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Abstract— Conditional random fields (CRFs) are a flexible yet
powerful probabilistic approach and have shown advantages for
popular applications in various areas, including text analysis,
bioinformatics, and computer vision. Traditional CRF models,
however, are incapable of selecting relevant features as well
as suppressing noise from noisy original features. Moreover,
conventional optimization methods often converge slowly in
solving the training procedure of CRFs, and will degrade
significantly for tasks with a large number of samples and
features. In this paper, we propose robust CRFs (RCRFs) to
simultaneously select relevant features. An optimal gradient
method (OGM) is further designed to train RCRFs efficiently.
Specifically, the proposed RCRFs employ the �1 norm of the
model parameters to regularize the objective used by traditional
CRFs, therefore enabling discovery of the relevant unary features
and pairwise features of CRFs. In each iteration of OGM, the
gradient direction is determined jointly by the current gradient
together with the historical gradients, and the Lipschitz constant
is leveraged to specify the proper step size. We show that an OGM
can tackle the RCRF model training very efficiently, achieving
the optimal convergence rate O(1/k2) (where k is the number
of iterations). This convergence rate is theoretically superior to
the convergence rate O(1/k) of previous first-order optimization
methods. Extensive experiments performed on three practical
image segmentation tasks demonstrate the efficacy of OGM in
training our proposed RCRFs.

Index Terms— Optimal gradient method, conditional random
fields, robust conditional random fields, image segmentation.

I. INTRODUCTION

CONDITIONAL random fields (CRFs) [9], [19], [20],
[24], [37], [52] are a successful probabilistic approach

for labeling structured data, and have been applied
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to various practical applications, e.g., natural language
processing [46], [47], text analysis [34], [41], bioinfor-
matics [42], multi-view learning [53], [54], and computer
vision [16], [25], [26], [40], [43], [44], [48], [56], [58].
Since CRFs directly model a label distribution conditioned on
observations or input variables without explicitly considering
the dependencies among the observations or variables, CRFs
can flexibly tackle a variety of arbitrary and interdependent
features of inputs.

Generally, CRFs can be categorized into three classes,
i.e., linear chain CRFs [24], 2D CRFs [19], [20], [49],
and high-order tensor CRFs [5], based upon the observation
formats and their associated label contextual structures,
e.g., text, images, and computed tomography (CT) images.
This paper concentrates on the first two classes because these
two are more common. Note that 2D CRFs are essentially
different from linear chain CRFs due to the difference between
their underlying inference problems. Specifically, since the
objective function used by CRFs is convex, linear chain CRFs
can achieve global optima via exact inference, such as message
passing algorithms and combinatorial min cut or max flow
algorithms. However, 2D CRFs cannot perform exact inference
in general because of the high computational complexity.
Besides inference, training of linear chain CRFs and 2D CRFs
is another important issue.

In the past decade, a number of algorithms have been
developed to attain the optimal parameters of linear
chain CRFs. For example, Lafferty et al. [24] introduced a
family of iterative scaling algorithms [4], [13] to train linear
chain CRFs. Such algorithms seek the optimal solution of the
lower bounded auxiliary function, which is an approximation
to the globally optimal solution of the true log-likelihood
function. Although these iterative scaling algorithms are
simple and convergent, their convergence rate is lower
than those of typical convex optimization algorithms when
features of input observations or variables are highly
correlated [29], [30]. To train CRFs more efficiently,
Sha and Pereira [41] used the limited-memory Broyden-
Fletcher-Goldfarb-Shanno (L-BFGS) method [31] to estimate
the curvature of the likelihood function by taking advantage
of previous gradients and updates. L-BFGS avoids the
computation of the exact Hessian inverse and has shown its
computational efficiency in shallow parsing [41]. Nevertheless,
L-BFGS cannot directly work under batch and online settings.
To this end, Vishwanathan et al. [49] employed the stochastic
gradient method (SGD) to train CRFs in an online fashion, for
the reason that SGD (or stochastic meta-descent in particular)
is generally far more efficient than L-BFGS in training CRFs.
Other alternative methods for training linear chain CRFs
include Collins perceptron [10], Gibbs sampling [14], and
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contrastive divergence [17]. It is worth pointing out that most
of the aforementioned approaches can naturally be applied
to train 2D CRFs [49] which have been widely utilized in
practical applications such as information extraction [57] and
image labeling [19], [20].

To label image pixels/regions effectively, a variety of
features, such as density scale invariant feature trans-
form (SIFT) [22] and Gabor features [12], were extracted
and adopted. Existing 2D CRFs approaches, however,
cannot automatically determine which features are useful and
which features are not. Although a preprocessing step such
as sparse coding [23] and dimensionality reduction [36] may
be used, it is suboptimal because the objective involved
is inconsistent with that of CRFs. To address this issue,
we propose robust conditional random fields (RCRFs), which
regularize the objective of CRFs with the �1 norm of the model
parameters and thus enable selection of relevant unary and
pairwise features simultaneously. On one hand, RCRFs are
related to sparse linear chain CRFs [45] because they both
leverage the �1 norm to regularize the model parameters.
On the other hand, RCRFs are different from sparse linear
chain CRFs, because 1) we focus on 2D CRFs, 2) their
underlying inference methods are distinct, and 3) their targeted
applications are different.

