K edges. Based

upon the proposed features, we present the link sign pre-

diction and link ranking models subsequently. We show

that our approaches yield better performance than state-of-

the-art approaches for these two tasks based upon three

signed directed networks.

Keywords Link sign prediction � Link ranking � Edge

sign prediction � Signed social networks

1 Introduction

With the rapid emergence of social networking websites,

e.g., Facebook, Twitter, LinkedIn, Epinions, etc., a con-

siderable amount of attention has been devoted to investi-

gating the underlying social mechanisms in order to

enhance users’ experiences (Liben-Nowell and Kleinberg

2007; Jiang et al. 2010; Leskovec et al. 2010c; Kadushin

2012). Traditional social network analysis concerns itself

primarily with unsigned social networks such as Facebook

or Myspace which can be modeled as graphs, with nodes

representing entities, and positively weighted edges rep-

resenting the existence of relationships between pairs of

entities. Recently, signed directed social networks, in

which the relationships between users can be either posi-

tive (indicating relations such as trust) or negative (indi-

cating relations such as distrust), are increasingly common.

For instance, in Epinions (Guha et al. 2004), which is a

product review website with an active user community,

users can indicate whether they trust or distrust other users

based upon their reviews; in Slashdot (Lampe et al. 2007;

Brzozowski et al. 2008), which is a technology-related

news website, users can tag each other as ‘‘friend’’ or ‘‘foe’’
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based upon their comments. Such a signed directed net-

work can be modeled as a graph expressed as an asym-

metric adjacency matrix in which an entry is 1 (or �1) if

the relationship is positive (or negative) and 0 if the rela-

tionship is absent.

One of the fundamental problems in signed social

network analysis is edge sign inference (also named as

link sign prediction in this work) (Guha et al. 2004;

Leskovec et al. 2010a), i.e., inferring the unknown trust or

distrust relationship given the existence of a particular

edge. Another important problem is link ranking, i.e.,

given a user, we aim to rank people this user is interested

in (i.e., positive links) on the top of the ranking list,

people this user distrusts (or dislikes) (i.e., negative links)

at the bottom. The success for both of these two tasks

relies on how to explain the edge signs in signed social

networks effectively. To address this issue, many

approaches have been developed based upon two main

social–psychological theories, i.e., structural balance

theory (Heider 1946; Cartwright and Harary 1956) and

social status theory (Leskovec et al. 2010b). Structural

balance theory is more well-known and it states that

people in signed networks tend to follow the rules that

‘‘the friend of my friend is my friend’’, ‘‘the enemy of my

friend is my enemy’’, etc. Social status theory, which is

implicit in Guha et al. (2004), further exploited by Les-

kovec et al. (2010b), and based upon a foundation in

social psychology (Kadushin 2012), considers a positive

directed edge to indicate that the initiator of the edge

views the recipient as having higher status and a negative

directed edge to indicate that the recipient is viewed as

having lower status. The relative levels of status deter-

mine the allowed sign-direction pairs for an edge

assuming that this edge exists.

Although both structural balance theory and social status

theory have proved useful for explaining the signs of edges

in signed networks, neither is suitable for explaining an

observed edge when the two nodes connected by this edge

share no common neighbor (e.g., common friend), and in

fact, structural balance theory simply does not apply to this

situation. Since many real-world social networking graphs

tend to be very sparse, this is the case for a large fraction of

their edges. To better explain the observed edge signs in

general so as to facilitate the underlying link sign predic-

tion and link ranking tasks, in this paper we develop a

novel approach to address this issue by applying a new

model for node types.

To summarize the contributions of this paper:

• We explore the underlying local node structures in fully

observed signed directed networks, recognizing that

there are 16 different types of node and each type of

node constrains both its incoming node types and its

outgoing node types, i.e., the signs of their edges must

be consistent with their types.

• We show that node type features can be extended to

incorporate structural balance theory or social status

theory, to help make predictions for those edges whose

endpoints have common neighbors.

• For the purpose of practical applications, we derive

Bayesian node features (including Bayesian node type

and Bayesian node properties) based upon partially

observed signed directed networks.

• We present link sign prediction and link ranking

algorithms based upon the proposed Bayesian node

features and node features, respectively.

• We conduct empirical studies based upon three real-

world datasets and show that our proposed approaches

can outperform state-of-the-art algorithms.

The rest of this paper is organized as follows. Section 2

reviews the related work. Section 3 briefs the datasets we

used for study. Section 4 presents node types in fully

observed networks. Section 5 introduces Bayesian node

features in partially observed networks. Section 6 presents

the link sign prediction and link ranking approaches. Sec-

tions 7 and 8 show the experiment results for link sign

prediction and link ranking, respectively. We conclude this

work in Sect. 9.

2 Related work

In the past few years, many approaches have been devel-

oped to explore different aspects of signed social networks

(Guha et al. 2004; Chiang et al. 2011; Hsieh et al. 2012; Li

et al. 2015; Yang et al. 2011, 2012; Ye et al. 2013;

Shahriari and Jalili 2014; Song and Meyer 2014, 2015),

ranging from edge sign prediction (also named as link sign

prediction in this work) (Leskovec et al. 2010a), link rec-

ommendation (Liben-Nowell and Kleinberg 2007) to

community detection (Kunegis et al. 2010; Anchuri and

Magdon-Ismail 2012). Most of these approaches are based

upon structural balance theory or social status theory.

2.1 Structural balance theory

The investigation of signed networks (Heider 1946; Cart-

wright and Harary 1956; Frank and Harary 1979; Davis

1967) can be traced back to the 1920s. Heider (1946) first

formulated structural balance theory within social psy-

chology. After that, Cartwright and Harary (1956) formally

provided the notion of structural balance with undirected

triads (as shown in Fig. 1) and proved its necessity and

sufficiency by utilizing the mathematical theory of graphs.

