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Web personalization, e.g., recommendation or relevance search, tailoring a service/product to accommodate

specific online users, is becoming increasingly important. Inductive personalization aims to infer the re-

lations between existing entities and unseen new ones, e.g., searching relevant authors for new papers or

recommending new items to users. This problem, however, is challenging since most of recent studies fo-

cus on transductive problem for existing entities. In addition, despite some inductive learning approaches

have been introduced recently, their performance is sub-optimal due to relatively simple and inflexible archi-

tectures for aggregating entity’s content. To this end, we propose the inductive contextual personalization

(ICP) framework through contextual relation learning. Specifically, we first formulate the pairwise relations

between entities with a ranking optimization scheme that employs neural aggregator to fuse entity’s hetero-

geneous contents. Next, we introduce a node embedding term to capture entity’s contextual relations, as a

smoothness constraint over the prior ranking objective. Finally, the gradient descent procedure with adaptive

negative sampling is employed to learn the model parameters. The learned model is capable of inferring the

relations between existing entities and inductive ones. Thorough experiments demonstrate that ICP outper-

forms numerous baseline methods for two different applications, i.e., relevant author search and new item

recommendation.
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1 INTRODUCTION

With the rapid growth of various web services such as Amazon e-commerce platform or Google
Scholar, web personalization systems are becoming increasingly important, which facilitate rela-
tion learning study in the past decade. The related applications include item recommendation [19,
27, 39, 40, 52], relevant entity search [10, 30, 44, 51], and so on. Since entities in these systems may
carry different types of content information, e.g., attribute, text, or image, many content-based
approaches [8, 16, 17, 34, 50, 63] have been developed to perform relation inference by utilizing
heterogeneous content information. Some of these methods can be adapted to inductive relation
inference that aims to infer the relations between existing entities and inductive ones (i.e., those
do not currently present in the system). However, their performances are sub-optimal due to rel-
atively simple architecture to aggregate content information of inductive entities.
In this article, we study the problem of inductive contextual personalization by leveraging the

existing relations among entities and heterogeneous contents carried by each entity. Note that the
term “inductive” refers to the setting that there exist entities that are not currently present in the
system. This is in contrast to content-based recommendation approaches with transductive setting
that expects all test entities to appear in the system for training. In addition, it differs to the recent
inductive node embedding techniques, e.g., GraphSAGE [15], since it does not require inductive
entities to be aware of their neighbor information and thus is relatively more practical for real-
world applications. Figure 1 gives two illustrative applications of this problem. In web academic
systems such as AMiner or Google Scholar, we can leverage existing author–paper relations and
paper content information (e.g., title, abstract, venue, or references) to develop a relation learn-
ing model so as to identify correlated authors for new papers by using the learned model. The
model is also applicable for reviewer search or paper recommendation. In this case, new papers
in test period are inductive entities. In e-commerce platform such as Amazon or Walmart online
shopping systems, we can employ existing useritem relations and item content information (e.g.,
title, description, or image) to build a relation learning model to recommend new items to users.
In this case, new items are inductive entities. To develop an effective model for inductive relation
inference, there are two main challenges:

• Inductive Relation. Since we aim to infer the inductive relations between existing enti-
ties and unseen ones, transductive content-based recommendation methods [6, 17, 50] and
unsupervised node embedding models [9, 13, 36] are initially designed for transductive in-
ference. Their performances will be impaired when they are generalized/adapted to induc-
tive relation inference. In addition, the recent inductive node embedding techniques, e.g.,
GraphSAGE [15, 58], are also not suitable for this task as they need neighbor information of
each inductive entity as prior knowledge. This information, however, is often unavailable
in practice. Therefore, the first challenge is how to design a machine learning model that
can infer the inductive relations without any prior knowledge about neighbor information
of inductive entities.

• Heterogeneous Contents.An inductive entity can carry heterogeneous contents in many
real-world applications. The recent studies [8, 57] for inductive relation learning are
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Fig. 1. Applications of inductive contextual personalization problem: (a) relevant author search for new paper

in web academic system and (b) new item recommendation for user in e-commerce platform.

designed for a specific task. In addition, they use relatively simple and inflexible architecture
to aggregate heterogeneous contents, which limits the model capability and make inference
performance inferior. Different content information represent different aspects of an entity.
For example, the text description of an item (in e-commerce data) has semantic meaning
while the picture of an item expresses its visual nature. In addition, intuitively, different
content features have different contributions to the entity representation and accumulate
the different content features could lead to large expression capability. For instance, the ab-
stract feature should be more important for representing a paper than the venue feature (in
academic data) and aggregating different content features helps generate useful paper rep-
resentation. Due to this reason, the second challenge is how to develop an effective neural
network aggregator to fuse heterogeneous content features for representing each inductive
entity.

To address the above challenges and solve the proposed problem, we develop a novel model for
inductive contextual personalization (ICP) through contextual relation learning. Specifically,
we first formulate the pairwise relations between entity pairs (e.g., user-item or author–paper)
with a ranking optimization scheme that employs neural network aggregator to fuse entity’s het-
erogeneous content features. The proposed neural network aggregator can be easily implemented
and is flexible for extension. Next, we introduce a node embedding term to capture implicit contex-
tual relations between entity pairs, which is further incorporated into the former ranking objective
as a smoothness constraint. Finally, we design a batch gradient descent procedure with adaptive
negative sampling to train model and optimize parameters. The learned model is able to generate
inductive entity’s representation and further infer relations between existing entities and inductive
ones.
To summarize, the main contributions of this article are as follows:

• We propose the problem of inductive contextual personalization where entities’ heteroge-
neous content information are available. It is different from previous transductive relation
learning tasks and recent inductive node representation learning work. It can handle the
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entities that do not present in the current system and does not require any prior knowledge
about neighbor information of each inductive entity.

• We develop a novel machine learning model, i.e., ICP, to solve the problem. ICP employs
inductive pairwise ranking optimization with a neural content aggregator to model direct
relations between entity pairs, and is further augmented with a node embedding term that
encodes implicit contextual relations among these entities.

• We conduct extensive experiments on two datasets derived from AMiner and Amazon sys-
tems to justify the effectiveness of ICP. Our results demonstrate that the proposed model
outperforms numerous baseline methods for two real-world applications.