The aforementioned conventional optimization approaches,
however, cannot be directly applied to solve RCRFs. This is
because the objective of RCRFs is convex but non-smooth,
i.e., non-differentiable. Although sub-gradient methods or
projected sub-gradient methods [2] can be applied to optimize
the non-smooth objective, they generally converge slowly and
will degrade significantly for tasks with a large number of sam-
ples and features. To mitigate this disadvantage, in this paper
we design and analyze an optimal gradient method (OGM),
or equivalently Nesterov’s gradient method [33], to solve
RCRFs in an efficient manner. The OGM developed
incorporates an extra term into the objective of RCRFs to
smooth it, and exploits a gradient-based method with the
proven optimal convergence rate to estimate the optimal
parameters of RCRFs. In each iteration, two auxiliary
optimization problems are solved, and a weighted combination
of their solutions is set as the current parameters of RCRFs.
In other words, the current parameters are determined jointly
by the current gradient and historical gradients. The main
computational cost of OGM is to calculate the first-order
derivative of the objective function per iteration, so OGM is
very efficient in computation and meanwhile alleviates the
slow-convergence disadvantage of the conventional optimiza-
tion methods.

To thoroughly examine the effectiveness and efficiency of
OGM in training RCRFs, we perform RCRF-OGM on three
real-world image segmentation tasks. Extensive experiments
demonstrate that OGM outperforms competing optimization
methods including the iterative shrinkage-thresholding
algorithm (ISTA) [2] and the fast iterative shrinkage-
thresholding algorithm (FISTA) [2] when all of them are used
for training RCRFs.

The rest of this paper is organized as follows. Section II
briefly introduces CRFs. Section III describes RCRFs and

explains how to select relevant features of RCRFs. Section IV
presents OGM for training RCRFs. Section V compares
OGM against representative optimization methods in terms of
training RCRFs on various applications. Finally, Section VI
concludes the paper.

II. CONDITIONAL RANDOM FIELDS

Conditional random fields (CRFs) [24] are undirected
graphical models; let x = (x1, x2, . . . , xn; xi ∈ π ≡ R)
be a collection of random variables (observations), and
y = (y1, y2, . . . , yn; yi ∈ γ) (with γ ≡ {−1, 1} in this paper)
be the collection of associated labels. Each entry yi is assumed
to range over a finite label alphabet γ. CRFs construct a
conditional model p(y|x) with a given set of features from
the paired observations and labels. The definition of CRFs [24]
can be given as:

Definition 1: Let G = (V , E) be a graph such that y is
indexed by the vertices (nodes) of G. Then (x, y) is said to
be a conditional random field if, when conditioned on x, the
random variables yi obey the Markov property with respect to
the graph: p(yi |x, yV\{i}) = p(yi |x, yNi ), where V \ {i} is the
set of all nodes in the graph except the node i , Ni is the set
of neighbors of the node i in G.

Unlike Markov random fields (MRFs) [11], [50], which
model the prior and likelihood independently, CRFs directly
model the conditional dependence of labels given the
observations, i.e., the posterior p(y|x). Based upon the
Hammersley-Clifford theorem [18], the conditional
probability distribution defined by the CRFs can be
written as

p(y|x; θ) = 1

Z(θ , x)

∏

i∈V

exp〈�i (x, yi ), θ1〉

×
∏

(i, j )∈E

exp〈�i j (x, yi , y j ), θ2〉 (1)

where θ = [θ1; θ2] are model parameters with θ1 ∈ R
dh and

θ2 ∈ R
dg , Z(θ , x) is known as the partition function which

is a normalization factor over all the output values, and 〈·, ·〉
denotes inner product. exp〈�i (x, yi ), θ1〉 is the unary potential
and it encodes the compatibility of the i th label given the
observation x. exp〈�i j (x, yi , y j ), θ2〉 is the pairwise potential
and it encodes the pairwise i th and j th labels compatibility
over the observation x. The specific forms of 〈�i (x, yi ), θ1〉
and 〈�i j (x, yi , y j ), θ2〉 are

〈�i (x, yi), θ 1〉 = yiθ
T
1 hi (x), (2)

and

〈�i j (x, yi , y j ), θ2〉 = yi y jθ
T
2 gi j (x), (3)

where hi (x) ∈ R
dh and gi j (x) ∈ R

dg represent the node feature
vector and edge feature vector, respectively. dh and dg are the
dimensions of node feature vector and edge feature vector,
respectively.

For simplicity, we can use �(x, y) to denote the sufficient
statistics of a distribution, thus the clique potentials over all
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nodes and edges can be encoded as:

�(x, y) =
∑

i∈V

�(x, yi )

=
(∑

i∈V

�i (x, yi );
∑

(i, j )∈E

�i j (x, yi , y j )
)
,

where V is the node set and E is the edge set.