Intuitively, their theory can be explained as: ‘‘the friend of
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my friend is my friend’’ (T1), ‘‘the enemy of my friend is

my enemy’’ (T2), ‘‘the friend of my enemy is my enemy’’

(T2), and ‘‘the enemy of my enemy is my friend’’ (T2).

Conceptually, their theory claims that T1 and T2 are bal-

anced while T3 and T4 are unbalanced. Davis (1967) further

generalized this theory to weak structural balance theory by

allowing all the edges of triads to be negative, i.e., ‘‘the

enemy of my enemy is my enemy’’ (T4 is also balanced).

Note that these two balance theories were initially intended

for modeling undirected networks, although they have been

commonly applied to directed networks by disregarding the

direction of edges (Leskovec et al. 2010b). We remark that

structural balance theory is also popular for community

detection in signed networks (Kunegis et al. 2010; Anchuri

and Magdon-Ismail 2012).

2.2 Social status theory

Guha et al. (2004) first considered the edge sign prediction

problem by developing a trust propagation framework to

predict the trust (or distrust) between pairs of nodes. In

their framework, they calculate a combined matrix which is

a linear combination of four different one-step propaga-

tions, i.e., direct propagation, co-citation, transpose trust,

and trust coupling. Then the trust and distrust propagations

are achieved by calculating a linear combination of powers

of this combined matrix. A shortcoming of this approach is

that it cannot be explained by structural balance theory

(Cartwright and Harary 1956; Heider 1946).

Motivated by this trust propagation idea (Guha et al.

2004) and informed by social psychology (Kadushin 2012).

Leskovec et al. (2010b) developed social status theory to

explain signed directed networks. In this theory, they

assume that if there is a positive edge from x to y, it rep-

resents the fact that x regards y as having higher status than

himself (or herself), and if there is a negative edge from

x to y, it represents the fact that x regards y as having lower

status than himself (or herself). Assuming everyone in the

system agrees on the same status ordering, we can infer

signs easily as long as the existence and direction of edges

are available. When prior status information for x and y is

not available, we can still perform sign inference using the

context provided by the rest of the network. For instance, in

Fig. 2, the sign of x to y can be inferred by referring to the

status of z, and is unambiguous in half the cases.

2.3 Approaches for link sign prediction

Based upon structural balance theory and social status

theory, Leskovec et al. (2010a) selected degree features

and directed triad features for edges in signed directed

networks. Specifically, for the edge from node x to node y,

they consider seven degree features, i.e., dþinðyÞ and d�inðyÞ,
the number of incoming positive and negative edges to y,

respectively; dþoutðxÞ and d�outðxÞ, the number of outgoing

positive and negative edges from x, respectively; C(x, y),

the number of common neighbors (i.e., embeddedness) of

node x and node y; dþoutðxÞ þ d�outðxÞ and dþinðyÞ þ d�inðyÞ, the

total out-degree of x and the total in-degree of y, respec-

tively. Since each of the 16 triad types in Fig. 2 provides

different evidence for the sign of the edge from node x to

node y, directed triad features of this edge are encoded in a

16-dimensional vector counting the number of triads of

each type in which this edge is involved. After computing

the degree or directed triad features for the edge from x to

y, a logistic regression classifier is used to combine the

evidence from these individual features into an edge sign

prediction.

Subsequently, Chiang et al. (2011) extended this

approach by considering longer cycles (e.g., quadrilaterals,

pentagons) while ignoring the directions of edges to reduce

the computational complexity. Hsieh et al. (2012) formu-

lated the sign inference problem as a low-rank matrix

Fig. 1 Undirected signed triads. Structural balance theory states that

T1 and T2 are balanced, while T3 and T4 are unbalanced. Weak

structural balance theory states that T1, T2, and T4 are balanced, while

only T3 is unbalanced

Fig. 2 All contexts of (x, y; z). The red edge’s sign is not available; it

can be determined based upon x’s and y’s interactions with z. Take t1
for example: since y gives z a positive evaluation and z gives x a

positive evaluation, x tends to give y a negative evaluation because

x has higher status (color figure online)
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completion (approximation) problem based upon weak

balance theory. Note that this approach was originally

developed to explain a signed undirected network which is

associated with a symmetric adjacency matrix and is dif-

ferent from our setting (signed directed networks) in this

paper.

Although many approaches based upon structural bal-

ance theory or social status theory have been developed to

perform edge sign prediction (link sign prediction) in

signed networks, they cannot work well when few topo-

logical features, i.e., undirected (or directed) triads and

long-range cycles, are available in the network. Since many

real-world signed directed social networking graphs are

very sparse, the efficacy of methods based upon these

theories is limited. A more general approach for such

networks is necessary.

2.4 Approaches for link ranking

How to conduct link ranking in signed social networks is

an interesting problem to investigate. In the past few years,

various approaches for link prediction and recommender

systems have been developed and most of them can be

adapted to perform link ranking.

Among these approaches, link prediction methods,

including common neighbors (Liben-Nowell and Kleinberg

2007), Jaccard’s coefficient (Liben-Nowell and Kleinberg

2007), Adamic/Adar (Adamic and Adar 2003), and Katz

(Katz 1953), utilize explicit topological features of the

networks to perform link ranking. Recommender systems,

e.g., singular value decomposition (SVD), matrix factor-

ization (MF) (Salakhutdinov and Mnih 2007; Koren et al.

2009; Song et al. 2014), Bayesian probabilistic ranking

with matrix factorization (BPR þ MF) (Rendle et al.

2009), and Listwise learning to rank with matrix factor-

ization (List þ MF) (Shi et al. 2010), extract latent fea-

tures from the networks so as to conduct link ranking.

These approaches, however, may not perform well on

signed directed social networks since they are not specially

designed for this purpose.