2 RELATEDWORK

This work is closely related to several lines of research including relation learning, content-based
recommendation, and node embedding learning.
Relation Learning. Recently, many studies have been devoted to relation learning for different

applications such as personalized recommendation [17, 18, 22, 24, 31, 38, 39] and relevant entity
search [8, 23, 30, 35, 44, 51, 57, 61, 62]. One typical approach is using pairwise ranking optimiza-
tion. The traditional models [38, 39] denote node (entity) in the system with latent feature, and
discriminate between the set of correlated items and the set of remaining uncorrelated items by a
pairwise ranking loss. In addition, some recent extended studies [14, 16, 17, 24, 54] have been pre-
sented by using content information. For example, He et al. [16] utilized image content and Wang
et al. [24] employed heterogeneous item relations to enhance latent feature-based pairwise rank-
ing models. Besides content information, node/entity can be associated with contextual neighbor
information in the system. Accordingly, some task-guided and contextual relation learning mod-
els [8, 57] have been developed for inductive relation inference by using both node’s content and
contextual neighbor information.
Content-based Recommendation. Different from the traditional collaborative filtering ap-

proaches [19, 40, 52] that purely utilize user preference and behavior data for recommendation, the
majority of content-based recommendation approaches [32] either employ side information or de-
velop sophisticated algorithms to process available information. Different types of side information
have been employed to build content-based recommendation models including attributes/features
of items [4, 12, 43], user generated content [7], visual and multimedia features [11, 17], and oth-
ers [2, 34]. From the algorithmic perspective, there are many different types of contextual/content-
based recommendationmodels such as meta-path-based approaches [21, 56], newmetadata encod-
ing methods [48], or deep learning models [34, 63, 64]. Content-based recommendation models
have been proved to be more effective in real-world applications than their pure collaborative
filtering-based counterparts in many application domains. In addition, many cold-start recom-
mendation approaches [3, 31, 41, 42, 50, 60] have been proposed to leverage content information
to alleviate the sparsity issue.
Node Embedding Learning. The node embedding learning in graph have attracted a lot of

attention in recent years. The purpose is to automate the discovery of meaningful vectorized em-
bedding for nodes in the graph so as to facilitate various downstream applications. There are two
major groups of approaches. The first group is proximity-preserving methods (or network em-
bedding) [9, 13, 36, 45, 59] that capture graph structure information and learn node embeddings
by preserving proximity between nodes. The second group is message-passing models (or graph
neural networks) [5, 15, 26, 49, 53, 58] that learn node embeddings by aggregating the neighbors’
information through neural network. For both groups of approaches, the learned node embed-
dings can be further utilized to relation inference (e.g., link prediction) or other tasks such as node
classification.
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Here we summarize the connection and difference between our study and the above related
work. The previous relation learning work usually focus on transductive inference or are designed
for a specific task while we study inductive relation inference that involves new nodes to the sys-
tem and can benefit a variety of applications. Despite some task-guided and content-aware rela-
tion learning models are applicable for inductive relation inference, they are either too simple to
aggregate heterogeneous content features or not extensible for incorporating more content infor-
mation, which limits the model capability. Like content-based recommendation models, we utilize
node/entity content information to build learning model. However, most of previous methods are
initially developed for transductive inference. In addition, they cannot fully explore both node con-
tent information and contextual neighbor information that we well incorporate into our model.
The current node embedding learning methods either target learning transductive node embed-
ding or their performances will be impaired when they are generalized/adapted to relation infer-
ence for inductive nodes. In this work, we address this issue by developing a neural network-based
content aggregator to fuse node/entity content information and learn inductive node embedding.

3 PROBLEM DEFINITION

In this section, we first introduce the concept of content-associated bipartite graph that will be
used throughout the article. Then, we formally define the problem of inductive contextual person-
alization.

Definition 3.1 (Content-associated Bipartite Graph). A content associated bipartite graph is de-
fined as a graph G = (U ,V ,EUV ,C) with two types of nodes U and V . Each edge euv ∈ EUV can
only exist between two nodes of different types, and each node v (or u) can be associated with
content Cv ∈ C, e.g., numerical attribute, text, or image.

We use the above content-associated bipartite graph to represent connected relations in the
systems. For example, an author–paper graph (see Figure 1(a)) represents the relations between
authors and papers in web academic system. In this graph, each paper node is associated with var-
ious contents such as abstract, references, and venue. Besides, a user-item graph (see Figure 1(b))
denotes the interactions between online users and items in e-commerce platform, and each item
node is associated with different contents such as title, description, and picture.
Before giving the problem definition, we clarify two types of nodes in bipartite graph. In this

work, there are two disjoint sets of nodes, i.e., U and V . The nodes in U and V that appear in the
graph for training are defined as transductive nodes while the nodes that do not present in the
training period are regarded as inductive nodes. For example, new papers in an academic system
are inductive nodes since they are unseen during model training. Moreover, inductive nodes have
no neighbor information as they are incoming new nodes in the graph. For example, new items in
an e-commerce platform have no interaction with the existing users. This setting is different from
the recent inductive node embedding study, e.g., GraphSAGE [15], andmore realistic for real-world
applications. Based on the above definitions, the problem is formally defined as:

Problem 1 [Inductive Contextual Personalization]. Given the historical relations between

two types of nodes (from U and V ) in the system (represented as a bipartite graph) before time Ts ,
accompanying with node content information C, the problem is to design a machine learning model

to infer relation between existing nodes and new inductive nodes appearing after Ts .

Note that in this work we study inductive relation inference that involves one type of inductive
node (e.g., new paper in web academic system or new item in e-commerce platform), which is
applicable for many real-world applications, such as reviewer/author searching for new papers or
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new item recommendation for users. This study is extensible or modifiable for the scenario of two
types of inductive nodes.

4 MODEL FRAMEWORK

In this section, we elaborate the details of proposed model by three parts: (1) inductive relation
modeling relying on pairwise ranking optimization and neural network-based content aggrega-
tor; (2) implicit contextual relation augmentation based on node embedding learning; (3) model
training procedure design using adaptive negative sampling strategy.

