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Biologically Inspired Feature Manifold
for Scene Classification

Dongjin Song and Dacheng Tao, Member, IEEE

Abstract—Biologically inspired feature (BIF) and its variations
have been demonstrated to be effective and efficient for scene clas-
sification. It is unreasonable to measure the dissimilarity between
two BIFs based on their Euclidean distance. This is because BIFs
are extrinsically very high dimensional and intrinsically low di-
mensional, i.e., BIFs are sampled from a low-dimensional mani-
fold and embedded in a high-dimensional space. Therefore, it is
essential to find the intrinsic structure of a set of BIFs, obtain a
suitable mapping to implement the dimensionality reduction, and
measure the dissimilarity between two BIFs in the low-dimensional
space based on their Euclidean distance. In this paper, we study the
manifold constructed by a set of BIFs utilized for scene classifica-
tion, form a new dimensionality reduction algorithm by preserving
both the geometry of intra BIFs and the discriminative information
inter BIFs termed Discriminative and Geometry Preserving Pro-
jections (DGPP), and construct a new framework for scene clas-
sification. In this framework, we represent an image based on a
new BIF, which combines the intensity channel, the color channel,
and the C1 unit of a color image; then we project the high-di-
mensional BIF to a low-dimensional space based on DGPP; and,
finally, we conduct the classification based on the multiclass sup-
port vector machine (SVM). Thorough empirical studies based on
the USC scene dataset demonstrate that the proposed framework
improves the classification rates around 100% relatively and the
training speed 60 times for different sites in comparing with pre-
vious gist proposed by Siagian and Itti in 2007.

Index Terms—Biologically inspired feature, dimensionality re-
duction, image retrieval, manifold learning, scene classification.

I. INTRODUCTION

S CENE classification is a key component for many practical
applications, e.g., robotics path planning [43], video con-

tent analysis [8], content-based image retrieval [33], and video
surveillance [1]. Usually, scene classification is very difficult be-
cause of the wide variety of scenes potentially to be classified.
In particular, variations in lighting, different view angles, and
dynamic backgrounds lead to obstacles in efficient learning and
robust classification.

In recent years, a large number of approaches have been
developed and we can classify them into four categories:
low-level visual feature-based schemes, local feature-based
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schemes, local-global feature-based schemes, and biologically
inspired feature-based schemes.

A. Low-Level Visual Feature-Based Schemes

Low-level visual feature-based schemes, which represent
scenes by global visual information [2], e.g., color, texture,
and shape, have been successfully utilized in indoor/outdoor,
city/landscape, and forest/mountain applications. The color
information is the most informative feature for scene classifi-
cation because it performs better than texture and shape with
respect to scaling, rotation, perspective, and occlusion [40].
Representative global color features are HSV color histogram
[40] and color coherence vectors [30]. The texture information
is another important cue for scene classification. Previous
studies have shown that texture information according to the
structure and orientation fits well with the model of human
perception and so does the shape information. Representative
texture features include the multiresolution simultaneous au-
toregressive models [26] and wavelet-based decompositions
[6], [24]. One of the most popular shape features is the edge
directional histogram [18]. Because global visual features are
sensitive to small geometric and photometric distortions and
they fail to work in spite of large changes in viewing condi-
tions, occlusions, and clutters, local feature-based schemes are
developed.

B. Local Feature-Based Schemes

Local feature-based schemes represent scene images with
detected interest points (or regions) based on some descriptors.
Usually, bag-of-features (or textons) is utilized to represent a
scene image. For local features, there are two groups of compo-
nents: detectors and descriptors. Detectors, e.g., Harris’s corner
detector [13], scale invariant feature transform (SIFT) [21],
Harris-Laplace detector [27], and maximally stable extremal
region (MSER) detector [25], look for points and regions to
mimic human observers in locating elemental features in a
scene image. To describe detected interest points or regions,
descriptors, e.g., SIFT [21], steerable filters [11], Gabor func-
tions [7], Varma-Zisserman model [44], and gradient location
and orientation histogram [28], are utilized. Descriptors should
be distinctive and invariant to geometric and photometric
transformations. Because local feature-based schemes ignore
the spatial information, local-global feature-based schemes are
introduced.

