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Abstract—Memory replay, which stores a subset of historical
data from previous tasks to replay while learning new tasks,
exhibits state-of-the-art performance for various continual learn-
ing applications on Euclidean data. While topological information
plays a critical role in characterizing graph data, existing memory
replay based graph learning techniques only store individual
nodes for replay and do not consider their associated edge infor-
mation. To this end, based on the message passing mechanism
in GNNs, we present Ricci curvature based graph sparsification
technique to perform continual graph representation learning.
Specifically, we first develop the Subgraph Episodic Memory
(SEM) to store the topological information in the form of
computation subgraphs. Next, we sparsify the subgraphs such
that they only contain the most informative structures (nodes and
edges). The informativeness is evaluated with the Ricci curvature,
a theoretically justified metric to estimate the contribution of
neighbors to represent a target node. In this way, we can reduce
the memory consumption of a computation subgraph from O(dL)
to O(1), and enable GNNs to fully utilize the most informative
topological information for memory replay. Besides, to ensure the
applicability on large graphs, we also provide the theoretically
justified surrogate for the Ricci curvature in the sparsification
process, which can greatly facilitate the computation. Finally, our
empirical studies show that SEM outperforms state-of-the-art
approaches significantly on four different public datasets. Unlike
existing methods which mainly focus on task incremental learning
(task-IL) setting, SEM also succeeds in the challenging class
incremental learning (class-IL) setting in which model is required
to distinguish all learned classes without task indicators, and even
achieves comparable performance to joint training which is the
performance upper bound for continual learning.

Index Terms—Graph neural networks, Continual learning,
Graph representation learning, Continual graph learning

I. INTRODUCTION

In real-world graph applications, it is critical to ensure
that Graph Neural Networks (GNNs) [1]–[3] are capable of
continually adapting to new tasks without interfering with their
performance over previous tasks. Because of this, continual
graph representation learning is attracting increasingly more
attention recently. For example, a community detection model
is expected to detect the newly emerged communities in a
social network while maintaining its capability to recognize
existing communities; a document classifier should be able to
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classify articles belonging to either existing or newly emerged
research areas in a citation network, etc. However, the rich
topological connections among different data samples (graph
nodes) pose great challenges to applying some most effective
continual learning techniques on graph data.

Memory replay, inspired by research on cognitive science
[4], [5], has demonstrated state-of-the-art performance in vari-
ous classical continual learning tasks. The key idea is to replay
a subset of data samples from previous tasks over the model
while learning the new tasks [6]–[8]. Due to its success, mem-
ory replay is also adopted for continual learning on graph data
by storing and replaying representative nodes [9], [10]. For
graph data, however, only storing a subset of nodes for replay
will neglect the important topological information. Since the
properties of the target node are not only determined by itself
but also by its neighbors, in this paper, we propose to store
representative computation subgraphs to explicitly preserve the
topological information for memory replay. Directly storing
computation subgraphs, however, will trigger the memory ex-
plosion problem. Supposing the average node degree is d, then
in a L-layer GNN following the message passing paradigm [2],
the size of the neighboring nodes in the computation subgraph
of a node will be O(dL), let alone the associated edges which
are typically several orders of magnitude more than the nodes.
For instance, in the Reddit-CL dataset, the average node degree
is 492, and the maximal degree is 21,657. Obviously, directly
storing the entire computation subgraphs is infeasible.

To fully utilize the topological information while main-
taining a tractable space complexity at the same time, we
propose to sparsify the computation subgraph and preserve the
most informative structures (nodes and edges) by utilizing the
edge based Ricci curvature [11], [12]. Specifically, the Ricci
curvature quantifies how easily information is propagated
between two nodes. Given a pair of nodes u and v connected
by an edge euv , the curvature Ric(u,v) is calculated based on
the surrounding topological connections like the triangles and
4-cycles based at euv . Consequently, a higher curvature implies
that information could be propagated more easily from u to
v and vice versa (as shown in Figure 1(b)). In other words,
among all edges connected to a node v, the ones with higher
curvatures contribute more in generating the representation
of v and should be preserved. In contrast, the edges with
low curvatures provide little information to v and can be
deleted without significant influence on the representation of
v. Therefore, to sparsify the computation subgraph of a node v
containing its L-hop neighbors, we propose to sample a subset
of the edges and their associated nodes based on curvatures.
To ensure the connectivity of sparsified subgraphs, we start
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by sampling the 1-hop neighbors, and then iteratively sample
the higher-order neighbors hop by hop. In this way, we can
fix the budget for selected edges and nodes, and the size
of the sparsified computation subgraph will be independent
of the original computation subgraph, i.e., the memory space
complexity can be reduced from O(dL) to O(1).