4.1 Inductive Pairwise Relation Modeling

4.1.1 Pairwise Ranking Optimization. Given a content-associated bipartite graph G =
(U ,V ,EUV ,C) and assume that each node v ∈ V (or u ∈ U ) is associated with content Cv ∈ C,
we first model the direct relations between two types of nodes. Specifically, in the training period,
for a given node u ∈ U , the correlated nodev ∈ {EN (u)} should be ranked higher than the uncor-
related node v ′ ∈ {V \EN (u)}, where EN (u) represents the set of nodes that ever interacted with
u. Thus we formulate the objective function as follows:

Ldir =
∑
u ∈U

∑
v ∈EN (u )

∑
v ′�EN (u )

[
logσ (su,v − su,v ′ )

]
, (1)

where σ (·) is the sigmoid function and su,v denotes the correlation score between u and v . The
current techniques, e.g., BPR [39], use the inner product of two nodes’ latent features to measure
su,v and employ the optimized features to infer potential interactions among existing nodes in
the graph. However, such transductive setting is not designed for the inductive inference task in
this work as the inductive nodes (e.g., new items) are unseen (without latent feature) during the
model training period. To solve this challenge, we encode the heterogeneous contents of each
node by the neural network aggregator f , which will be trained and further utilized to infer the
inductive node representation. That is, the embedding representation of each v ∈ V (or u ∈ U ) is
formulated as f (Cv ) ∈ Rd×1 (d : the embedding dimension) and Cv is the content set of v , which
can be numerical attribute, text, image, and so on. Therefore, f can be used to infer representations
of inductive nodes. The inner product of two nodes’ content embeddings measures the correlation

score, i.e., su,v = f (Cu )T f (Cv ). In addition, f (Cv ) (or f (Cu )) will be degenerated to a latent feature
Qv ∈ Rd×1 ifv has no content information. Next, we introduce neural network content aggregator
f in detail.

4.1.2 Neural Network Content Aggregator. To encode and fuse the heterogeneous content in-
formation of each node (e.g., v ∈ V ) as a fixed size embedding, we design three independent ag-
gregators based on different neural network architectures. For the ease of presentation, we denote

the feature of ith content in Cv as xi ∈ Rdf ×1 (df : content feature dimension). Note that xi can be
pre-trained using different techniques w.r.t. different content meanings.
Attention Aggregator. This aggregator is motivated by the intuition that different contents

contribute differently to the final representation of v . For instance, in web academic system, the
abstract content of a paper should be more important than venue information. Thus we propose
the first aggregator, i.e., attention aggregator, based on the attention mechanism [1], which is
formulated as follows:

f (Cv ) =
∑
i ∈Cv

αixi , αi =
exp
{〈F Cθx (xi ), z〉}∑

j ∈Cv exp
{〈
F Cθx (xj ), z

〉} , (2)
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Fig. 2. Neural network content aggregators proposed in this work: (a) attention aggregator based on at-

tention mechanism (FC: fully connected neural network), (b) pooling aggregator using different pooling

operators, and (c) recurrent aggregator built on recurrent neural network.

where z ∈ Rd×1 is the attention parameter, F Cθx denotes the fully connected neural network

(FC) with parameter θx = {W, b} (W ∈ Rd×df , b ∈ Rd×1), i.e., F Cθx (xi ) =Wixi + bi , and 〈·, ·〉 is
the vector dot product operator. The attention aggregator learns the weight αi of xi and combines
all content features to obtain the final representation of v , as illustrated in Figure 2(a).
Pooling Aggregator.Motivated by the fact that modeling feature interaction appropriately can

improve relation learning model [37, 46], we propose the second aggregator, i.e., pooling aggrega-
tor, and formulate it as follows:

f (Cv ) = F CθC
⎧⎪⎪⎨⎪⎪⎩
⊕
i ∈Cv

F Cθx (xi )
⎫⎪⎪⎬⎪⎪⎭
, (3)

where
⊕

is the pooling operator that can be average, summation, or concatenation operation
over all content features. F CθC and F Cθx are two independent FC layers that have different
functions: F Cθx maps different content features into the same feature space and F CθC captures
feature interactions. Therefore, the pooling aggregator jointly considers feature transformation
and interaction to generate the final representation of v , as illustrated in Figure 2(b).
Recurrent Aggregator. Besides the previous two aggregators, we further design a more com-

plex architecture and propose the third aggregator, i.e., recurrent aggregator, based on the recur-
rent neural network, which is formulated as follows:

f (Cv ) =
∑

i ∈Cv RNN θrnn

{F Cθx (xi )}
|Cv |

, (4)

where RNN θrnn

{F Cθx (xi )} ∈ Rd×1 is the concatenation output of the bi-directional LSTM

(Bi-LSTM):

RNN θrnn

{F Cθx (xi )} =
[−−−−−→
LSTM

{F Cθx (xi )} ,←−−−−−LSTM
{F Cθx (xi )}

]
, (5)

where LSTM is defined in Reference [20]. To be more specific, the recurrent aggregator first uses
a FC layer to map all content features to the same feature space, then employs the Bi-LSTM to
capture in-depth feature interaction and accumulate expression capability of all content features,
and finally utilizes a mean pooling layer1 over all hidden states to obtain the final representation

1We also experimented with max pooling or taking the last hidden state but did not find significant difference in

performance.
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Fig. 3. Illustrations of inductive pairwise relation modeling for (a) relevant author search in web academic

system and (b) new item recommendation in e-commerce platform.

of v , as illustrated in Figure 2(c). Note that we adapt Bi-LSTM to operate on an unordered set
Cv , which is inspired by graph neural network model [15] for aggregating unordered neighbor
information.
In summary, there are several advantages of the proposed content aggregators: (1) they have

concise structures with low complexity (small parameter size), making the model implementation
and tuning relatively easy; (2) they are able to fuse the heterogeneous content information, leading
to a strong expression capability; and (3) they are flexible to add extra content features, making
the model extension and improvement convenient.
Figure 3 illustrates inductive pairwise relation modeling for paper-author in web academic sys-

tem and useritem in e-commerce platform. Specifically, we first extract different contents of each
paper/item; then, we employ different techniques to pretrain these content features (e.g., the lan-
guage model Par2Vec [29] for text, the node embedding model DeepWalk [36]) for existing nodes,
the vision model CNN [28] for image); subsequently, we feed these features to the proposed aggre-
gator and obtain the refined representation of each paper/item; finally, we denote each author/user
(without content information) as a latent feature and compute the correlation score between pa-
per/item aggregated content embedding and author/user latent feature.

4.2 Contextual Relation Augmentation

Ldir explicitly models the direct interactions between two types of nodes yet ignores implicit con-
textual relations that can be inferred from existing relations and beneficial for the model enhance-
ment. To address this issue, we further extend the model by formulating the implicit contextual re-
lations. Oneway to formulate such contextual relations is using another pairwise ranking function.
However, it cannot distinguish direct interact relations with indirect contextual relations. Thus, we
aim at formulating indirect contextual relations as a smoothness constraint over the objective of di-
rect relations, i.e., Ldir . Specifically, inspired by node embedding technique (e.g., DeepWalk [36]),
we first employ random walk node sequences to extract these contextual relations. Figure 4 gives
illustrative examples of this process. Specifically, in the web academic system (see author-paper
graph in Figure 4(a)), a randomwalk node sequencew1 ≡ {1→ a → 2→ c → 4→ d } is generated.
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Fig. 4. Examples of indirect contextual relation extraction on (a) academic graph and (b) e-commerce graph.