C. Local-Global Feature-Based Schemes

Local-global feature-based schemes utilize both the global
spatial information and the local descriptors of interest points
(or regions) to represent scene images to achieve a robust
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classification. For example, Lazebnik et al. [22] developed
the spatial pyramid matching by partitioning an image into
increasingly fine grids and computing histograms of local
features inside each grid cell. Their experimental results show
improvements over the bag of words model. Gökalp et al.
[12] proposed bag-of-regions by considering both the “bag of
individual regions” where each region is regarded separately
and the “bag of region pairs” where regions are with particular
spatial relationships. Experiments on the LabelMe dataset show
the effectiveness of this method. Although these approaches
have many advantages in scene classification, they are short
of evidences from visual cognition and neuroscience. Recent
research outputs show significances of biologically inspired
features in image understanding.

D. Biologically Inspired Feature-based Schemes

Biologically inspired feature-based schemes classify scenes
by mimicking the process of visual cortex in recognition tasks.
Recent reports from both neuroscience and computer vision
have demonstrated that biologically plausible features [16],
[38] are attractive in visual recognition. For example, Serre et
al. [41] proposed a biologically inspired model to mimic the
human visual cortex for object recognition and achieved top
performance in both object categorization and scene classifica-
tion. Oliva et al. [29] presented a set of perceptual dimensions,
termed Spatial Envelope, to represent the dominant spatial
structure of a scene and demonstrated that the Spatial Envelope
is effective in representing visual semantic categories. Siagian
and Itti [37] developed a novel scene classification framework
based on the gist model to mimic the cognition process asso-
ciated with visual attention. In this model, intensity, color, and
Gabor features are combined together for scene representation,
both principal components analysis (PCA) and independent
components analysis (ICA) are utilized for feature selection,
and a three-layer neural network is used for classification.

Although Poggio and Bizzi [31] showed that C1 units cor-
respond to complex cells in the visual cortex and they are ef-
fective for object recognition, C1 units ignore both the color
and intensity information of an image. Although the gist feature
[37] used for scene classification takes color, intensity, and ori-
entation information into account, the orientation information
extracted by Gabor filters do not fully correspond to complex
cells in the visual cortex. In addition, these features are labeled
samples drawn from a low-dimensional manifold and artificially
embedded in a high-dimensional ambient space, so PCA and
ICA utilized by Siagian and Itti [37] for dimensionality reduc-
tion is not a suitable choice. This is because PCA and ICA do
not consider both the non-Euclidean property of biological fea-
tures and the sample label information. It is worth emphasizing
that PCA and ICA perform well for classification tasks when
the class label information is not yet available.

In this paper, to effectively represent color scene images,
we unify C1 units together with both the color and intensity
information used in the scene classification scheme developed
by Siagian and Itti [37]. To discover the intrinsic coordinate
of the newly unified biologically inspired gist feature, we
parameterize samples in the original high-dimensional ambient

space based on the proposed discriminative and geometry
preserving projections (DGPP). DGPP precisely models both
the intraclass geometry and interclass discrimination and never
meets the undersampled problem. Finally, to classify scenes,
we utilize pairwise multiclass support vector machine (SVM)
[5] because of its good generalization ability for classification.
We term the proposed procedure for scene classification as the
biologically inspired feature manifold (BIFM) framework. To
justify the effectiveness of the proposed BIFM, we compare it
with the scene classification algorithm proposed by Siagian and
Itti [37] and show the improvement for classification accuracy
is around 100%.

The rest of the paper is organized as follows. Section II
introduces the proposed biologically inspired feature manifold
(BIFM) framework, which describes the newly unified bio-
logically inspired gist feature, details the novel discriminative
and geometry preserving projections, and briefs the pairwise
multiclass support vector machine for scene classification. In
Section III, we brief the USC scene dataset for empirical study.
In Section IV, we compare the proposed BIFM with the scene
classification algorithm developed by Siagian and Itti, and
Section V concludes.

II. BIOLOGICALLY INSPIRED FEATURE MANIFOLD FRAMEWORK

Gist is a human perception process which may happen in
brain areas that are preferentially respond to “place” with re-
stricted spatial layout [9]. The proposed BIFM framework simu-
lates this process and can be divided into three main components
(as shown in Fig. 1): the newly unified biologically inspired gist
feature, the novel DGPP which preserves both the inter separa-
tion between different classes and within-class intra geometry
characteristics, and the pairwise multiclass SVM classifier.