3 Datasets

In this paper, we consider three well-known signed directed

social networks: Wikipedia (Burke and Kraul 2008),

Slashdot (Kunegis et al. 2009; Lampe et al. 2007) and

Epinions (Guha et al. 2004)1:

• The Wikipedia data comprise a voting network for

promoting candidates to the role of admin. The voters,

half coming from existing admins and another half

coming from ordinary Wikipedia users, can indicate a

positive (for supporting) or negative (for opposing) vote

with respect to the promotion of a candidate (Leskovec

et al. 2010a).

• Slashdot is a social website focusing on technology-

related news. In Slashdot Zoo, users can tag each other

as friends (like) or foes (dislike) based upon comments

on articles.

• Epinions, which is a product review website, is a trust

network in which users can indicate whether they trust

or distrust each other based upon their reviews.

The detailed statistics of these datasets are provided in

Table 1. Note that in all three datasets, the majority of the

edges is positive. Due to this imbalance, simply predicting

all edges to be positive would yield 78.78, 77.4 %, and

85.0 % accuracy across the three datasets. To show the

effectiveness of any approach, it should achieve substan-

tially better performance than this.

Figure 3 shows the fraction of edges versus edge

embeddedness (Granovetter 1985) (the number of com-

mon neighbors of the two nodes connected by the edge)

for three datasets. We observe that the edges with zero

embeddedness comprise about 8.17, 47.90, 19.88 % of the

edges for Wikipedia, Slashdot, and Epinions, respectively.

Note that a large fraction of zero embeddedness edges

means that triad features (Leskovec et al. 2010a) cannot

work well for edge sign prediction. This is because the

entries of triad feature vector will be zero and thus the

triad features provide no evidence for edge sign

prediction.

4 Node types in fully observed networks

In this paper, a fully observed signed directed network

refers to a network in which there is no uncertainty about

the existence of any directed edge and its associated sign.

We consider a fully observed signed directed network as

a graph G ¼ ðV ;E;WÞ, where V is the vertex set of size n,

E is the edge set of size m, and W 2 Rn�n is the associated

signed adjacency matrix. Because G is a directed network,

W is an asymmetric matrix and can be represented as:

Table 1 Dataset statistics of three datasets, i.e., Wikipedia, Slashdot

and Epinions

Datasets Wikipedia Slashdot Epinions

Nodes 7118 82,144 119,217

Edges 103,747 549,202 841,372

þedges (%) 78.78 77.4 85.0

�edges (%) 21.21 22.6 15.0
1 These datasets are available online at http://snap.stanford.edu/data/.
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Wij ¼
1; if i trusts j

�1; if i distrusts j

0; otherwise

8
><

>:
ð1Þ

Note that Wij ¼ 0 represents no directed edge from node

i to node j.

In this section, we first investigate local node structures

within fully observed signed directed networks, recognize a

set of node types, show that these node types can be used to

explain real-world signed directed social networks, and

show how to encode a specific node in such networks.

Next, we explore how these node types interact with one

another and how these interactions can explain the edge

signs. Finally, we show our approach can be extended to

incorporate structural balance theory or social status

theory.

4.1 Node types

In our study, we focus on analyzing signed directed net-

works because they are more general and common than

signed undirected networks in real-world applications. For

instance, each of the three datasets we consider in this

paper is a signed directed network. Generally, signed

directed networks are sparse graphs in which nodes may be

categorized into four groups based upon whether they have

incoming edges and outgoing edges, i.e., nodes with nei-

ther incoming nor outgoing edges (e.g., N16 in Fig. 4),

nodes with only incoming edges (e.g., N4, N5, and N6 in

Fig. 4), nodes with only outgoing edges (e.g., N1, N2, and

N3 in Fig. 4), and nodes having both incoming and out-

going edges (e.g., N9, N14, N15, etc.). Moreover, both the

incoming edges and the outgoing edges of a given node can

be categorized into three classes, one class with only

positive edges, another class with only negative edges, and

the third class with a mixture of positive and negative

edges. Combining these two principles, the nodes in signed

directed networks can be categorized into 16 types, shown

in Fig. 4. Note that the edges in Fig. 4 only indicate the

types of the incoming or outgoing, i.e., they do not

represent the actual nonzero number of incoming (outgo-

ing) positive (negative) edges. The fractions of each node

type for the three real-world datasets are shown in Fig. 5.

4.1.1 The representation of node features

To represent each node effectively, in addition to its node

type N, we should consider its associated node properties,

i.e., the relative level of the number of positive (negative)

incoming edges dinðþÞ ðdinð�ÞÞ, and the relative level of

the number of positive (negative) outgoing edges doutðþÞ
(doutð�Þ).

First, we can use a 16-dimensional binary vector,

½1ðN ¼ N1Þ,1ðN ¼ N2Þ,..., 1ðN ¼ N16Þ�, to indicate the

node type. The indicator 1ðN ¼ NiÞ is 1 if N is the same as

Ni. Next, we can use a vector ½PinðþÞ;Pinð�Þ;
PoutðþÞ;Poutð�Þ� to denote the ratio of positive (negative)

incoming edges and that of positive (negative) outgoing

edges.

Intuitively, PinðþÞ, Pinð�Þ, PoutðþÞ, and Poutð�Þ rep-

resent the locally propagating properties of a node (node

property) and they can be calculated with

PinðþÞ ¼
dinðþÞ

dinðþÞ þ dinð�Þ þ e
ð2Þ

Pinð�Þ ¼
dinð�Þ

dinðþÞ þ dinð�Þ þ e
ð3Þ
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Fig. 3 The fraction of edges versus edge embeddedness for three datasets

Fig. 4 16 node types in signed directed networks. For N1 (node type

1), all the outgoing edges are positive. For N5, all the incoming edges

are negative. For N15, both the incoming edges and outgoing edges

are mixtures of positive edges and negative edges
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PoutðþÞ ¼
doutðþÞ

doutðþÞ þ doutð�Þ þ e
ð4Þ

Poutð�Þ ¼
doutð�Þ

doutðþÞ þ doutð�Þ þ e
; ð5Þ

where we set e ¼ 10�10 to avoid zero denominators. Fig-

ure 6 shows examples of these two parts of features for

node type N3, N11, and N15. Notice that PinðþÞ þ Pinð�Þ ¼
1 if there is any input edge, but this sum is zero if there are

none; so these features are not redundant. Also note that

node property is essentially different from degree features

because degree features aim to model a particular edge by

considering the initiator’s outgoing edges, recipient’s

incoming edges, and their common neighbors.