A. Parameter Estimation

To estimate the parameters of CRFs, θ are utilized to fit
the training samples. According to Bayes’s rule, the θ can
be inferred by p(θ |x, y) ∝ p(θ)p(y|x; θ). For convenience,
the isotropic Gaussian prior is usually assumed over the
parameters θ , i.e., p(θ) ∝ exp

(−1/2σ 2 ‖ θ ‖2
)

for a fixed σ .
Thus the log-posterior of the parameters gives the data and
corresponding labels can be represented as:

OCRF (θ) = log p(y|x, θ) − 1

2σ 2 ‖ θ ‖2

=
∑

i∈V

〈�i (x, yi ), θ1〉 +
∑

(i, j )∈E

〈�i j (x, yi , y j ), θ2〉

− log(Z(θ , x)) − 1

2σ 2 ‖ θ ‖2

= 〈�(x, y), [θ1; θ2]〉 − log(Z(θ, x))− 1

2σ 2 ‖ θ ‖2

(4)

where Z(θ , x) = ∑
y′∈γ exp(〈∑i∈V �(x, yi = y ′), [θ1; θ2]〉)

is the partition function. Exact calculation of the partition
function here is difficult since it ranges over all the possible
labels associated to vertices of the graph G. Therefore,
pseudo-likelihood or approximated inference methods can be
used in practical applications to resolve this issue.

The optimized parameters θ are obtained by maxi-
mizing a posteriori (MAP) estimate of p(θ |x, y), i.e.,
θ∗ = arg maxθ OC RF (θ).

B. Approximate Inference

To obtain Z(θ , x), probabilistic inference should be
conducted. For simple structures (e.g., chains and trees), exact
inference is computationally tractable. For complex graphs
such as grids and complete graphs (including loops), exact
inference is computationally intractable [35]. For example, the
treewidth of an n × n grid is w = O(2n) [27], so exact
inferences will take O(|γ |2n) time which is infeasible for
practical applications.

One solution to this problem is to train the model with
the pseudo-likelihood (PL) [7], [20], which is a tractable
approximation of the true likelihood. Another approach is to
use approximate inference algorithms, e.g., the loop belief
propagation (LBP) [51], [55] and mean fields (MF) [51].

In this paper, we will compare different optimization
methods of RCRFs based upon loopy belief propaga-
tion (LBP), mean fields (MF), and pseudo-likelihood (PL).

C. Optimization Methods

To obtain the MAP estimate of p(θ |x, y) w.r.t, θ , we need
maximize OC RF (θ). For this purpose, we can calculate the
gradient of OC RF (θ) as

∂OC RF

∂θ

=
∑

i∈V

�(x, yi ) − 1

Z(θ , x)

∂ Z(θ, x)

∂θ
− θ

σ 2

=
∑

i∈V

�(x, yi ) − θ

σ 2

−
∑

y′∈γ

∑

i∈V

exp(〈∑i∈V �(x, yi = y ′), θ〉)
Z(θ , x)

�(x, yi = y ′)

=
∑

i∈V

�(x, yi ) −
∑

y′∈γ

∑

i∈V

p(yi = y ′|x; θ)�(x, yi = y ′)− θ

σ 2

=
∑

i∈V

(
�(x, yi ) −

∑

y′∈γ

p(yi = y ′|x; θ)�(x, yi = y ′)
) − θ

σ 2 ,

(5)

where the second sum represents the expected feature vector
for each clique. Based upon this gradient, first-order
methods, e.g., the gradient descent/ascent, and stochastic
gradient descent/ascent, can be utilized to search for the
optimal parameters. Since only the current gradient of L(θ) is
considered, the objective converges relative slowly. To obtain
the optimal parameters efficiently, more information about the
gradient should be considered.

Generally, second-order methods, e.g., Newton’s method,
converge much faster than first-order methods because they
take the second order derivative of likelihood into account. The
calculation of the Hessian matrix, however, is very expensive
and can be achieve by:

H (θ) = ∂2OCRF
∂θ2

= −
∑

i∈V

Covp(yi=y′|x;θ)

(
�(x, yi = y ′)

)
− I

σ 2 , (6)

where Cov(·) represents the covariance matrix. Since the size
of the Hessian is quadratic with respect to the number of
parameters and some practical applications (such as text
analysis) often use tens of thousands parameters, it is
impractical to store the full Hessian matrix, let alone
computing it. Quasi-Newton methods, e.g., BFGS [8],
approximate the Hessian matrix by using the gradient of the
objective function. A full d × d approximation to the Hessian
matrix is still of quadratic size; if d is too large to afford,
L-BFGS [31] can be used. Since the aforementioned
algorithms are not suitable for online/batch setting,
Vishwanathan et al. [49] presented the stochastic meta-
gradient (SMD) method, which uses the second-order
information to adapt the gradient step size. Their empirical
study shows the efficiency of SMD in online and batch
settings.
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III. ROBUST CONDITIONAL RANDOM FIELDS