A. BIF: Newly Unified Biologically Inspired Feature

In this framework, we unify C1 units, color and intensity units
as the biologically inspired feature for scene image representa-
tion. The C1 units are utilized here to replace the original ori-
entation channel in the scene classification algorithm developed
by Siagian and Itti [37]. This is because the orientation infor-
mation extracted by Gabor filters does not fully correspond to
complex cells in the visual cortex.

C1 Units (16 Feature Maps): The C1 units correspond to
complex cells in the visual cortex [41]. By using a maximum
operation, C1 units pool over S1 units and only keep the max
response of a local area of S1 units from the same orientation
and scale. The S1 units correspond to simple cells in S1 layer
of the visual cortex. Gabor functions are similar to the recep-
tive field profiles in the mammalian cortical simple cells so they
are utilized for representing the feature in S1 layer. The Gabor
mother function is

, wherein
, the range of and decides the scales of Gabor filters,

and controls orientations. Here we arrange the Gabor filters to
form a pyramid with eight scales and span a range of sizes from

to pixels with a step of two pixels. Four orien-
tations are considered: 0 , 45 , 90 , and 135 . By convoluting
the initial input image with these Gabor filters, 32
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Fig. 1. Poposed biologically inspired feature manifold (BIFM) framework for scene classification: for each training scene image, we extract its biologically
inspired features, which contain 34 feature maps, i.e., six intensity feature maps, 12 color feature maps, and 16 C1 units feature maps, and stack all extract 544
features as a vector. By using the proposed DGPP, we can project high-dimensional features to low-dimensional sub-manifold.

feature maps are obtained in S1 units to represent 32 different
S1 receptive field types. Since the step between two consecutive
scales of Gabor filters is small (two pixels), we can get precise
orientation information on S1 feature maps.

These 16 feature maps of C1 units are obtained through
pooling over two adjacent scales (with an identical orientation)
of S1 units by using the maximum operation, i.e., a box (span
a range of sizes from 8 8 to 14 14 with a step of two
pixels) slides on the two adjacent scales of S1 units, and if a
maximum intensity pixel is found the in the box, it will be used
to represent the corresponding pixel in C1 feature map. Since
the maximum operation shows some tolerance for shift and size
and it also highlights the orientation information, it provides us
precise and robust features.

Intensity Units (6 Feature Maps): The intensity units corre-
spond to the neurons of mammals which are sensitive to dark
centers on bright surrounds or bright centers on dark surrounds
[17], [20]. By using dyadic Gaussian pyramids convolved on
the intensity channel of an input color image, nine spatial scales
are generated with a ratio from 1:1 (level 0) to 1:256 (level 8).
To get intensity feature maps, the center-surround operation is
performed between center levels and surround
levels ( , with , i.e., six feature maps are
computed at levels of 2-5, 2-6, 3-6, 3-7, 4-7, and 4-8. Because
scales are different between center levels and surround levels,
maps of surround levels are interpolated to the same size as
the corresponding center levels, and then they are subtracted
point-by-point by the corresponding center levels to generate the
relevant feature maps, i.e., .

Color Units (12 Feature Maps): The color units are inspired
by the “color double-opponent” system in cortex [17]. Neurons
are excited by a color (e.g., blue) and inhibited by another color
(e.g., yellow) in the center of receptive field, so are neurons in
the surround. Herein, four color channels are used:

, and
.

For each color channel (R, G, B, and Y), dyadic Gaussian
pyramids are also used for generating nine spatial scales with
a ratio from 1:1 (level 0) to 1:256 (level 8). The color pairs
are formed as red-green (R-G) and blue-yellow (B-Y). The fea-
ture map, i.e., the across scales difference between two corre-
sponding center and surround maps is also obtained by first
interpolating the surround map to the same size of the rele-
vant center map and then subtracted by the relevant center map
point-by-point, i.e.,

and

As shown by Siagian and Itti [36], color units are valuable for
color image representation.

Scene Image Representation: In this paper, a color image is
represented by 34 feature maps, wherein 16 feature maps ob-
tained from C1 units, six intensity feature maps obtained from
six intensity filters convoluted with the input image, and 12 color
feature maps obtained from 12 color filters convoluted with the
input image. We decompose each feature map into 4 4 grid
sub-regions. All sub-regions have identical length and width.
Then, the mean value of each sub region is calculated for final
representation, as shown in Fig. 2, i.e., 16 mean values are uti-
lized to represent each feature map and 544 values are obtained
for image representation.