Note that although the node properties, i.e.,

½PinðþÞ;Pinð�Þ;PoutðþÞ;Poutð�Þ� implicitly indicate the

node type information, it is still useful to consider type

indication, i.e., ½1ðN ¼ N1Þ,1ðN ¼ N2Þ,...,1ðN ¼ N16Þ�.
Since the latter is not a linear combination of the former, it

can provide non-redundant information in the logistic

regression classifier we will describe in the Sect. 6.

4.2 The interaction of node types

We have shown there are 16 possible node types in any

signed directed network. Hence, theoretically there are 162

combinations of node types. Given a node of a certain type,

however, it usually can only connect to (or be reached

from) nodes in a subset of these types due to the compat-

ibility of both directions and signs. In other words, there

exists a logic to determine whether two nodes can be

reached or not and whether the sign should be positive

or negative. For instance, given a node of type N5, it

can only be connected from a node of type

N2; N3; N7; N9; N11; N13; N14; or N15 and the edge sign

can only be negative. Similarly, given a node of type N9, it

can only be connected from a node of type

N1; N3; N8; N10; N12; N13; N14; or N15 and connected to a

node of type N5; N6; N7; N10; N11; N12; N14, or N15.

Moreover, the edge sign is determined as positive and

negative, respectively.

Given an edge from x to y, based upon the combinations

of node type x and node type y, this edge can be catego-

rized into three classes. ‘‘þ’’ denotes the edge sign is

determined to be positive, ‘‘�’’ denotes the edge sign is

determined to be negative, and ‘‘?’’ denotes the edge sign

that cannot be determined by the interaction of current two

node types, i.e., the edge sign can be either positive or

negative. In our three datasets, there are 29,945, 250,487

and 500,309 determined edges (i.e., ‘‘þ’’ and ‘‘�’’) for

Wikipedia, Slashdot and Epinions, respectively, each a

large fraction of the total edges.

Although node types have shown their effectiveness for

explaining the edge signs in fully observed signed social

networks, there exists a fraction of the total edges for

which signs cannot be explained simply by node types. In

Fig. 5 The fractions of different

node types for the three datasets

Fig. 6 Two parts of the features

for node types N3, N11, and N15.

Notice that the first (last) two

numbers in the second part need

not sum to 1
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this case, we can incorporate structural balance or social

status theory with node types to address this issue.

4.3 Incorporating structural balance or social status

theory

As we described the node types and the interactions of

these node types in the previous subsections, we did not

need to consider whether there is any common neighbor for

a pair of nodes. We should, however, be aware that when

common neighbors exist for a pair of nodes, structural

balance or social status theory may help to explain the sign

of an edge between them.

In Fig. 7, for instance, since N13 has both positive and

negative outgoing edges and N15 has both positive and

negative incoming edges, the sign of the edge between

them cannot be determined by the interaction of these two

types. Since N13 and N15 have two common neighbors,

however, the sign of the edge between them may be

explained by either structural balance theory or social

status theory. Within structural balance theory, we can

disregard the directions of these two triads. From the red

(dotted) triad, we can infer the sign of the edge between

N13 and N15 to be positive based upon the rule that ‘‘my

friend’s friend is my friend’’. From the blue (dashed) triad,

on the contrary, we can infer the sign of this edge to be

negative based upon the rule that ‘‘my friend’s enemy is

my enemy’’. Within social status theory, since both the red

(dotted) triad and the blue (dashed) triad indicate that N13

has lower status than N15, they consistently imply that the

sign of the edge from N13 to N15 is positive.

To incorporate these directed triads as features, we use

the same approach as Leskovec et al. (2010a, b). Given an

edge from x to y, and a common neighbor z of x and y, the

edge between x and z can have four possible configurations,

i.e., x �!þ z, x �!� z, x �þ z, and x �� z. Similarly, there

are four possible signed edges between z and y. Hence we

can obtain 16 types of triads each of which may provide

different evidence about the sign of the edge from x to y.

5 Bayesian node features in partially observed
networks

In real-world applications, signed directed networks are

often partially observed, i.e., several edges’ signs are

unknown or hidden. For example, in the Wikipedia dataset,

we probably know that someone has voted on a candidate,

but we may not know this voter’s opinion. In this case, we

would like to infer this voter’s opinion by learning some

patterns based upon observed edges in the network. How-

ever, when these unobserved edges take different signs,

both the node types and node properties may change. In

this case, simple node features (including node types and

node properties) may not be capable of capturing the range

of possible unobserved signs and thus will be not reliable.

To address this issue, we extend node features to

Bayesian node features by considering prior knowledge

about unobserved signs in partially observed signed

directed networks.

Similarly to a fully observed signed directed network, a

partially observed signed directed network can also be

represented as a graph G ¼ ðV;E;WÞ, where V is the

vertex set of size n, E is the edge set of size m, and W 2
Rn�n is the associated signed adjacency matrix. Since G is

a directed network, W is an asymmetric matrix and can be

represented as:

Wij ¼

1; if i trusts j

�1; if i distrusts j

?; if an edge from i to j exists, but sign is unknown

0; otherwise

8
>>><

>>>:

ð6Þ

Wij ¼ 0 represents no directed edge from node i to node j.