Red arrow represents random walk sequence and black dash line indicates indirect correlation between two

nodes.

Besides direct relations, e.g., author 1 writes paper a or author 2 writes paper c ,w1 can also capture
implicit contextual relations, e.g., author 1 has potential correlation with paper c and d since they
are written by co-author and co-author of co-author, respectively. In the e-commerce platform
(see user-item graph in Figure 4(b)), random walkw4 ≡ {4→ a → 1→ b → 3→ c} captures both
direct relations, e.g., user 4 buys item a or user 1 buys item b, and implicit contextual relations,
e.g., user 4 has potential correlation with item b and c since they are bought buy co-purchaser or
co-purchaser of co-purchaser.
Suppose a set of node sequencesW are generated, we then model the implicit contextual rela-

tions overW with the Skip-gram model [29], which is formulated as:

Lindir =
∑
w∈W

∑
u ∈w

∑
v ∈cu

logp (v |u), (6)

where cu is the set of contextual neighbors (V-type neighboring nodes within the given window
size τ ) of u in w. The probability p (v |u) is computed with Softmax function in terms of su,v , i.e.,

p (v |u) = exp (su,v )∑
v′∈V exp (su,v′ )

(V: set of all V-type nodes in the graph) and su,v = f (Cu )T f (Cv ). Ob-
viously, the above objective function is to maximize the co-occurrence likelihood of contextual
neighbors for each target node in short random walks. By applying the negative sampling strat-
egy [33], p (v |u) can be approximated as:

logp (v |u) ≈ logσ (su,v ) +
k∑
i=1

Ev ′∼pV (v ′) {logσ (−su,v ′ )}, (7)

where pV (v
′) is the pre-defined noise distribution and k is the negative sample size. In this model,

we set k = 1 since k > 1 makes no much difference in performance. In addition, let IN (u) denote
the set of implicit contextual neighbors of u extracted inW . Thus we can rewrite the objective
Lindir as:

Lindir =
∑
u ∈U

∑
v ∈IN (u )

∑
v ′�IN (u )
v′�EN (u )

[logσ (su,v ) + logσ (−su,v ′ )].
(8)
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In other words, the correlation score between u and contextual neighbor v should be larger than
those of uncorrelated ones that are not implicit contextual neighbors or not direct neighbors.
To summarize, two main advantages of contextual relation augmentation are as follows: (1) It

canmodel indirect contextual correlations among different nodes that cannot be extracted from the
bipartite graph directly, enhancing the model capability, and (2) the random walk-based strategy
can be easily extended on heterogeneous graph [9] in the system for extracting more heteroge-
neous contextual relations and improving model performance.

4.3 Model Inference

4.3.1 Training Procedure. Finally, we introduce the model training procedure. By incorporating
contextual relation modeling objective Lindir into Ldir as an augmentation term, the objective of
proposed model is formulated as follows:

LICP = −(Ldir + γLindir ) + λLr eд , (9)

where Lr eд is L2 regularization term and λ controls regularization penalty, the tradeoff factor γ
balances Ldir and Lindir . We denote all model parameters as Φ, and use Tdir and Tindir to denote
the sets of all triplets (u, v , v ′) in Ldir and Lindir , respectively. Thus we can rewrite LICP as
following:

LICP =
∑

(u,v,v ′)∈Tdir

[− logσ (su,v − su,v ′ )] +
∑

(u,v,v ′)∈Tindir

[− logσ (su,v ) − logσ (−su,v ′ )] + λ ‖Φ‖22 .
(10)

To minimize LICP and optimize the model parameters, we design a training procedure based on
batch sampling and the Adam optimizer [25]. Specifically, at each iteration, we sample a mini-
batch of triplets in Ldir and Lindir , then accumulate the objective according to Equation (10), and
next update the parameters via Adam. We repeat the training iterations until the change between
two consecutive iterations is sufficiently small. The pseudocode of ICP is described in Algorithm 1.

4.3.2 Adaptive Negative Sampling. The uniform negative samplingmethod used in training pro-
cedure, i.e., v ′ is randomly sampled, results slow convergence and gradient vanishes in training,
as demonstrated by previous work [38]. To address this problem, we propose an adaptive nega-
tive sampling strategy to improve the training procedure of ICP. Specifically, in training period
of pairwise ranking model, we need to select negative sample (i.e., v ′ in Equation (1)) from the
whole candidate set. The gradient magnitude is measured by (1 − σ (su,v − su,v ′ )) [38]. Therefore,
we need to obtain larger su,v ′ for larger gradient magnitude when doing negative sampling. A sim-
ple way is to rank su,v ′ for a batch of candidates and v ′ with higher ranking (larger score) should
be selected with larger probability. Motivated by this, we introduce a ranking position generator:

r̂ =min
{
K , int (ψ )

}
, where ψ is generated from a pre-defined distribution: ψ = − lnp

μ
(p: random

value from uniform distribution, μ: rate parameter) and K is the candidate batch size. When we set
p as (0, 1] uniform distribution and μ = 1, ψ will be a small value for most cases. In other words,
there is a large probability that r̂ will be small integer and gradient magnitude will be large. Such
probability could be adjusted by setting different μ. Figure 5 gives an illustrative example of this
strategy for the author–paper relation learning. Specifically, we first randomly sample a batch S
(with sizeK ) of uncorrelated authors of the given paper and employ the content aggregator to infer
representation of this paper, then rank sampled authors according to the correlation scores with
the paper, finally select the author ranked at position r̂ . To train ICP with adpative negative sam-
pling strategy, we only need to replace random sampling step (line 16) in Algorithm 1 by adaptive
sampling step (line 17 in comment).
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Fig. 5. Illustration of the proposed adaptive negative sampling strategy for relevant author search in web

academic system.

There are two advantages of this sampling strategy: (1) uncorrelated authors with relative large
correlation scores are more likely to be selected since int (ψ ) is usually small integer, which can
avoid the slow convergence and gradient vanishes in training; (2) by introducing the batch size K ,
we only need to compute correlation scores betweenu and a small set ofv ′, which largely reduces
the sampling time.