B. DGPP: Discriminative and Geometry Preserving
Projections

In this framework, scene images are represented by the bi-
ologically inspired feature introduced in Section II-A and they
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Fig. 2. Biologically inspired feature extraction procedure for a color scene
image.

can be actually deemed as samples drawn from a low-dimen-
sional manifold and artificially embedded in a high-dimensional
ambient space. Here, the high-dimensional ambient space is
the biologically inspired feature space and the low-dimensional
smooth manifold is . Therefore, our objective is finding a
mapping to select the effective subspace from for clas-
sification based on a number of observations

. To reduce the complexity of the problem, we usually
suppose the mapping is linear (i.e., the mapping is defined by a
projection matrix ) and then we can find low-dimen-
sional representations as and each column
of is .

In the past years, a number of manifold learning-based dimen-
sionality reduction algorithms have been developed, including
locally linear embedding (LLE) [32], ISOMAP [42], and Lapla-
cian eigenmaps (LE) [3]. LLE uses linear coefficients, which
reconstruct a given sample by its neighbors, to represent the
local geometry, and then seeks a low-dimensional embedding,
in which these coefficients are still suitable for reconstruction.
ISOMAP, a variant of MDS, preserves global geodesic distances
of all pairs of samples. LE preserves proximity relationships
by manipulations on an undirected weighted graph, which in-
dicates neighbor relations of pairwise samples. However, they
suffer from the out of sample problem. One common response
to address this problem is to apply a linearization procedure to
construct explicit maps over new samples. Their corresponding
linearization algorithms are neighborhood preserving embed-
ding (NPE) [14], isometric projection, and locality preserving
projections (LPP) [15].

However, for classification tasks, these algorithms only con-
sider the intraclass geometry, while ignore the interactions of
samples from different classes. Marginal Fisher analysis (MFA)
[45] is a solution which takes both into account. However, it ex-
tracts discriminative information from only marginal samples,
although nonmarginal samples also contain the discriminative
information; and it preserves the local geometry of intraclass
samples by making them as close as possible, i.e., the local ge-
ometry in MFA is described by the sample distribution compact-
ness, but this is not a precise way for local geometry modeling.
In addition, MFA has the undersampled problem when training
samples are insufficient.

In this paper, we present a novel algorithm based on [48],
which precisely models both the intraclass geometry and
interclass discrimination and never meets the undersampled
problem. That is in the low-dimensional space , distances
between interclass samples should be as large as possible

while distances between intraclass samples should be as
small as possible [39]; and the local geometry of intraclass sam-
ples should be preserved as much as possible by keeping linear
reconstruction coefficients obtained in [14], [19], [23],
[32]. The formal part is termed the discrimination preservation
and the latter part is termed the local geometry preservation, so
we term the proposed algorithm as the discriminative geometry
preserving projections (DGPP).

In DGPP, there are classes, the th sample in the
high-dimensional space is associated with a class label

, the linear mapping is ,
and projects to a low-dimensional space as

. The th class contains samples, so
.

To implement the discrimination preservation in DGPP, we
would like to maximize the average weighed pairwise distance
between samples in different classes and minimize the average
weighed pairwise distance between samples in an identical
class, i.e.,

(1)

where the weighing factor encodes both the distance
weighing information and the class label information

if
if

(2)

where is set as according to LE and
LPP for locality preservation and is set as 1 for simplicity. In
addition, based on simple empirical justifications in this paper,

affects the classification performance slightly, so it is rea-
sonable to set it as 1.

To implement the local geometry preservation, we assume
each sample can be reconstructed by the samples with the same
label, i.e., can be linearly reconstructed from
as

(3)

where is the reconstruction error for and is obtained
by minimizing , i.e.,

(4)

By imposing and (for
on the above function, we have ,
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wherein is the local Gram matrix
and .

In DGPP, reconstructs from in the
low-dimensional space, so we have

(5)

By combining the discrimination preservation and the local
geometry preservation together, we have

(6)

Based on a series of matrix operations, we can obtain the
linear projection matrix according to

(7)

where ,
and is a diagonal matrix and its the th
entry is . The unified coefficient matrix

is a sym-
metric matrix and . By imposing on
(7), the solution is given by a standard eigenvalue decomposi-
tion on and is formed by the eigenvectors associated
with the first largest eigenvalues.