In this section, we first introduce Bayesian node type,

show how to calculate it based upon both observed

(training) edges and unobserved (test) edges, and present

two ways to encode the interaction of Bayesian node types.

Next, we show how to calculate and represent Bayesian

node properties.

5.1 Bayesian node type

Given any node in a partially observed network, assuming

u denotes the number of unobserved incoming edges and v

denotes the number of unobserved outgoing edges, let

PuðþÞ [or Puð�Þ] represent the prior probability of

incoming edges being positive (negative) and PvðþÞ [or

Pvð�Þ] represent the prior probability of outgoing edges

being positive. From these probabilities, we can calculate

its probability distribution over node types.

Take a node of type N1 for example (as shown in Fig. 8),

if u ¼ 0 and v ¼ 0, its node type does not change; if u ¼ 0
Fig. 7 Examples for incorporation of structural balance theory or

social status theory into the node types interaction
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and v[ 0, it has ðPvðþÞÞv probability to be N1 and 1�
ðPvðþÞÞv probability to be N6; if u[ 0 and v ¼ 0, it has

ðPuðþÞÞu probability to be N8, ðPuð�ÞÞu probability to be

N10, and 1� ðPuðþÞÞu � ðPuð�ÞÞu probability to be N12; if

u[ 0 and v[ 0, it has ðPuðþÞÞuðPvðþÞÞv probability to be

N8, ðPuð�ÞÞuðPvðþÞÞv probability to be N10, ð1�
ðPuðþÞÞu � ðPuð�ÞÞuÞðPvðþÞÞv probability to be N12,

ðPuðþÞÞuð1� ðPvðþÞvÞÞ probability to be N13,

ðPuð�ÞÞuð1� ðPvðþÞvÞÞ probability to be N14, and

ð1� ðPuðþÞÞu � ðPuð�ÞÞuÞð1� ðPvðþÞvÞÞ probability to

be N15. This calculation determines a 16-dimensional

vector which encodes the distribution of possible node

types. Note that similar vectors can be calculated for other

types of nodes. We do not specify the calculation for each

node type due to the space limit.

To initialize PuðþÞ and PvðþÞ, we can also use the

Bayesian node properties PinðþÞ and PoutðþÞ, i.e.,

PuðþÞ ¼ PinðþÞ and PvðþÞ ¼ PoutðþÞ, to claim that each

unobserved edge obeys Bayesian node properties (i.e.,

local priors).

Given an observed (training) edge connecting node x

and node y, we can obtain two vectors Vx 2 R16 and Vy 2
R16 by calculating their Bayesian node types. To encode

the interaction of Bayesian node types, we can (1) simply

concatenate these two vectors to form a 32-dimensional

vector; or (2) calculate the Kronecker product of these two

vectors, i.e., VxbVy, and form a 256-dimensional vector.

We should be aware that the vector formed by the Kro-

necker product encodes the probability distribution of dif-

ferent node type interactions.

Given an unobserved (test) edge connecting node x and

node y, we should consider both possible signs as shown in

Fig. 9. Specifically, we first decompose this kind of inter-

action into two separate cases, i.e., the edge sign being

positive and negative. Next, we calculate the Bayesian

node types, represent their interactions (either concatena-

tion vector or Kronecker product vector) of both cases.

Finally, we calculate the linear combination of these two

cases with respect to the prior probability of the signs [i.e.,

PðþÞ and Pð�Þ] over observed edges.

5.2 Bayesian node properties

Given a node in a partially observed network, assuming u

denotes the number of unobserved incoming edges and v

denotes the number of unobserved outgoing edges, by

assigning to these uþ v edges different signs, the node

properties also change.

To capture the range of possible signs of unobserved

edges, we should consider Bayesian node properties, i.e.,

incorporating prior information, namely the expected

number of incoming positive (negative) and outgoing

positive (negative) edges, with the number of positive

(negative) incoming edges dinðþÞ ðdinð�ÞÞ or outgoing

edges doutðþÞ ðdoutð�ÞÞ.
Specifically, the Bayesian node properties are repre-

sented as following:

PinðþÞ ¼
dinðþÞ þ PðþÞu

dinðþÞ þ dinð�Þ þ uþ e
ð7Þ

Pinð�Þ ¼
dinð�Þ þ Pð�Þu

dinðþÞ þ dinð�Þ þ uþ e
ð8Þ

PoutðþÞ ¼
doutðþÞ þ PðþÞv

doutðþÞ þ doutð�Þ þ vþ e
ð9Þ

Poutð�Þ ¼
doutð�Þ þ Pð�Þv

doutðþÞ þ doutð�Þ þ vþ e
; ð10Þ

where PðþÞ is the prior probability of positive edges and

Pð�Þ is the prior probability of negative edges.

To encode the interaction of Bayesian node properties,

we simply concatenate two of the Bayesian node properties

vectors to form an 8-dimensional vector.

As in the previous section, when common neighbors

exist for a pair of nodes, structural balance or social status

theory may be incorporated with Bayesian node features to

help explain the sign of an edge between them.

Fig. 8 The possible node of type 1 with different u and v

Fig. 9 Example of calculating the Bayesian node type interaction

when two nodes are connected with an unobserved edge. Note that the

Bayesian node types of N10, N11, and N14 should be calculated similar

to N1 in Fig. 8
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6 Link sign prediction and link ranking
with proposed features

6.1 Link sign prediction

Given a fully observed signed directed network, the node

type interactions, extended to triads with structural balance

or social status theory, are useful to explain the edge signs.

Partially observed signed directed networks, however, are

too complicated to fully conform to the rules of simple

node type interactions. Also, as illustrated in Fig. 7, if there

are multiple common neighbors for N13 and N15, structural

balance theory (or social status theory) may conflict with

itself. To address this issue, we can utilize a logistic

regression to combine the evidence from the interaction of

Bayesian node features and triad features.