4.3.3 Relation Inference (Model Test). After sufficient model training, we infer correlation score
between a new inductive node v∗ (or u∗) and an existing node u (or v) by:

su,v∗ = f ∗ (Cu )T f ∗ (Cv∗ ), (11)

where f ∗ represent the learned content aggregator. It will be optimized latent feature Q∗ for nodes
without content information. For example, in the test period of relevant author search task, we
use the learned content aggregator to generate representation of each new paper, then compute
its correlation scores with the trained latent features of authors. Finally, we rank all authors for
the query paper according to the correlation scores.

5 EXPERIMENTS

In this section, we conduct extensive experimentswith the aim of answering the following research
questions:

• RQ1: Whether ICP can outperform various baseline methods for different applications of
inductive relation inference?

• RQ2:Whether different components, i.e., content aggregators, contextual relation augmen-
tation, and adaptive negative sampling, are effective for improving the model performance?

• RQ3:Whether each content feature, e.g., text or image, contributes to improving the model
capability?

• RQ4: How do hyper-parameters, i.e., tradeoff factor, impact the model performance?
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ALGORITHM 1: Training Procedure of ICP

input: initialized latent features of nodes (without content), pre-train content features of nodes (with

content), sets of direct neighbors EN and implicit contextual neighbors IN
output: optimized latent features, optimized neural content aggregator

1 while not done do

2 Tdir ← GenExpTriplet (EN )

3 Tindir ← GenConTriplet (IN )

4 for i = 1 : batch_n do

5 sample a batch of (u,v,v ′) in Tdir
6 sample a batch of (u,v,v ′) in Tindir
7 accumulate the loss by Equation~(10)
8 update the parameters by Adam Optimizer

9 end

10 end

11 return latent features, neural content aggregator

12 Function GenExpTriplet (EN ) (GenConTriplet (IN ))

13 T ← {}
14 for u ∈ U do

15 for v ∈ EN (u) (v ∈ IN (u)) do

16 v ′ ← random v ′ � EN (u) (v ′ � {EN (u)
⋃IN (u)})

17 //∗ v ′ ← AdaptiveSample (u): adaptive sampling strategy described in Section 4.3.2 ∗//
18 T ← {T ⋃(u,v,v ′)

}
19 end

20 end

21 return T
22 Function AdaptiveSample (u)

23 S ← K random v ′ � EN (u) (v ′ � {EN (u)
⋃IN (u)})

24 R̂ ← ranking of S according to correlation score suv ′

25 p ← random value from uniform distribution

26 r̂ ← min
{
K , int (− lnp

μ )
}

27 v ′ ← R̂(r̂ )

28 return v ′

5.1 Experiment Design

5.1.1 Datasets. We use two kinds of data, i.e., academic publication data and e-commerce data,
from web academic system and e-commerce platform respectively, for model evaluation.
Academic publication data. We extract one dataset from the AMiner [47] data.2 The dataset

contains high quality publications of 10 years from 2006 to 2015 in six domains, i.e., Artificial
Intelligence (AI),ComputerVision (CV),Natural LanguageProcessing (NLP),DataMining

(DM), Databases (DB), and Web/Information Retrieval (W/IR). In each domain, we select
three venues3 that are considered to have influential papers. Each paper has bibliographic content
information: title, abstract, authors, references, year, venue. Overall, the dataset contains 28,645
authors, 21,043 papers, 18 venues, and 69,311 author–paper writing relations.

2https://aminer.org/.
3AI: ICML, AAAI, IJCAI. CV: CVPR, ICCV, ECCV. NLP: ACL, EMNLP, NAACL. DM: KDD, WSDM, ICDM. DB: SIGMOD,

VLDB, ICDE. W/IR: WWW, SIGIR, CIKM.
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E-commerce data. We extract a dataset from the Amazon [16] data (Movies and TV category).4

The dataset contains user reviews and item metadata from Amazon from 05/1996 to 07/2014. Each
item has various content information: title, text description, price, genre, and image. Overall, the
dataset contains 18,340 users, 56,361 items, and 629,125 user-item review relations.

5.1.2 Applications. We propose two applications of inductive relation inference, i.e., relevant
author search and new item recommendation, using the above two datasets respectively.
Relevant author search. In academic publication data, given the set of papersU<Ts published

before a given time Ts , accompanying with various bibliographic contents (e.g., abstract content,
references, and venue), the task is to rank all potential authors v ∈ V for each new anonymous
paper u∗ ∈ U≥Ts (U≥Ts : set of papers published in or after Ts ), such that its top ranked authors are
true authors of u∗.
New item recommendation. In e-commerce data, given the historical reviews between users

and items before time Ts , accompanying with item content (i.e., title, text description, image), the
task is to rank all new items v∗ ∈ V≥Ts for each user u ∈ U (V≥Ts : set of items appear in or after
Ts ), such that its top ranked items (for recommendation) are reviewed/bought by u after Ts .

It is worth to mention that we consider inductive scenario for model design and experimental
evaluation, where inductive term refers to new nodes in the system. Specifically, for the recom-
mendation task, we assume there are some new items put on sale and we target recommending
them to users (who are interested in these items). Therefore, it is userwise model design and evalu-
ation. Similarly, for the relevant author search task, we assume there are some new papers and we
aim at finding the relevant authors for these papers. It is paperwise model design and evaluation.
Both tasks involve inductive nodes that are new to the system and can carry content information.
However, they vary from each other in area (academic service vs. e-commerce), task (relevant au-
thor search vs. new item recommendation), and data (scientific publication data vs. online user
behavior data).

5.1.3 BaselineMethods. We consider numerous baselinemethods that are illustrated as follows.

• Unsupervised node embedding. This is unsupervised node embedding model. Note that
this type of method is only applicable for academic publication data since new items in
e-commerce data have no context information like venue or reference of new paper in aca-
demic data. It first learns embeddings of different types of nodes (author, paper, venue)
in the graph constructed based on paper information in training data, then obtains each
new paper’s representation by averaging node embeddings of references and venue of this
paper, finally computes correlations between new paper embedding and author embed-
dings, and identifies relevant authors according to the ranking of correlation scores. Both
homogeneous graphmodelDeepWalk (DW) [36] and heterogeneous graphmodelmeta-

path2vec (MP2V) [9] are utilized to learn node embeddings.
• Unsupervised inductive node embedding.This is graph neural networkmodel for learn-

ing inductive node embedding. We use latent feature to represent each existing node and
employ GSAGE [15] to aggregate neighbors’ latent features of each inductive node. To be
more specific, paper’s neighbors are its authors in academic data and item’s neighbors are
who review it. Note that each new inductive node has no neighbor information in this work,
we take neighbors of the most similar existing node of inductive node as its neighbors. The
similarity between inductive node and existing node is computed based on the content

4http://jmcauley.ucsd.edu/data/amazon/index.html.
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similarity, i.e., paper content similarity in academic publication data and item description
content similarity in e-commerce data.