Unlike CRFs which assume an isotropic Gaussian prior over
the model parameters to prevent over-fitting, robust conditional
conditional random fields (RCRFs) consider a Laplacian prior
which is robust to the outliers. Due to this prior, traditional
optimization approaches cannot be used for training RCRFs.
In particular, since the Laplacian prior puts more probability
density at zero than the Gaussian prior, it will encourage
sparsity of RCRFs, which is especially helpful in applications
with a great number of samples as well as a large number
of features. Specifically, the Laplacian prior takes the form
p(θ) ∝ exp

(− λ ‖ θ ‖1
)

for a fixed λ. Thus the negative
log-posterior of the parameters gives the data and correspond-
ing labels can be represented as:

ORCRF (θ) = −
∑

i∈V

log p(yi |x; θ) + λ ‖ θ ‖1

= f (θ) + r(θ), (7)

where f (θ) = − ∑
i∈V log p(yi |x; θ) and r(θ) = λ ‖ θ ‖1=∑dh+dg

i=1 λ|θ i |. λ > 0 is a regularization parameter which
controls the trade off of these two terms. Note that Eq. (1) is
essentially a log-linear model taking a softmax form.
Therefore, f (θ) is a differentiable (smooth) convex function.
r(θ), however, is a convex but non-differentiable (non-smooth)
regularization term.

To optimize the objective of RCRFs, we first introduce
two classical methods, i.e., iterative shrinkage-thresholding
algorithm (ISTA) [2] and fast iterative shrinkage-thresholding
algorithm (FISTA) [2] in this section and then show how to
address this problem with optimal gradient method (OGM) in
the next section.

Definition 2: Assuming f : R
dh+dg → R is a smooth

convex function of type C1,1, i.e., continuously differentiable
with Lipchitz continuous gradient L f which satisfies:

‖ ∂θ1 f (θ1) − ∂θ2 f (θ2) ‖2 ≤ L f ‖ θ1 − θ2 ‖2, (8)

where ‖ · ‖2 is the Euclidean norm, L f > 0 is the
Lipschitz constant of ∂ f (θ).

Based upon the definition of the Lipchitz constant, it can
be calculated with

L f = max
‖ ∂ f (θ1)

∂θ1 − ∂ f (θ2)

∂θ2 ‖2

‖ θ1 − θ2 ‖2
,

= σmax

[∂2 f (θ)

∂θ2

]

= σmax

[ ∑

i∈V

Covp(yi=y′|x;θ)

(
�(x, yi = y ′)

)]
, (9)

where σmax is the maximum eigenvalue of the target matrix.

A. ISTA for RCRFs

The iterative shrinkage-thresholding algorithm (ISTA) [2]
is essentially a proximal gradient method for dealing with
an unconstrained optimization problem with objective
splitting into a convex differentiable term and a convex
non-differentiable term. Therefore, ISTA is perfectly suitable

Algorithm 1 The Optimization Framework of FISTA [2] for
RCRFs

for optimizing the objective of RCRFs in Eq. (7). Specially,
the basic step of ISTA [2] is

θ k = Prox λ
L f

(θ k−1 − 1

L f
∂ f (θ k−1)) (10)

where L f is the Lipschitz constant which controls the step size
and Prox : Rn → Rn is the shrinkage operator defined as:

Prox λ
L f

(θ i ) = (|θ i | − λ

L f
)+sgn(θ i ). (11)

It has been shown that ISTA has a worst case convergence
rate of O(1/k) [2] where k is the number of iterations.

B. FISTA for RCRFs

The fast iterative shrinkage-thresholding algo-
rithm (FISTA) [2] is an extension of Nesterov’s work [32] and
improves ISTA to achieve a worst case convergence rate of
O(1/k2). The essential difference between FISTA and ISTA
is that the proximate operator Prox(·) is not directly employed
on the previous point θ k−1, but rather at point ηk which
is a linear combination of the previous two points, i.e.,
θ k−1 and θ k−2. The optimization framework of FISTA for
RCRFs is provided in Algorithm 1. As we can notice, the
additional computation involved for FISTA compared to
ISTA is marginal.

For many practical applications, especially for image
segmentation, we often utilize pseudo-likelihood (PL) or
approximated inference approaches, e.g., the loop belief
propagation (LBP) [51], [55] and mean fields (MF) [51],
to calculate the gradient of RCRFs’ objective function.
Since the gradient obtained by this way is inaccurate in
general and may be particularly inaccurate at certain steps,
it is unreasonable to update the gradient direction by only
considering the current gradient and previous gradient. On the
contrary, we should consider the current as well as all the
historical points so as to determine the gradient direction
smoothly and accurately.

IV. OPTIMAL GRADIENT METHOD FOR RCRFs

In recent years, Nesterov’s method [32] has shown its
efficiency for image denoising, image restoration, and image
classification [1]–[3], [15], [28], [59]. In a recent work [33],
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Fig. 1. The smooth approximated curves rμ(θ j ) with λ = 1 and μ = 0,
0.5, and 1 respectively. Note that when μ = 0, we have r(θ j ) = rμ(θ j ),
i.e., non-smooth is performed.