We now consider the features collected for link sign

prediction with logistic regression. The features we utilize

can be divided into three classes. One class comes from

Bayesian node type interaction (32 or 256-dimensional

vector); another class is based upon Bayesian node prop-

erties interaction (8-dimensional vector); the last class is

triads (16-dimensional vector).

Given a partially observed signed directed social net-

work, we first use a logistic regression to fit the features of

observed edges (training data) and then utilize the learned

coefficients to linearly combine the evidence from each

individual feature of unobserved edges (test data) so as to

predict the sign. The logistic regression can be written in

the following form:

Pð‘ ¼ 1jfÞ ¼ 1

1þ exp½�ðwTf þ w0Þ�
; ð11Þ

where ‘ 2 f0; 1g is the label, 1 represents positive edge

while 0 represents negative edge. f 2 R2d is the feature

vector, and ½w;w0� 2 R2dþ1 are the coefficients we estimate

from the features of observed edges (training data).

6.2 Link ranking

Given a user, link ranking aims to rank people this user is

interested in (i.e., positive links) on the top of the ranking

list, people this user distrusts (or dislikes) (i.e., negative

links) at the bottom. By modeling the observed positive

and negative links, we expect to rank the unknown status

(i.e., unobserved) links such that positive links are on the

top and negative links are at the bottom. Since the area

under the receiver operating characteristic (ROC) curve

(AUC) (Hanley and Mcneil 1982) is a classical metric for

ranking, we first introduce this metric and then present a

link ranking approach by optimizing AUC.

6.2.1 AUC

Given a binary classifier f and a training set ðxi; yiÞni¼1 with

xi 2 Rd and yi 2 f�1; 1g, let P ¼ fxi j yi ¼ 1g be the set

of positive samples and N ¼ fxi j yi ¼ �1g the set of

negative samples. Then the AUC is defined by:

AUC ¼ 1

jPjjN j
X

xi2P

X

xj2N
IðfðxiÞ[ fðxjÞÞ; ð12Þ

where Ið�Þ is an indicator function which is 1 if the con-

dition in the parenthesis is satisfied and 0 otherwise; jPj
and jN j are the numbers of positive samples and negative

samples, respectively. AUC is the value of the Wilcoxon–

Mann–Whitney statistic (Hanley and Mcneil 1982) which

is essentially the probability that a random element of one

set f ðxiÞ is larger than a random element of another f ðxjÞ.
With an ideal ranking list, AUC should be 1 representing

each positive sample is ranked higher than all the negative

samples. For a random ranking, AUC will be 0.5.

6.2.2 Model

Since AUC is a reasonable way to quantify the ranking

performance, a ideal link ranking model would be expected

to optimize AUC directly. To achieve this purpose, we

utilize the log-likelihood of sigmoid function as a convex

surrogate for the indicator function in Eq. 12 as shown in

Fig. 10. Let gi 2 Rd represent the feature for node i, the

link ranking model can be given as:

OðMÞ¼�
X

ði;jÞ2P

X

ði;kÞ2N
log

�
1þexpð�ðgTi Mgj�gTi MgkÞÞ

�

�k
2
kMk2

F ;

−5 0 5
−2

−1

0

1

2

x

fu
nc

I(x>0)
s(x)=1/(1+exp(−x))
t(x)=log(s(x))

Fig. 10 Indicator function (red), sigmoid function (green), and log-

likelihood of sigmoid function (blue) (color figure online)
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where the second term is a regularization term to prevent

over-fitting, ði; jÞ 2 P denotes that the edge between node i

and node j is positive, ði; kÞ 2 N represents that the edge

between node i and node k is negative, M 2 Rd�d is the

model parameter, and k[ 0 controls the trade-off between

these two terms.

Since OðMÞ is convex with respect to M, gradient ascent

approach can be utilized to obtain a global optimal.

Specifically, the partial derivative of OðMÞ given M is

written as:

oOðMÞ
oM

¼
X

ði;jÞ2P

X

ði;kÞ2N

expð�ðgTi Mgj � gTi MgkÞÞ
1þ expð�ðgTi Mgj � gTi MgkÞÞ

�

giðgj � gkÞT � kM; ð14Þ

For practical applications, since the number of positive

links jPj and the number of negative links jN j may be

relatively large which will make the computation of the

gradient be infeasible, stochastic gradient ascent can be

used as shown in Algorithm 1.

7 Experiment: link sign prediction

In this section, we conduct link sign prediction (i.e., edge

sign prediction) based upon Wikipedia (Burke and Kraul

2008), Slashdot (Kunegis et al. 2009; Lampe et al. 2007)

and Epinions (Guha et al. 2004). We first construct three

fully observed asymmetric adjacency matrices (as in

[Eq. (1)] based upon these three datasets. Next, for each

adjacency matrix, we randomly remove 10 % of edges’

signs and form a partially observed network [as in Eq. (6)].

Subsequently, we calculate Bayesian node features (in-

cluding Bayesian node types and Bayesian node properties)

and triad features for both observed (training) and unob-

served (test) edges. Then, we estimate the parameters of

logistic regression based upon the features of observed

edges and make predictions based upon the features of

unobserved edges. In our experiment, we repeat this pro-

cedure 5 times and report the average prediction accuracy

and standard deviation for each approach. The baseline

approaches are implemented with identical parameter set-

tings as in the original works for fair comparisons.

7.1 Step by step justification

We examine the effectiveness of the proposed features by

testing each component step by step. We use NT and NP to

denote node types and node properties, respectively, utilize

BNT and BNP to represent Bayesian node types and

Bayesian node properties, respectively, use BNTC to rep-

resent encoding the interaction of Bayesian node types with

concatenation, utilize BNTK to denote encoding the

interaction of Bayesian node types with the Kronecker

product, use BNPC to represent the interaction of Bayesian

node properties, and denote triad features (Leskovec et al.

2010a, b) with Triad.