C. SVM: Support Vector Machine

SVM [5] is a popular pattern classification method used in
recent years. It obtains top-level performance in different appli-
cations because of its good generalization ability in minimizing
the Vapnik—Chervonenkis (VC) dimension and achieving a
minimal structural risk.

We use the pairwise approach for SVM-based multiclass clas-
sification, so classifiers are constructed and each

classifier is trained by data from two different classes. In detail,
for training data from the th and the th classes, we construct
the following binary SVM classifier:

such that

and (8)

where are training samples in the DGPP projected
subspace, is the class label ( for th class and for th
class) determines the classification hyper-plane to separate
samples in th class from samples in the th class, trades
the complexity of the machine off the number of nonseparable
samples, and is the number of training samples from both the
th class and the th class.

For a given input , its label or is classi-
fied by , wherein the bias is

and is a support vector with class
label (or it belongs to the th class). During test,
times classification will be conducted and the voting rule is
utilized for final decision: each binary classification can be
deemed as a voting process where votes can be casted to and

is designed to a class with maximum number of votes. In all
experiments, the polynomial kernel is utilized.

III. USC SCENE DATASET

All experiments for performance evaluation have been con-
ducted on the University of Southern California (USC) scene
dataset [37]. The USC scene dataset contains 375 video clips
of three USC campus sites, which are Ahmanson Center for Bi-
ological Science (ACB), Associate and Founders Park (AnF),
and Frederick D. Fagg Park (FDF). That is each site represents
one scene. The ACB is a scene of buildings. Most of the video
frames for ACB are flat walls with little texture and solid lines
that describe walls and different parts of the buildings. The AnF
is a park full of trees. It is dominated by vegetations and is full of
complex texture. The FDF is an open field scene, which is com-
posed by the sky, textureless space and random light. Each scene
consists of nine segments, as shown in Fig. 3, with a number
of video clips and each segment represents a path, a road or a
hallway, i.e., different segments show different parts of a site.
The task of the USC scene dataset is classification of video clip
images over segments in each site.

In our experiments, we have two types of studies, i.e., small
scale evaluation and large scale evaluation. Datasets for both
small and large scales evaluation were obtained according to the
following descriptions.

1) Dataset for small scale evaluation: for each site, we
constructed four small datasets for four corresponding
trials independently. Both training and testing sets were
constructed by Siagian and Itti [37]. A small number of
images are uniformly drawn from original training and
testing video clips for training, and testing stages, re-
spectively. The validation samples were also drawn from
the original testing set but independent to the selected
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Fig. 3. Example: Each image is selected from a segment in three USC sites. The rows from top to bottom are Ahmanson Center for Biological Science (ACB),
Associate and Founders Park (AnF), and Frederick D. Fagg Park (FDF), respectively.

Fig. 4. Performance evaluation of different algorithms with different scenes.

testing samples. In ACB site, the cardinalities of training,
validation, and testing sets for four trials are respectively:
1541/678/1356, 1284/678/1139, 1284/678/1136, and
1279/678/1133. In AnF site, the cardinalities of training,
validation, and testing sets for four trials are respectively:
2827/1042/1041, 2825/1041/1038, 2820/1038/1037, and
2819/1037/1042. In FDF site, the cardinalities of training,
validation, and testing sets for four trials are respectively:
1340/1467/1463, 1338/1463/1461, 1336/1461/1459, and
1335/1459/1467.

2) Dataset for large scale evaluation: the procedure for con-
structing both the training and testing video clips is iden-
tical to that used in Siagian and Itti’s work [37]. The only
difference is that in the test stage, they constructed four
trails by dividing the video clips into four groups to test

the performance of their system on different lighting condi-
tions (i.e., late afternoon, early evening, noon, and mid-af-
ternoon). We combined all test video clips of four lighting
conditions together to test the performance of the proposed
BIFM, and we uniformly sampled images from video clips
with rate 5 frames per second. As a result, the cardinalities
of training and testing for ACB site, AnF site, and FDF
site are respectively 3847/3408, 11291/4158, and 10694/
11694. For large scale evaluation, we did not use a vali-
dation set to choose parameters for DGPP because it per-
formed robustly for different settings.