• Zero-shot relation learning. This is zero-shot relation learning model. We employ the
same idea in ZSRL [31] for cold-start recommendation. Specifically, we first introduce an
encoder to map node behavior (i.e., paper-author writing, user-item reviewing) into con-
tent attributes, then utilize a symmetric decoder to reconstruct node behavior from content
attributes. Finally, the loss between reconstructed and true node behavior is further used to
train the encoder-decoder framework. The optimized decoder is further employed to infer
correlations between existing nodes and new inductive nodes by using content attributes
of inductive nodes.

• Content-based recommendation. This is content-based recommendation model. We uti-
lize content-based pairwise rankingmethod (C-BPR). It first employs a pooling opera-
tor over the content features to obtain inductive node representations, then applies pairwise
ranking technique [39] to learn latent features of existing nodes, next computes correlations
between each new inductive node and existing nodes, finally identifies potential correlated
nodes for inductive node according to the ranking of correlation scores.We try three content
feature pooling operators, i.e., average, summation, and concatenation, to compute induc-
tive node embedding and report the best of them, which is concatenation in this work. For
review data, we consider one more baseline, VBPR, that only uses image feature to repre-
sent item. It can be seen as a variant of VBPR [17] since there is no latent feature of inductive
item nodes. In addition, we employ one more content-based model called CNM [50], which
combines various content features through neural network for recommendation.

• Task-guided relation learning. This is the task-guided relation learning model. We em-
ploy TGR [8] and Camel [8] for comparison. TGR uses the learnable weights to combine
content features of inductive nodes, and captures both direct relations and implicit contex-
tual relations between node pairs. Further, the node embedding model guided by pairwise
relation is utilized to learn weights of content features of inductive nodes and latent features
of existing nodes. Different fromTGR, Camel utilizes distancemetric learning tomodel pair-
wise relations and employs node embedding model to learn embeddings of inductive nodes
and existing nodes.

• Collaborative similarity embedding. This is a unified framework that exploits both di-
rect relations and indirect contextual relations. We employ the idea inCSE [6] and makes it
adapt to inductive nodes. It first encodes node content information through neural network,
then extracts several relations available in the bipartite graph, finally learn node embedding
for relation inference through pairwise ranking optimization over these relations.

To summarize, we can group all of the baseline methods into three groups based on the infor-
mation used in different models. The first group is the model that uses both direct relations and
indirect contextual relations, which includes DW, MP2V, and GSAGE. The second group repre-
sents method that uses both direct relations and node content information, which contains ZSRL,
C-BPR, VBPR, and CNM. The last group denotes the model that utilizes direct relations and in-
direct contextual relations as well as node content information, which includes TGR, Camel, and
CSE.

5.1.4 EvaluationMetrics. Weuse four popularmetrics, i.e.,Recall@k (Rec@k),Precision@k

(Pre@k), Mean Reciprocal Rank (MRR), and Normalized Discounted Cumulative Gain

(NDCG), to evaluate performance of each method. The definitions of all metrics are illustrated as
follows.
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• Recall@k. It shows the ratio of true authors/items being retrieved in the top-k return list,
which can be computed by:

Rec@k =
1

|Utest |
∑

u ∈Utest

| ˆEN (u)
⋂ EN (v ) |

|EN (u) | , (12)

where Utest is the set of test papers/users in test data for evaluation, EN (u) and ˆEN (u)
denote the sets of true authors/items of paper/user u and top-k ranked authors/items by a
specific method, respectively.

• Precision@k. It reflects the precision of top-k ranked authors/items by a specific method,
which is defined as:

Pre@k =
1

|Utest |
∑

u ∈Utest

| ˆEN (u)
⋂EN (u) |
k

. (13)

• MRR. It measures the ranking quality of true authors/items, which is defined as:

MRR =
1

|Utest |
∑

u ∈Utest

1

|EN (u) |
∑

u ∈EN (u )

1

r̂ (v )
, (14)

where r̂ (v ) represents the ranking position of author/item v in the whole list.
• NDCG. It measures the ranking quality of true authors/items by the following equation:

NDCG =
1

|Utest |
∑

u ∈Utest

∑
v ∈EN (u )

2r elv −1
log2 (i+1)∑k ′

i=1
1

log2 (i+1)

, (15)

where relv equals 1 if author/item v is ranked in top-k′ (k′ = |EN (u) |) list, otherwise 0.

5.1.5 Reproducibility Settings. There are several key settings of experiments for reproducibility,
which are illustrated as following.

• Train/test split. In academic data, papers published before the given time Ts are used as
training data and papers in or afterTs are left for evaluation. We design two train/test splits
by setting Ts = 2012 and 2013. In e-commerce data, we split train/test data sequentially
based on item’s first appearing time. Experiments of two splits (in terms of item number),
i.e., 8/2 and 7/3, are conducted.

• Hyper-parameters. For ICP, the feature dimension d is set to 128, the regularization pa-
rameter λ equals 0.05. The tradeoff factor γ of objective function (Equation (9)) equals 0.1.
In contextual relations modeling, the number of walks rooted at each node equals 10, the
length of each walk is set to 20, and the window size τ equals 3. In addition, the sample size
K equals 10 and rate parameter μ equals 1.0 for the adaptive negative sampling strategy.
The grid search of feature dimension is performed for baseline methods and most of them
are set to 128.

• Evaluation candidates.We adopt the same setting in previous work [8, 55] that randomly
samples a set of 100/50 negative false authors/items and combines it with the set of true au-
thors/items to form a candidate set, which makes the results large enough for clear perfor-
mance comparison of different methods. The reported scores are averaged over 10 repeated
experiments of such setting.