Table 2 shows the results of step by step justification for

edge sign prediction on three datasets. We observe that the

interaction of Bayesian node types (BNTC and BNTK) gen-

erally outperforms simply predicting all edges to be positive.

This demonstrates that the interaction of Bayesian node types

is useful to explain the edge signs in partially observed social

networks. We also observe that encoding Bayesian node types

with the Kronecker product achieves better performance than

concatenation on Wikipedia and Slashdot, while concatena-

tion performs slightly better on Epinions.

By concatenating BNTC and BNTK with BNPC, we

observe that BNTC þ BNPC and BNTK þ BNPC con-

sistently outperforms BNTC and BNTK. This is because

BNPC provides more specific information about the

incoming positive (negative) and outgoing positive (nega-

tive) edges of nodes.

Finally, we show that, by concatenating BNTC þ
BNPC and BNTK þ BNPC with triad features to form

BNTC þ BNPC þ Triad and BNTK þ BNPC þ Triad, the

Table 2 Step by step

justification results on

Wikipedia, Slashdot, and

Epinions [accuracy: % and

standard deviation (std): %]

Wikipedia Slashdot Epinions

BNTC 83.55 (±0.56) 80.32 (±0.15) 89.65 (±0.04)

BNTK 83.84 (±0.12) 80.89 (±0.08) 88.34 (±0.29)

BNTC þ BNPC 87.03 (±0.15) 84.48 (±0.06) 92.96 (±0.03)

BNTK þ BNPC 86.98 (±0.19) 84.90 (±0.09) 92.46 (±0.03)

BNTC þ BNPC þ Triad 87.28 (±0.26) 85.24 (±0.11) 93.61 (–0.02)
BNTK þ BNPC þ Triad 87.37 (–0.22) 85.65 (–0.11) 93.13 (±0.04)

The best performance is indicated in bold
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performances are consistently slightly improved. This is

because triad features are useful in explaining the edge signs

when common neighbors are available.

The step by step justification not only examines the

effectiveness of each component of the proposed Bayesian

node features, but also shows that the Bayesian node fea-

tures can incorporate structural balance or social status

theory in the form of triad features.

7.2 Link sign prediction

In this subsection, we compare Bayesian node features

(including Bayesian node types and Bayesian node prop-

erties) plus triad features with state-of-the-art approaches,

i.e., degree features (Leskovec et al. 2010a), triad features

(Leskovec et al. 2010b), degree þ triad features (Leskovec

et al. 2010a, b), longer cycles features (Chiang et al. 2011),

and low-rank modeling (Hsieh et al. 2012). Note that in our

experiment we extract longer cycles features based upon

the partially observed asymmetric adjacency matrix and

report the best performance over order 3, 4, and 5 for

comparison. Also notice that low-rank modeling (Hsieh

et al. 2012) can only theoretically analyze the undirected

signed networks; in our experiment, we adapt it and apply

it to partially observed signed directed networks.

In Table 3, we compare BNTC?BNPC?Triad and

BNTK þ BNPC þ Triad with the other five state-of-the-

art approaches. We observe that BNTC þ BNPC þ Triad

and BNTK þ BNPC þ Triad consistently outperform the

other five algorithms. Note that these two variants achieve

best accuracies of 87.37 ð�0:22Þ%, 85.65 ð�0:11Þ%, and

93.61 ð�0:02Þ% over Wikipedia, Slashdot and Epinions,

respectively. This is because these two variants not only

can explain the edge signs well when common neighbors

are not available but also can effectively explain the edge

signs when common neighbors exist.

In Fig. 11, we compare BNTK þ BNPC þ Triad with

degree features, triad features, and degree þ triad features

at different levels of embeddedness (the number of com-

mon neighbors). In general, we observe that when the

minimum embeddedness increases, the performance of

BNTK þ BNPC þ Triad increases. This is because

structural balance theory and social status theory are

incorporated into BNTK þ BNPC þ Triad in the form of

triads (Triad) and are effective in explaining edge signs

when common neighbors exist. Moreover, we notice that

BNTK þ BNPC þ Triad generally outperforms other

methods with different levels of embeddedness. This is

because BNTK þ BNPC þ Triad leverages the power of

node type interactions as well as the power of structural

balance or social status theory in the form of triad features

(Triad).

7.3 Cross-dataset evaluation

We conduct cross-dataset evaluation with degree features,

triad features, degree ? triad features, and Bayesian node

features plus triad features in the form of

BNTK þ BNPC þ Triad on these three datasets. The aim

is to examine the generalization capability of each

approach. In particular, given each type of features, we

train them on one dataset (e.g., Wikipedia) and evaluate the

edge sign prediction performance on another (e.g., Slash-

dot). For each pair of datasets, the test is conducted 5 times

based upon the random selected test sets. We report the

average accuracies of different approaches in Table 4.

We observe that Bayesian node features plus triad fea-

tures in the form of BNTK þ BNPC þ Triad can achieve

the best performance on each pair of the cross-dataset

evaluation. This illustrates that Bayesian node features plus

triad features not only are useful on intra-dataset evalua-

tion, but also have good generalization capability. This is

extremely helpful for edge sign prediction in signed net-

works with few training examples.

8 Experiment: link ranking

To conduct link ranking based upon Wikipedia (Burke and

Kraul 2008), Slashdot (Kunegis et al. 2009; Lampe et al.