The Ricci curvature has several formulations. In this work,
we adopt the Balanced Forman curvature [11] which is the-
oretically justified to be negatively correlated to the informa-
tion bottleneck. Considering that the computation complexity
of Balanced Forman curvature is |E|d2max, which could be
time-consuming to compute on dense graphs, we circumvent
computing the exact curvature values by approximating it
with the graph diffusion process formulated as a lazy random
walk. We theoretically demonstrate that under certain rules,
the probability distribution at a node u of a lazy random walk
starting at node v is positively correlated to the Ricci curvature
between v and u. Therefore, in practice, we sample the edges
based on the probability distribution of the random walk and
use it as a surrogate for the exact Ricci curvature. Note that
we are aware of existing graph sparsification techniques [13]–
[22], however, most of them are not applicable for continual
graph representation learning as detailed in Section II-B.

In the experiments, we compare Ricci curvature-based sam-
pling with uniform sampling, degree-based sampling [23],
and justify its effectiveness. Based on our thorough empirical
studies on four different public datasets, SEM with Ricci
curvature-based sampling outperforms the existing state-of-
the-art methods, especially in the challenging class-IL sce-
nario. Moreover, the performance of SEM is even comparable
to joint training which is the performance upper bound for
continual learning. To summarize, our contributions are:

1) We develop the Subgraph Episodic Memory (SEM) to
store the explicit topological information in the form
of computation subgraphs and perform memory replay
based continual graph representation learning.

2) We resolve the memory explosion problem by sparsify-
ing the subgraphs with Ricci curvature.

3) We provide a theoretically justified surrogate for Ricci
curvature in the sparsification process to ensure its
scalability.

4) Our proposed SEM with Ricci curvature-based sampling
outperforms the existing state-of-the-art methods, espe-
cially in the challenging class-IL scenario.

II. RELATED WORKS

Our work is closely related to continual learning, continual
graph learning, graph curvature, and graph sparsification.

A. Continual Learning & Continual Graph Learning

Machine learning models operating in the real world are
expected to continually adapt to new tasks. However, they
often encounter the catastrophic forgetting problem, i.e., an
abrupt performance decrease on previous tasks after learning
new tasks. To resolve this challenge, various approaches
have been developed and they can be roughly divided into
three categories, i.e., regularization based methods, parametric

isolation based methods, and memory replay based methods.
Regularization based methods prevent drastic modification
to model parameters that are important to previous tasks
through different constraints [24]–[27]. Parametric isolation
based methods protect the parameters that are important to
the previous tasks by adaptively allocating new parameters for
new tasks [28]–[32]. Finally, memory replay based methods
alleviate the forgetting problem by replaying representative
data examples stored from previous tasks on the model when
learning new tasks [6]–[8], [33]–[35].

Recently, continual learning on graph data is also attracting
increasingly more attention due to its enormous value in var-
ious practical scenarios. For example, a community detection
model has to keep adapting to nodes from newly emerged
communities in social networks, a document classifier needs
to keep learning to distinguish documents of newly emerged
research areas in citation networks, etc. To this end, several
methods have been introduced for continual graph learning
[9], [23], [36]–[49]. These methods include regularization
based ones like topology-aware weight preserving (TWP) [38]
which preserves crucial parameters and topological structures
of the previous tasks via regularization terms, parametric
isolation based approaches like HPNs [37] which adaptively
select different parameter combinations for different tasks,
and memory replay based methods like ER-GNN [9] which
stores representative nodes from the previous tasks in a buffer
which are replayed when learning new tasks, and SSM [23]
that stores computation subgraphs sparsified via random sam-
pling. Our work is also based on memory replay. The key
advantage of our model is that we can explicitly store the
most informative topological information with a manageable
space complexity, which exhibits superior performance in the
experiments.