Nesterov developed a novel framework to deal with
non-smooth convex functions. In this section, we extend
Nesterov’s smoothing technique to the objective of RCRFs,
namely using the optimal gradient method (OGM) to perform
the optimization. OGM is a fast gradient method with proved
optimal convergence rate of O(1/k2) where k is the number
of iterations. Moreover, in contrast to FISTA [2] which only
considers the previous two points, the new gradient direction
in OGM is not only determined by the current gradient, but
also by all historical gradients.

A. Smoothing �1 Norm

In the objective of RCRFs, f (θ) is a smooth convex term

and r(θ) = λ ‖ θ ‖1= ∑dh+dg
i=1 |θ i | is a non-smooth convex

term. Recall that r(θ) can be written as the dual form, i.e.,

r(θ) = λ ‖ θ ‖1 = λ max
u∈Q

〈u, θ 〉, (12)

where the dual feasible set is an �∞

Q = {u :‖ u ‖∞≤ 1, u ∈ R
dh+dg }. (13)

A natural smooth approximation for r(θ) is

rμ(θ) = λ ‖ θ ‖1 = λ
(

max
u∈Q

〈u, θ 〉 − μd(u)
)

(14)

where d(u) is the dual proximity function and μ > 0 is a
parameter to control the balance of approximation accuracy
and smoothness given fixed λ. A convenient choice
is d(u) = 1

2 ‖ u ‖2
2 which gives the Huber penalty

rμ(θ j ) = λ sup
−1≤u j ≤1

(u j θ j − 1

2
μu2

j )

=

⎧
⎪⎨

⎪⎩

λθ2
j

2μ
, |θ j | ≤ μ;

λ(|θ j | − μ

2
), |θ j | > μ.

(15)

Figure 1 shows smooth approximated curves, i.e., rμ(θ j )
with λ = 1 and μ = 0, 0.5, and 1 respectively. The
following theorem shows rμ(θ j )’s theoretical bound on the
approximation.

Theorem 1: r(θ) is bounded by its smooth approximation
rμ(θ) and the approximation error is controlled with the
smoothing parameter μ given fixed λ, i.e., we have

λ
(|θ j | − μ

2

) ≤ rμ(θ j ) ≤ λ|θ | j . (16)

To perform optimization with Eq. (15), we expect to
calculate its gradient:

∂rμ(θ j )

∂θ j
=

⎧
⎨

⎩

λθ j

μ
, |θ j | ≤ μ;

λsgn(θ j ), |θ j | > μ,
(17)

where sgn(·) takes the sign of its argument.

B. Determining the Gradient Direction

Based upon the aforementioned smoothing technique
over the �1 norm, the objective of RCRFs in Eq. (7) can be
transformed into an approximated convex and smooth
function, i.e., ORC RF,μ(θ), which can be optimized conve-
niently with the optimal gradient method (OGM).

In OGM, the Lipschitz constant is utilized to determine the
step size in each iteration. According to the definition, the
Lipschitz constant of RCRFs’ smoothed objective is given by:

‖∂
θ1ORC RF,μ(θ1) − ∂

θ2ORC RF,μ(θ2) ‖2 ≤ L ‖ θ1 − θ2 ‖2 .

(18)

Therefore, the Lipschitz constant can be calculated with

L = max
‖ ∂ORC RF,μ (θ1)

∂θ1 − ∂ORC RF,μ (θ2)

∂θ2 ‖2

‖ θ1 − θ2 ‖2
. (19)

Since we have

∂ORC RF,μ(θ1)

∂θ1
j

= ∂ f (θ1)

∂θ1
j

+ ∂rμ(θ1)

∂θ1
j

=
[ ∑

i∈V

(
�(x, yi )

−
∑

y′∈γ

p(yi = y ′|x; θ1)�(x, yi = y ′)
)]

j

+
⎧
⎨

⎩

λθ j

μ
, |θ j | ≤ μ;

λsgn(θ j ), |θ j | > μ,
(20)

Eq. (19) can be expressed as

L = max
‖ ∂ORC RF,μ (θ1)

∂θ1 − ∂ORC RF,μ (θ2)

∂θ2 ‖2

‖ θ1 − θ2 ‖2

= max
‖ ∂ f (θ1)

∂θ1 − ∂ f (θ2)

∂θ2 + ∂rμ(θ1)

∂θ1 − ∂rμ(θ2)

∂θ2 ‖2

‖ θ1 − θ2 ‖2

≤ max
‖ ∂ f (θ1)

∂θ1 − ∂ f (θ2)

∂θ2 ‖2

‖ θ1 − θ2 ‖2
+ max

‖ ∂rμ(θ1)

∂θ1 − ∂rμ(θ2)

∂θ2 ‖2

‖ θ1 − θ2 ‖2

= σmax

[∂2 f (θ)