2007), and Epinions (Guha et al. 2004). Given a fully

Table 3 Edge sign prediction

accuracies [accuracy: %

standard deviation (std): %]

Datasets Wikipedia Slashdot Epinions

Degree features (Leskovec et al. 2010a) 83.58 (±0.60) 83.76 (±0.13) 90.39 (±0.25)

Triad features (Leskovec et al. 2010b) 82.46 (±0.52) 80.42 (±0.21) 90.42 (±0.13)

Degree?triad features (Leskovec et al. 2010a, b) 84.87 (±0.08) 84.91 (±0.02) 92.25 (±0.15)

Longer cycles features (Chiang et al. 2011) 84.04 (±0.39) 83.83 (±0.34) 90.64 (±0.28)

Low-rank modeling (Hsieh et al. 2012) 84.93 (±0.54) 84.57 (±0.46) 92.48 (±0.32)

BNTC þ BNPC þ Triad 87.28 (±0.26) 85.24 (±0.11) 93.61 (–0.02)
BNTK þ BNPC þ Triad 87.37 (–0.22) 85.65 (–0.11) 93.13 (±0.04)

The best performance is indicated in bold
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observed asymmetric adjacency matrix associated to one of

the three datasets, we randomly remove 20 % of edges to

form a test set (Xtest) and use the remaining edges as the

training set (Xtrain). Then, we calculate node features (in-

cluding node types and node properties) based upon

training set and test set. In the experiment, we aim to learn

model parameters M in Eq. 13 with Algorithm 1 by ranking

all observed positive links above all negative links in the

training stage. In the test stage, we aim to conduct per-

sonalized link ranking, i.e., given each user, we expect to

rank unobserved links (i.e., unknown status links indicating

relationship of either trust or distrust) such that positive

links are ranked on top and negative links are ranked at the

bottom of a ranking list. Although our proposed model has

the potential to rank all unobserved links for a given user,

we only evaluate the effectiveness of the proposed model

on Xtest since we only have limited number of ground truth

labels (i.e., Xtest) for unobserved links.

We repeat this procedure 5 times and report the average

AUC, mean average precision (MAP), and their standard

deviations for the proposed approach as well as baseline

approaches.

To study the effectiveness of node features [including node

types (NT) and node properties (NP)] for link ranking, we

compare it with four baseline approaches, i.e., common

neighbors (CN) (Liben-Nowell and Kleinberg 2007) which is

a representative explicit feature based approach, matrix fac-

torization (MF) (Koren et al. 2009), Bayesian probabilistic

ranking with matrix factorization (BPR þ MF) (Rendle et al.

2009), and List þ MF (Shi et al. 2010) which are three latent

feature based approaches.

For MF, we first reconstruct the observed entries in Xtrain

with low-rank approximation (i.e., Xtrain � UTV) of rank r

in the training stage. In the test stage, for each given user,

we rank unobserved links based upon the values of low-

rank approximation. For BPR þ MF, we first treat the

positive links in Xtrain as 1s and treat both the unobserved

links and negative links in Xtrain as 0s in the training stage;

then for each given user, we rank unobserved links based

upon the values of low-rank approximation in the test

stage. For List þ MF (Shi et al. 2010), we treat positive

links as 3s, unobserved links as 2s, and negative links as 1s

in the training stage; then we rank unobserved links based

upon the values of low-rank approximation in the test

stage. Note that r is determined via grid search over

f10; 30; 50; 70; 90g based upon validation set.

The results of various approaches for link ranking are

shown in Tables 5 and 6. We observe that the proposed link

ranking model plus node features (i.e., NT þ NP) consis-

tently outperforms other three baseline approaches. This is

because (1) the link sign prediction model directly opti-

mizes the ranking measure (i.e., AUC); (2) node features

are effective to characterize the nodes in signed social

networks.
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Fig. 11 The edge sign prediction accuracies of different approaches versus minimum embeddedness

Table 4 Cross-dataset evaluation results

Wikipedia Slashdot Epinions

(a) Degree feature (accuracy: %)

Wikipedia 83.58 83.87 92.66

Slashdot 80.34 83.76 90.79

Epinions 79.59 81.69 90.39

(b) Triad feature (accuracy: %)

Wikipedia 82.46 79.04 89.95

Slashdot 83.18 80.42 91.05

Epinions 81.66 79.19 90.42

(c) Degree ? Triad feature (accuracy: %)

Wikipedia 84.87 84.66 93.29

Slashdot 82.93 84.91 92.90

Epinions 81.96 83.07 92.25

(d) BNTK ? BNPC ? Triad (accuracy: %)

Wikipedia 87.37 85.21 93.53

Slashdot 87.31 85.65 93.23

Epinions 87.02 83.37 93.13

Training is conducted on the column datasets and testing is conducted

on the row datasets

The best performance is indicated in bold
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9 Conclusions

In this paper, we explored the underlying local node

structures in signed networks, recognizing that there are

16 different types of node and each type of node con-

strains both its incoming node types and its outgoing

node types, i.e., the sign of an edge between two nodes

must be consistent with their types. This is a highly

structured alternative to the ordered scalar node types

postulated by social status theory. We demonstrated that

the interaction between these more complicated node

types can explain edge signs well. We also showed that

our approach can be extended to incorporate triad fea-

tures whose inclusion is motivated by structural balance

theory or social status theory. We derived Bayesian node

features (including Bayesian node type and Bayesian

node properties) based upon partially observed signed

directed network.

We conducted empirical studies based upon three large

scale datasets, i.e., Wikipedia, Slashdot, and Epinions:

• For link sign prediction (i.e., edge sign prediction), we

showed that the proposed Bayesian node features plus

triad features outperform state-of-the-art algorithms for

edge sign prediction. Moreover, we showed that

Bayesian node features plus triad features are more

effective and robust than baseline approaches for cross-

dataset edge sign predictions.

• To perform link ranking, we proposed a link ranking

model by directly optimizing AUC and demonstrated

that by using node features our proposed model

outperforms common neighbors (CN), matrix factor-

ization (MF), BPR þ MF, and List þ MF.

In the future, it will be interesting to study how to combine

Bayesian node features, other explicit topological features,

and latent features to perform link sign prediction and link

ranking in signed social networks. It will also be interesting

to study the underlying communities (or circles) (Yang

et al. 2012) to improve link sign prediction and link

ranking in signed social networks.
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