IV. PERFORMANCE EVALUATION

In this section, we evaluate the proposed BIFM in the fol-
lowing three aspects: 1) the effectiveness of each component in
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BIFM for scene classification based on small scale evaluation
datasets, 2) the effectiveness of the proposed DGPP with five
representative subspace selection algorithms, e.g., PCA, linear
discriminant analysis (LDA) [10], [46], NPE, MFA, and LPP,
based on the ACB small scale evaluation dataset, and 3) the
comparison between the proposed BIFM with Siagian and Itti’s
results based on the large scale evaluation datasets.

A. Step-By-Step Model Justification

This experiment justifies the effectiveness of each component
in BIFM based on the standard image-based recognition proce-
dure, i.e., feature extraction, subspace selection, and classifica-
tion. This procedure is also utilized in Siagian and Itti’s scene
classification [37]. Therefore, the baseline utilized for compar-
ison is Siagian and Itti’s procedure. To justify the effective-
ness of SVM for scene classification, we replace the three-layer
neural network in the baseline with the SVM classifier and term
this procedure as “PCA SVM Gist”. To justify the effective-
ness of C1 units for scene classification, we replace the Gabor
orientation channel in “PCA SVM Gist” with C1 units and
term this procedure as “C1 PCA SVM”. Similar to the pro-
cedure to justify the effectiveness of the C1 units, we justify the
proposed DGPP in scene classification by replacing PCA/ICA
stage in “PCA SVM Gist” with DGPP and term this procedure
as “DGPP SVM Gist”. We also show the performance of the
baseline without the PCA step as “NN Gist”, the performance of
“PCA SVM Gist” without PCA step as “SVM Gist”, the per-
formance of C1 units combined with NN as “C1 NN”, the per-
formance of “C1 PCA SVM” without PCA as “C1 SVM”,
the performance of C1 units combined with PCA and NN as
“C1 PCA NN”, and the performance of C1 units combined
with PCA and SVM as “C1 PCA SVM”. Finally, we conduct
the proposed BIFM for scene classification and compare it with
all aforementioned procedures. In all experiments, both color
and intensity features were used.

In all experiments, both DGPP and PCA/ICA reduced feature
dimensionality from 544 to 80 according to suggestions from
Siagian and Itti [37] for fair comparisons. The parameter in
DGPP was set as 1 for all experiments because different settings
affected the evaluation slightly. All procedures are conducted
on three small scale evaluation datasets (four trials in each USC
site). Experimental results are shown in Fig. 4.

Here, we utilize the boxplot to describe comparison results.
Each boxplot produces a box and whisker plot for each method.
The box has lines at the lower quartile, median, and upper
quartile values. Whiskers extend from each end of the box
to the adjacent values in the data-by default and the most
extreme values within 1.5 times the interquartile range from the
ends of the box. In Fig. 4, we have ten groups, each of which
stands for a method, i.e., baseline developed by Siagian and
Itti in [37], “NN Gist”, “SVM Gist”, “C1 NN”, “C1 SVM”,
“PCA SVM Gist”, “C1 PCA NN”, “C1 PCA SVM”,
“DGPP SVM Gist”, and BIMF. Each group contains three
boxes, where boxes from left to right show the performances of
ACB, AnF, and FDF, respectively.

As shown in Fig. 4, “SVM Gist”, “C1 SVM Gist”, “DGPP
SVM Gist”, and BIFM all perform better than the baseline

developed by Siagian and Itti in [37]. Not only does the SVM

Fig. 5. Empirical studies of DGPP compared with five other representative sub-
space selection algorithms on ACB, AnF, and FDF. The � coordinate represents
the classification accuracy and the � coordinate represents the dimensionality
of selected subspace. (a) ACB, (b) AnF, (c) FDF.

Gist performs better than the baseline, it also has another two
advantages in comparing with the baseline: 1) SVM provides
a global optimal solution while the three-layer neural network
utilized in the baseline can only achieve a local optimal solu-
tion, i.e., the baseline is sensitive to initial settings while SVM
does not; and 2) the training cost of SVM is much less than
that of the three-layer neural network, e.g., in this test, the
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Fig. 6. Segment distributions in the selected two-dimensional subspace with different subspace selection algorithms on ACB. As shown in this figure, DGPP
performs better than others. The classification accuracy (CA) is applied to measure different dimensionality reduction algorithms for separating classes in the
projected subspace. (a) PCA ��� � ����%�, (b) LDA ��� � �	�
%�, (c) NPE ��� � ����%�, (d) LPP ��� � 

��%�, (e) MFA ��� � 

�
%�, (f) DGPP
��� � ���
%�.

training stage of the three-layer neural network is around one
hour while the training stage of the SVM is around one minute.