Finally, it is also worth noting the essential difference be-
tween continual graph representation learning, dynamic graph
representation learning [43], [50]–[55], and few-shot graph
learning [56]–[58]. Dynamic graph representation learning
focuses on capturing the temporal dynamics of nodes with
all previous information being accessible. On the contrary,
continual graph representation learning focuses on alleviating
the forgetting of previous tasks, therefore the previous data is
inaccessible when learning new tasks. Few-shot graph learning
aims at fast adapting the model to new tasks, which adopts a
completely different setting. During training, few-shot learning
models have access to data of all tasks simultaneously, while
models under the continual learning setting can only access
the data of the current task and are not allowed to access
previous data. During testing, few-shot learning models are
evaluated on new tasks and need to be fine-tuned with the test
data, while the continual learning models are evaluated over
existing tasks without any new data for fine-tuning.

B. Graphs Curvatures & Graph Sparsification

The vast majority of GNNs adopt the message passing
paradigm [1], [2], [59]–[64], i.e. iteratively propagating the
information of each node to its neighbors along the edges.
Therefore, the information flow is largely determined by
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the topological structures of the graph. To investigate how
smoothly the information travels on graphs and detect the in-
formation bottlenecks, the Ricci curvature, which is calculated
based on the topological structures, is adopted as a powerful
tool [11], [12]. The concept of curvature originates in the re-
search on differential geometry for studying manifolds. As its
discrete version, graph curvature can be intuitively understood
as a metric on the graph bottleneck. For example, given the
nodes u and v in Figure 1 (b), with a positive curvature in
a complete graph, there are multiple paths connecting them
and the information can easily flow between u and v. While
in the discrete hyperbolic scenario with negative curvature,
there is no other paths for the information to flow between u
and v except the edge euv . The Ricci curvature has different
formulations. The Forman-Ricci curvature [65], [66] is defined
based on the combinatorial properties of the graph with a
relatively low computation complexity. But its definition is
biased to the negative curvatures. The Ollivier-Ricci curvature
[67] on two nodes is defined based on the difference between
their Wasserstein distance and shortest path distance. Its local
quantities are hard to control and it has a higher computation
complexity. Targeting these drawbacks, the Balanced Forman
curvature [11] is proposed and is theoretically proven to
be negatively correlated to the information bottlenecks when
applying MPNNs on graph data. Therefore, we also adopt
the Balanced Forman curvature to detect the most informative
edges for sparsifying the computation subgraphs.

Graph sparsification has been extensively studied in the
past few years [13]–[21]. However, unlike the curvature based
sparsification proposed in our work, these methods are not
specially developed to preserve the most informative neighbors
for training GNNs. For instance, several prominent works have
been presented to preserve certain predefined metrics or statis-
tics on graphs [13]–[18]. In addition, these approaches may
also encounter high computational burdens. Recently, various
GNN explanation [19], [20], [68]–[71] or graph denoising [21]
techniques have been developed to find the most informative
structures. These methods, however, typically require training
another network or iterative optimizations to explain one
trained GNN, which will result in more resource consumption
and are not suitable for continual learning. Despite this,
some neighborhood sampling strategies could be adopted for
our proposed SEM. For example, GraphSAGE [3] utilizes
randomly sampled neighbors at each layer to reduce the
computational burden. Similarly, DropEdge [72] randomly
removes edges as a regularization. In experiments, besides
curvature based sparsification, we will also adopt two random
sampling based sparsification strategies [23] as baselines. One
is uniform sampling, and the other is an importance sampling
that samples the neighbors iteratively based on the node degree
distribution.

III. METHODS

In this section, we first introduce the preliminaries that
include the basic concepts, notations, and learning settings.
Next, we explain how memory replay works in traditional
continual learning with independent data examples and why

applying memory replay with GNNs on individual graph nodes
can result in severe information loss. After that, we explain
the memory explosion problem triggered by directly storing
the complete topological information. Finally, we introduce
our proposed solution for topology sparsification.