∂θ2

]
+ λ

μ

= L f + λ

μ
, (21)
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which illustrates that the Lipschitz constant of RCRFs is upper
bounded by L f + λ

μ .
In each iteration of OGM, two auxiliary functions are

constructed for optimization and their solutions are used to
update the parameters within the same iteration round. We use
θ k , sk , and tk to represent the parameters of RCRFs and the
two auxiliary functions at the kth iteration round, respectively.
Specifically, the two auxiliary functions are given by

min
s∈R

Df +Dg

〈
∂θkORC RF,μ(θ k), s − θ k

〉
+ L

2
‖ s − θ k ‖2

2, (22)

and

min
t∈R

Df +Dg

L

σ1
d1(t) +

k∑

m=0

m + 1

2

[
ORC RF,μ(θm)

+
〈
∂θmORC RF,μ(θm), tm − θm

〉]
. (23)

We choose the prox-function d1(t) = ‖ t − θ∗ ‖2
2 /2, whose

strong convexity parameter is σ1, wherein θ∗ is the prox-center
and σ1 = 1. The θ∗ is usually selected as a guessed solution
of θ .

By setting the gradients of the two auxiliary functions to 0,
we can obtain their solutions sk and tk , respectively, i.e.,

sk = θ k − 1

L
∂θkORC RF,μ(θ k), (24)

and

tk = θ∗ − σ1

L

k∑

m=0

m + 1

2
∂θmORC RF , μ(θm). (25)

These two equations are interpreted as follows. The sk is the
model parameter obtained by standard gradient descent with
step size 1/L at the kth iteration round. The tk is obtained
based upon a gradient descent step that starts from the guessed
solution θ∗ and proceeds along a descent direction determined
by the weighted sum of the gradients in all previous iteration
rounds. The weights of gradients at later iteration rounds
are larger than those at earlier iteration rounds. Therefore,
sk and tk encode the current gradient and historical gradients
information, respectively. In OGM, their weighted sum
determines the model parameters of RCRFs after the
kth iteration round, i.e.,

θ k+1 = 2

k + 3
tk + k + 1

k + 3
sk. (26)

The intuition here is that the current gradient should be
weighted more than historical gradients as the iteration
index k increases.

Let 	k be the optimal objective value of the
second auxiliary optimization; according to [33], we have
the following theorem.

Theorem 2: For any k and the corresponding sk ,
tk , and θ k+1 defined by Eq. (24), Eq. (25), and Eq. (26),
respectively, we have

(k + 1)(k + 2)

4
ORC RF,μ(sk) ≤ 	k . (27)

Theorem 2 results from [33, Lemma 2] and it can be directly
applied to analyze the convergence rate of OGM for training
RCRFs.

Algorithm 2 The Optimization Framework of OGM for
RCRFs

Fig. 2. Sample images from three datasets. The images of first row are
from the TU Darmstadt car side dataset, the images of second row are from
the Weizmann horse dataset, and the images of third row are from the TU
Darmstadt cow side dataset.

C. Optimization Framework of OGM

The optimization framework of OGM for training RCRFs is
presented in Algorithm 2. The input variables are node features
hi (x) ∈ R

dh and the edge features gi j (x) ∈ R
dg , the maximum

number of iterations T , the initial model parameter θ0, the
guessed model parameter θ∗, the Lipschitz constant L, and
the tolerance of the termination criterion ε. In each iteration,
the gradient of the smoothed objective function of RCRFs,
i.e., ∂θkORC RF,μ(θk), is first calculated, then sk and tk are
calculated based upon the gradient, and finally θ k+1 is updated
at the end of the iteration round. The main time costs are
the computation of ∂θkORC RF,μ(θ k) in Step 1 (with time
complexity at most O(|γ |w) where w = O(2n) is the
treewidth for a n × n grid).

D. Convergence Rate Analysis

The following theorem shows the convergence rate for
training RCRFs.

Theorem 3: For a fixed μ, the convergence rate of OGM
for training RCRFs is O

(
1/k2

)
. It requires O

(
1/

√
ε
)

iteration
rounds to reach an ε accurate solution.

The detailed proof of Theorem 3 is provided in Appendix.

V. EXPERIMENTS

In this section, we study the efficiency and effectiveness of
the proposed OGM by comparing it against ISTA and FISTA
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Fig. 3. Comparison of different optimization methods, i.e., ISTA, FISTA, and OGM, on the car segmentation task with LBP inference.
(a) Objective vs. time. (b) Training error rate vs. time. (c) Test error rate vs. time.

Fig. 4. Comparison of different optimization methods, i.e., ISTA, FISTA, and OGM, on the car segmentation task with MF inference. (a) Objective vs. time.
(b) Training error rate vs. time. (c) Test error rate vs. time.

Fig. 5. Comparison of different optimization methods, i.e., ISTA, FISTA, and OGM, on the car segmentation task with PL inference. (a) Objective vs. time.
(b) Training error rate vs. time. (c) Test error rate vs. time.

based upon three different image segmentation tasks. In our
study, three datasets are used for empirical study, which are the
TU Darmstadt car side dataset (containing 50 images which
are resized them to 80×100) [21], the Weizmann
horse dataset [6] (we random sampled 50 images and
resized to 80×100), and the TU Darmstadt cow side
dataset [21] (consisting of 111 images of size 100×140). The
sample images are shown in Figure 2.