C1 units can significantly improve the classification accuracy.
C1 units pool over S1 units, which correspond to simple cells in
the visual cortex, by using a maximum operation to keep only
the max response of a local area of S1 units from the orien-
tation and scale. The maximum operation is tolerant for affine
transformations, so that C1 units provide more precise and ro-
bust feature than original orientation channel. Therefore, “C1
SVM Gist” outperforms “SVM Gist”.

DGPP performs much better than PCA/ICA in “SVM Gist”.
In this paper, scene images are represented by the biologically
inspired feature, which can be actually deemed as samples
drawn from a low-dimensional manifold and artificially em-
bedded in a high-dimensional ambient space. Therefore,
PCA/ICA is not suitable here for discovering the intrinsic struc-
ture because PCA/ICA only considers the Euclidean structure
of samples. The proposed DGPP finds a mapping to transform
the samples from the original high-dimensional ambient space
(the biologically inspired feature space) to the low-dimensional
smooth manifold so that it can discover the intrinsic structure
of the samples and can achieve a significant improvement.

The combination of C1 and DGPP under “SVM Gist”, i.e.,
BIFM, can achieve a further improvement in comparing with
both of them and have an almost perfect performance (classi-
fication accuracy is more than 99%). Through our step-by-step
empirical justification, we demonstrate that each of our three
components, i.e., SVM classifier, C1 units, and DGPP for sub-
space selection, included in the proposed BIFM is effective in
scene classification.

At the end of this experiment, it is worth emphasizing that
“C1 SVM” is not as good as BIMF because DGPP can pre-

serve the discriminative information and reduce sample noises.
Although PCA can reduce sample noises, it fails to preserve the
discriminative information, thus “C1 PCA SVM” is not as
good as “C1 SVM”.

B. DGPP Versus Representative Subspace Selection Methods

In this subsection, we justify the effectiveness of the proposed
DGPP for subspace selection by comparing it with representa-
tive methods, e.g., PCA, LDA, NPE, LPP, and MFA, under the
proposed BIFM framework for scene classification. It is worth
noting that both LPP and NPE are utilized in supervised set-
ting for fair comparison. According to our experiences, LPP and
NPE with supervised setting perform better than them with un-
supervised setting because unsupervised setting does not take
the sample label information into account.

In all experiments, we justify feature dimensionality from
2 to 8 with step 1 and from 10 to 100 with step 10 in ACB,
AnF, and FDF, respectively. All subspace selection algorithms
are conducted on the small scale evaluation datasets (each with
four trials) and the validation sets are applied for parameter se-
lection for different algorithms. The classification accuracy (on
testing sets) curves of different methods are shown in Fig. 5. As
shown in these sub-figures, manifold learning algorithms, i.e.,
LPP, NPE, MFA, and DGPP, perform much better than conven-
tional methods, e.g., PCA and LDA; and supervised learning al-
gorithms, i.e., DGPP, MFA, LPP, NPE, and LDA, perform better
than the unsupervised learning algorithm, i.e., PCA. Moreover,
DGPP and MFA perform better than LPP and NPE because LPP
and NPE for very low-dimensional projections (i.e., the dimen-
sionality of selected subspace is less than or equals to 7) only
consider the intraclass geometry while ignore the interactions of
samples from different classes. Finally, DGPP usually performs
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Fig. 7. Segment distributions in the selected two-dimensional subspace with different subspace selection algorithms on AnF. As shown in this figure, DGPP
performs comparably to NPE and much better than others. The classification accuracy (CA) is utilized to measure different dimensionality reduction algorithms for
separating classes in the projected subspace. (a) PCA ��� � ����%�, (b) LDA ��� � 	
��%�, (c) NPE ��� � ���	%�, (d) LPP ��� � 	
�
%�, (e) MFA
��� � 	���%�, (f) DGPP ��� � �
��%�.