• Pre-trained content features. For the academic data, we use the Par2Vec [29] to pre-train
paper abstract feature. Besides, we construct the author–paper–venue graph [9] based on
papers information in training data and employ DeepWalk [36] to learn node embeddings.
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Table 1. Performance Comparisons of All Methods for Relevant Author Search in

Web Academic System

Metric Ts
DR + IDR DR + C DR + IDR + C

DW MP2V GSAGE ZSRL CNM C-BPR TGR Camel CSE ICP

Rec@3
2013 0.101 0.107 0.206 0.316 0.369 0.381 0.410 0.443 0.436 0.459

2012 0.097 0.084 0.173 0.261 0.299 0.370 0.375 0.404 0.398 0.420

Pre@3
2013 0.078 0.090 0.174 0.253 0.302 0.311 0.336 0.352 0.355 0.368

2012 0.075 0.074 0.135 0.180 0.216 0.270 0.277 0.301 0.296 0.311

Rec@5
2013 0.152 0.146 0.289 0.403 0.451 0.471 0.501 0.547 0.540 0.555

2012 0.155 0.153 0.254 0.356 0.403 0.463 0.466 0.511 0.496 0.531

Pre@5
2013 0.073 0.075 0.146 0.196 0.226 0.234 0.253 0.276 0.273 0.277

2012 0.070 0.072 0.118 0.151 0.178 0.206 0.211 0.232 0.226 0.239

MRR
2013 0.116 0.146 0.194 0.284 0.313 0.328 0.344 0.359 0.358 0.381

2012 0.108 0.112 0.171 0.235 0.267 0.322 0.324 0.341 0.340 0.355

NDCG
2013 0.076 0.110 0.157 0.250 0.338 0.329 0.371 0.367 0.381 0.405

2012 0.071 0.076 0.126 0.189 0.226 0.294 0.318 0.327 0.321 0.352

Differences between ICP and each baseline method are significant with p < 0.05. DR, IDR, C denote direct relation, indirect

contextual relation, and content information used in different models.

The reference and venue features of each paper are obtained from the learned node em-
beddings. For the e-commerce data, we use Par2Vec to pre-train item title and description
features and employ CNN [28] to obtain item image feature. The dimensiondf of all content
features is set to 128.

5.2 Results—Relevant Author Search

5.2.1 Comparison with Baselines (RQ1). The performances of all methods for relevant author
search are reported in Table 1. The best results are highlighted in bold. DR, IDR, C denote direct
relation, indirect contextual relation, and content information used in different models. Note that
the reported ICP is the best proposed model with recurrent content aggregator, contextual relation
augmentation, and adaptive negative sampling strategy. According to this table:

• The pairwise ranking models with paper content features (C-BPR, CNM) and ZSRL have
better performances than the node embedding baseline methods. It demonstrates that uti-
lizing content information generates better node representation than using node latent em-
bedding.

• TGR, Camel, and CSE are better than the pairwise ranking models, showing that content-
aware relation learning model extended by contextual relations generates better embed-
dings of author and paper for relevant author search.

• The proposed ICP performs best in all experimental settings. The average improvement
of ICP over the best baseline method is over 4%, demonstrating the power of our model
in learning and inferring inductive relations between author and paper in web academic
system.

5.2.2 Comparison with Model Variants (RQ2). ICP is a joint learning model of several compo-
nents. How different content aggregators impact the model performance? Whether implicit con-
textual relations modeling and adaptive negative sampling strategy improve the model capabil-
ity? To answer these questions, we conduct experiments (Ts = 2013) to evaluate performances of
model variants that include: (1) ICPAtt , (ICPPool

Ave
, ICPPool

Sum
, ICPPool

Cat
), and ICPRNN that use attention,
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Table 2. Performance Comparisons of Different Model Variants in Relevant Author Search

Metric ICPAt t ICPP ool
Ave

ICPP ool
Sum

ICPP ool
Cat

ICPRN N ICPRN N
R

ICP

Rec@3 0.375 0.396 0.405 0.407 0.432 0.440 0.459

Pre@3 0.298 0.317 0.329 0.328 0.348 0.355 0.368

Rec@5 0.494 0.510 0.512 0.523 0.547 0.551 0.555

Pre@5 0.241 0.251 0.254 0.258 0.271 0.274 0.277
MRR 0.323 0.336 0.343 0.347 0.361 0.364 0.381

NDCG 0.312 0.332 0.343 0.346 0.369 0.389 0.405

Differences between ICP and each variant model are significant with p < 0.05.

Fig. 6. The performances of proposed model with different content features for relevant author search task

(A: abstract feature, R: reference feature, V: venue feature).

(average, summation, concatenation) pooling, and recurrent aggregator, respectively. In addition,
all of them useLdir objective and train model by uniform negative sampling strategy; (2) ICPRNN

R
,

which is based on ICPRNN and further augmented by implicit contextual relations, i.e., Lindir ; (3)
the best proposedmodel, i.e., ICP, which is based on ICPRNN

R
and trainsmodel by adaptive negative

sampling strategy. The results are reported in Table 2. From this table:

• ICPPool is better than ICPAtt and ICPRNN outperforms ICPPool . It means that pooling aggre-
gator explicitly models feature interaction and generates better node representation than
attention aggregator. In addition, the recurrent aggregator has larger expression capability
than the pooling aggregator.

• ICPRNN
R

has better result than ICPRNN , demonstrating that the contextual relation aug-
mentation is effective for improving model performance.

• ICP outperforms all model variants including ICPRNN
R

, indicating that it is better to train
model by adaptive negative sampling strategy, which further elevates model performance.

5.2.3 Impact of Different Content Features (RQ3). In this task, we use features of three content
information: abstract, references, and venue, as the input of neural content aggregator. To study
the impacts of different features on model performance, we conduct experiments (Ts = 2013) to
evaluate the performances (in terms of Rec@3, Pre@3, MRR) of ICP with different combinations
of content features, i.e., A, A+R, and A+R+V, which represent abstract feature, abstract + reference
features, abstract + reference + venue features, respectively. The performances of ICPwith different
features are reported in Figure 6. It is easy to see that model with A+R features is better than model
with only A feature and model with A+R+V features has the best performance, demonstrating that
incorporating different content features elevates model capability and improves performance.

5.2.4 Impact of Tradeoff Factor γ (RQ4). ICP inherently models implicit contextual relations by
incorporating Lindir into Ldir with tradeoff factor γ . To investigate the impact of γ , we conduct
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Fig. 7. The impact of tradeoff factor γ of the joint objective function on model performance for relevant

author search task.