For each dataset, 70% of the images are randomly selected
for model training. The rest of the images are evenly divided

into a validation set and a test set. We determine the model
parameters λ ∈ {0.01, 0.1, 1, 10, 100} and μ ∈ {0.01, 0.1, 1}
based upon the validation set and evaluate the model with
the test set. Three trials are performed and the average
running time as well as average test error rate are reported
for comparison. We set T = 400, ε = 10−4, θ∗ = θ k , and
randomly initialize θ0 for all experiments.

Given an image, a 162D feature vector
(i.e., a concatenation of the 34D feature vector in [38] and [39]
and the 128D feature vector in [22]) hi is extracted on
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Fig. 6. Comparison of different optimization methods, i.e., ISTA, FISTA, and OGM, on the horse segmentation task with LBP inference.
(a) Objective vs. time. (b) Training error rate vs. time. (c) Test error rate vs. time.

Fig. 7. Comparison of different optimization methods, i.e., ISTA, FISTA, and OGM, on the horse segmentation task with MF inference.
(a) Objective vs. time. (b) Training error rate vs. time. (c) Test error rate vs. time.

Fig. 8. Comparison of different optimization methods, i.e., ISTA, FISTA, and OGM, on the horse segmentation task with PL inference.
(a) Objective vs. time. (b) Training error rate vs. time. (c) Test error rate vs. time.

each 2 × 2 block. The node feature is denoted as
hi (x) = [1, hi ], while the edge feature is denoted as
gi j (x) = [1, |hi − h j |].

Because exact inference is intractable for these three tasks,
we train and evaluate ISTA, FISTA, and OGM based on
three different methods, i.e., the pseudo-likelihood (PL), the
loopy belief propagation (LBP), and mean field (MF), to
approximate the true log-likelihood function.

A. Efficiency

To demonstrate the efficiency of OGM for training RCRFs,
we plot the objective function versus time for ISTA, FISTA,

and OGM based upon three various approximated inference
methods (i.e., LBP, MF, and PL) as well as three different
datasets in Figure 3a, 4a, 5a, 6a, 7a, 8a, 9a, 10a, and 11a.

We observe that given each inference method,
OGM and FISTA generally converge much faster than
ISTA. This is because OGM and FISTA can achieve
convergence rate O(1/k2) while ISTA is only a first order
method with convergence rate O(1/k) and it updates the
gradient direction only based upon the current gradient
which may not be reliable with pseudo-likelihood (PL)
and approximate inferences (LBP and MF). Moreover,
we observe that OGM consistently consumes less time than
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Fig. 9. Comparison of different optimization methods, i.e., ISTA, FISTA, and OGM, on the cow segmentation task with LBP inference.
(a) Objective vs. time. (b) Training error rate vs. time. (c) Test error rate vs. time.

Fig. 10. Comparison of different optimization methods, i.e., ISTA, FISTA, and OGM, on the cow segmentation task with MF inference.
(a) Objective vs. time. (b) Training error rate vs. time. (c) Test error rate vs. time.

Fig. 11. Comparison of different optimization methods, i.e., ISTA, FISTA, and OGM, on the cow segmentation task with PL inference.
(a) Objective vs. time. (b) Training error rate vs. time. (c) Test error rate vs. time.

FISTA to achieve convergence. This is because in each step,
the gradient is estimated based upon pseudo-likelihood or
approximated inference approaches and thus is inaccurate in
general and may be particularly inaccurate in certain steps.
Therefore, rather than updating the gradient direction by only
considering the current gradient and previous gradient as
FISTA does, OGM provides a more robust/accurate gradient
update direction by considering the current as well as all the
historical points.

For each given dataset, we notice that LBP and MF spend
much less time than PL to achieve convergence. This indicates
that LBP and MF are more efficient than PL to approximate

the true likelihood. Moreover, we observe that MF generally
converges faster than LBP.

The detailed statistics of running time and the associated
standard derivations for ISTA, FISTA, and OGM over these
three datasets are shown in Table I. In particular for OGM
in Table I, we observe that MF consistently consumes less
time than LBP and PL. Therefore, MF should be utilized if
efficiency is the primary concern.