Fig. 8. Segment distributions in the selected two-dimensional subspace with different subspace selection algorithms on FDF. As shown in this figure, DGPP
performs comparably to LPP, slightly worse than MFA, and much better than others. The classification accuracy (CA) is utilized to measure different dimensionality
reduction algorithms for separating classes in the projected subspace. (a) PCA ��� � 
��
%� (b) LDA ��� � 
��	%� (c) NPE ��� � 
��
%�, (d) LPP
��� � �	��%�, (e) MFA ��� � ���
%�, (f) DGPP ��� � ����%�.

better than MFA for very low-dimensional projections (i.e., the
dimensionality of selected subspace is less than or equals to
7). This is because 1) MFA extracts discriminative informa-
tion from only marginal samples, although nonmarginal sam-
ples also contain the discriminative information; and 2) MFA
preserves the local geometry of intraclass samples by making
them as close as possible, i.e., the local geometry in MFA is de-

scribed by the sample distribution compactness, whilst this is
not a precise way for local geometry modeling.

Figs. 6–8 provide the subspace selection results, namely the
sample distributions after they are projected onto the selected
two-dimensional subspace on ACB, AnF, and FDF. The above
points can be doubly justified by these figures. In detail, Fig. 6
shows that DGPP performs much better than other algorithms on
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Fig. 9. Large-scale dataset-based performance evaluation. For each bar table, the � coordinate is the classification accuracy and � coordinate is the segment ID in
a USC site. Gray histograms are obtained by the baseline and black histograms are obtained by the proposed BIFM.

ACB, and Figs. 7 and 8 show that DGPP performs comparably
to other algorithms on AnF and FDF.

C. Performance Across Segments of All Sites

In this subsection, we compare the proposed BIFM with the
baseline developed by Siagian and Itti in [37] based on the
large scale evaluation dataset, which is described in Section III.
Table I shows the classification results for all three sites in the
USC dataset. Compared with the benchmark, the classification
rate of each cite has been dramatically promoted up to around
99% (nearly 100%). We obtained a great improvement in
classification accuracy in comparing with the baseline [37].
Furthermore, in the baseline, the classification results on AnF
is much lower than the other two sites (about 3%–4%) due
to the obstacles to classifier the vegetation dominated seg-
ments. However, BIFM can classify the vegetation dominated
segments well. Fig. 9 illustrates the classification accuracy
comparisons on each individual segment of the three sites
based on BIFM and the baseline. In all experiments, we set
as 1 because DGPP performed robustly for different settings in
this experiment. Therefore, validation is not essential here.

V. CONCLUSION

In this paper, we proposed a novel biologically inspired fea-
ture manifold (BIFM) framework for scene classification, which
contains three components: a new combination of popular bio-
logically inspired features (BIFs) for scene image representa-
tion, a novel discriminative subspace selection method, termed
discriminative geometry preserving projections (DGPP), for di-
mensionality reduction and a pairwise multiclass support vector
machine (SVM) classifier for classification.

The new combination of BIFs mimics the human perception
process in the visual cortex by considering C1, intensity and
color units simultaneously. Because it is reasonable to assume
BIFs are sampled from a low-dimensional manifold and em-
bedded in a high-dimensional space, we proposed a novel man-
ifold learning algorithm DGPP to map high-dimensional sam-
ples to a low-dimensional space. DGPP precisely preserves both
the intraclass geometry and interclass discrimination and empir-
ical studies show that it is superior to well known dimension-
ality reduction algorithms, e.g., principal component analysis
(PCA), linear discriminant analysis (LDA), locality preserving
projections (LPP), neighborhood preserving embedding (NPE),
and marginal Fisher analysis (MFA), in the proposed BIFM for
scene classification. Actually, the proposed DGPP can also be
utilized for other applications, e.g., biometrics and multimedia

information retrieval. The pairwise multiclass SVM is applied
here for final classification because of its good generalization
ability for classification. Thorough empirical studies based on
the USC scene dataset showed the BIFM framework performs
almost perfectly and significantly outperforms the current stan-
dard developed by Siagian and Itti [37]. In addition, BIFM is
around 60 times faster than [37] in the training stage.

In the future, we would like to further improve our frame-
work in the following aspects. First, we may bring new models
for color and intensity information representation from visual
cognitive science to make our BIFM more robust and can en-
able our system to classify more challenging scenes (based on
the empirical studies in this paper, it is possible to enlarge the
number of segments to at least 30). Second, we may extend the
proposed framework to other applications, e.g., object catego-
rization, detection and segmentation. Third, we will consider
the unlabeled samples [47] for subspace learning and generalize
DGPP to accept tensors [35] as input. Last but not the least, for
visualizing samples in a 2-D space, we will consider using our
recent geometric mean subspace method [36], [34] for biologi-
cally inspired feature analysis.
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