Table 3. Performance Comparisons of All Methods for New Item Recommendation

in e-commerce Platform

Metric Train/Test
DR + IDR DR + C DR + IDR + C

GSAGE ZSRL VBPR CNM C-BPR TGR Camel CSE ICP

Rec@3
8/2 0.095 0.115 0.127 0.172 0.168 0.195 0.214 0.187 0.232

7/3 0.103 0.116 0.119 0.171 0.176 0.187 0.195 0.185 0.226

Pre@3
8/2 0.089 0.104 0.112 0.144 0.144 0.165 0.179 0.159 0.189

7/3 0.133 0.146 0.151 0.205 0.209 0.220 0.224 0.217 0.249

Rec@5
8/2 0.151 0.172 0.196 0.250 0.267 0.277 0.298 0.263 0.313

7/3 0.164 0.182 0.188 0.246 0.251 0.265 0.273 0.264 0.310

Pre@5
8/2 0.088 0.096 0.107 0.131 0.138 0.146 0.156 0.138 0.164

7/3 0.125 0.140 0.145 0.184 0.187 0.196 0.201 0.195 0.219

MRR
8/2 0.121 0.136 0.147 0.178 0.187 0.195 0.211 0.188 0.223

7/3 0.122 0.138 0.141 0.175 0.179 0.187 0.191 0.185 0.214

NDCG
8/2 0.089 0.104 0.114 0.144 0.153 0.162 0.181 0.160 0.193

7/3 0.124 0.143 0.145 0.189 0.192 0.203 0.206 0.199 0.235

Differences between ICP and each baseline method are significant with p < 0.05. DR, IDR, C denote direct relation, indirect

contextual relation, and content information used in different models.

experiments (Ts = 2013) to evaluate model performance under different γ . The performance
curves (in terms of Rec@3, Pre@3, and MRR) are shown in Figure 7. With the increment of γ ,
performance increase as contextual relations information are incorporated into model. However,
result decreases with the further increment of γ due to the bias on implicit contextual relations.
Therefore, incorporating the suitable amount of contextual relations information leads to the best
performance of ICP.

5.3 Results - New Item Recommendation

5.3.1 Comparison with Baselines (RQ1). The results of all methods for new item recommen-
dation are reported in Table 3. The best results are highlighted in bold. DR, IDR, C denote direct
relation, indirect contextual relation, and content information used in different models. According
to this table:

• The pairwise ranking models with content features (CNM, VBPR, C-BPR) and ZSRL have
better performances than GSAGE as they utilize content information and generate better
node representation. In addition, C-BPR is better thanVBPR because the former uses various
content features while the latter only uses image feature.
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Table 4. Performance Comparisons of Different Model Variants for New

Item Recommendation

Metric ICPAt t ICPP ool
Ave

ICPP ool
Sum

ICPP ool
Cat

ICPRN N ICPRN N
R

ICP

Rec@3 0.195 0.203 0.209 0.214 0.219 0.223 0.232

Pre@3 0.160 0.170 0.169 0.173 0.178 0.182 0.189

Rec@5 0.275 0.282 0.288 0.297 0.303 0.306 0.313
Pre@5 0.142 0.147 0.146 0.151 0.154 0.157 0.164

MRR 0.196 0.198 0.203 0.209 0.212 0.212 0.223

NDCG 0.165 0.169 0.170 0.176 0.179 0.183 0.193

Differences between ICP and each variant model are significant with p < 0.05.

Fig. 8. The performances of proposed model with different content features for new item recommendation

(T: title feature, D: description feature, I: image feature).

• TGR, Camel, and CSE outperform the pairwise ranking models, indicating that content-
aware relation learning model with contextual relations augmentation generates better rep-
resentations of user and item for new item recommendation.

• ICP performs best in all experimental settings. The average improvement of ICP over the
best baseline method is over 9%, demonstrating the effectiveness of our model in learning
and inferring inductive relations between users and items in e-commerce platform.

5.3.2 Comparison withModel Variants (RQ2). We conduct experiments (train/test data size split
= 8/2) to evaluate the performances of different model variants to show impacts of different neural
content aggregators, implicit contextual relation augmentation, and adaptive negative sampling
strategy for the new item recommendation task. The results of different model variants (as de-
scribed in the first task) are reported in Table 4. The main takeaways from this table are similar to
the Table 2. That is, the recurrent aggregator has the best capability, the contextual relations fur-
ther improve the model performance, and the adaptive negative sampling strategy benefits model
training.

5.3.3 Impact of Different Content Features (RQ3). We design experiments (train/test data size
split = 8/2) to evaluate the performances of ICP with different combinations of content features,
i.e., T, T+D, and T+D+I, which represent title feature, title + description features, title + description
+ image features, respectively. The performances of ICP with different features are reported in
Figure 8. Similarly to the first task, the model with all three content features has the best result
and themodel with only one content feature has theworst result, demonstrating that incorporating
different content features elevates model capability and improves performance.

5.3.4 Impact of Trade-off Factor γ (RQ4). Following the same step in the first task, we conduct
experiments (train/test data size split = 8/2) to study the impact of tradeoff factor γ on model
performance, as shown by Figure 9. Accordingly, the certain value of γ leads to the best result of
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Fig. 9. The impact of tradeoff factor γ of the joint objective function on model performance for new item

recommendation task.

ICP, indicating that suitable amount of implicit contextual relations information are incorporated
into the model for best performance.

5.3.5 Additional Analysis. Besides γ , we also study impacts of other hyper-parameters, e.g.,
embedding dimension d , for both tasks and obtain similar results. That is, the suitable settings of
hyper-parameters lead to the best performance of proposed model. Note that the best of proposed
model employs recurrent neural network to operate an unordered set of different contents. To
study the impact of content order in recurrent aggregator, we randomly shuffle content order
to obtain performances at different content orders. We find that results with different content
orders are close to each other, demonstrating that the content order makes little impact on model
performance.

6 CONCLUSIONS

In this paper, we presented the problem of inductive contextual personalization, and proposed a
novel model called ICP to solve the problem. ICP jointly considered inductive pairwise ranking
optimization scheme, content aggregator, and node embedding smoothness term. In the training
stage, a batch gradient descent procedure with adaptive negative data sampling was employed
to optimize the model parameters. Extensive experiments on two datasets derived from different
real-world systems, i.e., AMiner and Amazon, demonstrated that ICP can outperform numerous
baseline approaches on two inductive relation inference applications, i.e., relevant author search
and new item recommendation. The initial success of this work suggests several avenues for fu-
ture research. Future work might consider extending the current model to more applications such
as problem with more than one type of edges or with one single type of nodes. It is also possible
to incorporate sequential information and modify pairwise ranking model as sequential pairwise
ranking model for sequential recommendation problem. Moreover, this work investigated induc-
tive scenario that involves one types of inductive node while our model is extensible or modifiable
for the case of more than one types of inductive nodes.
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