B. Effectiveness

We examine the effectiveness of the OGM for training
RCRFs by comparing it with ISTA and FISTA over
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TABLE I

THE DETAILED STATISTICS OF RUNNING TIME AND THE ASSOCIATED STANDARD DERIVATIONS FOR ISTA, FISTA, AND OGM

OVER THREE DATASETS BASED UPON LBP, MF, AND PL. (TIME: SECOND (s))

TABLE II

THE DETAILED STATISTICS OF TEST ERROR RATE AND THE ASSOCIATED STANDARD DERIVATIONS FOR ISTA, FISTA, AND OGM

OVER THREE DATASETS BASED UPON LBP, MF, AND PL. (TEST ERROR RATE: %)

Fig. 12. Examples of segmentation results. The first row is car segmentation results based upon LPB from the TU Darmstadt car side dataset; the second
row is horse segmentation results based upon MF from the Weizmann horse dataset; the third row is cow segmentation results based upon PL from the TU
Darmstadt cow side dataset. The figure below each image represents test accuracy.

three datasets as well as three approximated inference
methods. In particular, we plot the training error rate versus
time of ISTA, FISTA, and OGM in Figure Figure 3b, 4b, 5b,
6b, 7b, 8b, 9b, 10b, and 11b; and we plot the test error rate
versus time of ISTA, FISTA, and OGM in Figure 3c, 4c, 5c,
6c, 7c, 8c, 9c, 10c, and 11c.

For each given pair of dataset and inference method, we
observe that when the training time increases, both the training
error rate and test error rate of ISTA, FISTA, and OGM
decrease in general. In particular, the training error rate and
test error rate of OGM generally decrease faster than the
other two. This is because (1) the gradient direction of
OGM is determined by the current gradient as well as all
historical gradients and thus may be more reliable than those
of ISTA and FISTA; (2) OGM utilizes a smooth technique to
approximate the �1 norm and the approximation error can be
well controlled (Theorem 1).

For each dataset, we examine the effectiveness of different
approximate inference methods. We notice that LBP and MF
generally achieve lower test error rate than PL. This is because
PL tends to overestimate the edge features [20] and thus cannot
provide an accurate approximation for the true likelihood as
LBP and MF do.

The detailed statistics of test error rate and the associ-
ated standard derivations for ISTA, FISTA, and OGM over
three datasets are shown in Table II. In particular, for OGM
in Table II, we notice that LBP in general achieves better
performance than MF and PL. In this case, LBP is preferred.

C. Segmentation Results

We examine three examples of segmentation results
in Figure 12. For car and cow segmentation results based
upon LBP and PL, respectively, we observe that both the
results of ISTA and FISTA contain more false positive
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foreground than OGM. For horse segmentation results based
upon MF, we notice that the horse contour labeled with
OGM is more accurate than ISTA and FISTA. These results
indicate that OGM can achieve better segmentation results than
ISTA and FISTA.

VI. CONCLUSION

In this paper, we proposed robust conditional random
fields (RCRFs) which are capable of selecting relevant features
to perform image segmentation or labeling automatically.
To train RCRFs efficiently, we presented an optimal
gradient method (OGM), achieving the optimal conver-
gence rate O(1/k2) that is superior to the convergence rate
O(1/k) of previously used first-order optimization methods.
OGM works effectively in the sense that the gradient direction
in each iteration is determined jointly by the current gradient
and historical gradients. Moreover, the step size is completely
controlled by the Lipschitz constant, and the approximation
accuracy can be well controlled. Empirical studies based upon
three real-world image segmentation tasks demonstrated the
efficacy of OGM in training RCRFs.

Although OGM has shown its efficiency and effectiveness,
it still converges slowly or even is infeasible for scalable data.
Therefore, in the future, it would be interesting to investigate
how to conduct distributed optimization or online learning
based upon OGM.

APPENDIX

PROOF OF THEOREM 3

Proof: Let the optimal solution be θ∗. Since ORC RF,μ(θ)
is strongly convex, its second-order derivative is nonnegative
and thus its second-order Taylor expansion is larger than its
first-order Taylor expansion, i.e.,

ORC RF,μ(θ∗) = ORC RF,μ(θm)

+ 〈∂θmORC RF,μ(θm), θ∗ − θm〉
+ 1

2
(θ∗−θm)T ∂2

(θm)2ORC RF,μ(θm)(θ∗−θm)

+ O3(θ∗),
ORC RF,μ(θ∗) ≥ ORC RF,μ(θm)

+ 〈∂θmORC RF,μ(θm), θ∗ − θm〉.
Therefore,

	k ≤ L

σ1
d1(θ

∗) +
k∑

m=0

m + 1

2

[
ORC RF,μ(θm)

+
〈
∂θmORC RF,μ(θm), θ∗ − θm

〉]

≤ L

σ1
d1(θ

∗) +
k∑

m=0

m + 1

2
ORC RF,μ(θ∗).

= L

σ1
d1(θ

∗) + (k + 1)(k + 2)

4
ORC RF,μ(θ∗).

According to Theorem 2, we have

αORC RF,μ(sk) ≤ L

σ1
d1(θ

∗) + αORC RF,μ(θ∗),

α = (k + 1)(k + 2)/4.

Therefore, the accuracy at the k th iteration round is

ORC RF,μ(sk) − ORC RF,μ(θ∗) ≤ 4Ld1(θ
∗)

σ1(k + 1)(k + 2)
.

Therefore, OGM for training CRFs converges at rate
O

(
1/k2

)
, and the minimum iteration number to reach a ε

accurate solution is O
(
1/

√
ε
)
.
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