A. Preliminaries

Graph representation learning research focuses on node- or
graph-level representations. Graph-level representation learn-
ing studies independent graph examples without connections
among individual examples. It differs from node-level repre-
sentation learning, in which the rich topological connections
among individual examples have to be carefully considered.
In this work, we focus on the node-level continual graph
representation learning, which aims to continuously accom-
modate the new types (classes) of emerging nodes (new
tasks) and their associated edges without interfering with the
performance over existing nodes (previous tasks). With this
setting, a model is trained on a sequence of tasks (subgraphs):
S = {G1,G2, ...,GT }. Each Gτ contains nodes belonging to a
unique set of classes in its node set Vτ . The associated edge
set is Eτ , in which an edge euv denotes the existence of an
edge connecting node u and v. Eτ is often represented as
the adjacency matrix Aτ ∈ R|Vτ |×|Vτ |, where every non-zero
entry corresponds to an edge in Eτ . Aτ can be normalized as
Âτ = D

− 1
2

τ AτD
− 1

2
τ , where Dτ ∈ R|Vτ |×|Vτ | is the degree

matrix that contains the degree of each node (number of
connected edges) in its diagonal entries. Each node u ∈ Vτ

has a feature vector xu ∈ Rd, and a label yu ∈ {0, 1}C ,
where C is the number of all possible classes. GNNs generate
the representation for a node u based on a computation
subgraph denoted as Gsubτ,u , which is a subgraph of Gτ . In
the following, Gsubu without the graph index will be used for
simplicity. Finally, we denote the L-hop neighbors of u as
NL(u) containing the nodes within a distance of L from u,
i.e., for a node u ∈ Vi:

NL(u) = {v ∈ Vτ |d(u, v) = L}, (1)

where d(·, ·) denotes the shortest path distance between two
nodes. Specially, we have N 0(u) = {u}. The vast majority
of GNNs follow the message passing neural network (MPNN)
paradigm [2]. In this work, we focus on the MPNNs and refer
all GNNs to MPNNs in the following.

B. Memory Replay on Graphs

In this subsection, we first introduce how memory replay
works in traditional continual learning, and then derive the
information loss of directly applying memory replay to store
individual graph nodes. Finally, we introduce the challenge of
storing the topological information of graph data.

Traditional continual learning can be described as training
a model f(·;θ) on a task sequence of length T with the
accompanied datasets Dτ = {(xi,yi)

nτ
i=1} (τ ∈ {1, ..., T}).

The dataset for τ -th task Dτ is only available when learning
this task, and becomes inaccessible afterward. To alleviate the
forgetting problem, memory replay based methods typically
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Fig. 1. (a) The iterative sparsification process for a computation subgraph containing 2-hop neighbors. (b) Illustration of edges with different curvatures. (c)
The pipeline of SEM.

maintain a memory buffer B containing the representative data
from the previous tasks, which are replayed to the model
when learning new tasks. A straightforward way to utilize B
is through an auxiliary loss:

L =
∑

xi∈Dτ

l(f(xi;θ),yi)︸ ︷︷ ︸
loss of the current task Lτ

+λ
∑
xj∈B

l(f(xj ;θ),yj)︸ ︷︷ ︸
auxiliary loss Laux

, (2)

where the loss function is denoted as l(·, ·), and the contri-
bution of auxiliary loss is balanced by λ. Besides directly
optimizing an auxiliary loss, there are also other ways to
prevent forgetting with the stored data in B. For example,
GEM [7] calibrates the gradients of Lτ with the gradients
of Laux to prevent increasing the loss on previous tasks
(Laux); iCaRL [6] directly uses the representations of the
stored data ({f(xi;θ),xi ∈ B}) as prototypes to classify new
data. For different approaches, we always have to regenerate
their representations based on the buffered data. Traditional
continual learning deals with independent data samples, and
regenerating the representation f(xi;θ) only takes xi itself as
input. Therefore, the memory space complexity for replaying
the representation of one independent example (node) is O(1).

To capture the rich topological information within a graph,
the representation of a node not only depends on itself but also
depends on its neighboring nodes and the accompanied edges.
This will significantly increase the memory space complexity
for replaying a graph node. In the following, we take the
Message Passing Neural Networks (MPNNs) as an example.
The rule for updating the hidden representation of a node u
at layer l + 1 is:

ml+1
u =

∑
v∈N 1(u)

Ml(h
l
u,h

l
v,x

e
u,v;θ

M
l ), (3)

hl+1
u = Ul(h

l
u,m

l+1
u ;θU

l ), (4)

where hl
u, hl

v denote the hidden representations at layer l, xe
uv

denotes the possible edge features, the function Ml(·, ·, ·;θM
l )

generates message ml+1
u from neighboring nodes, and the

function Ul(·, ·;θU
l ) aggregates and updates the neighborhood

information ml+1
u into the representation hl

u of the target node
u. Given a L-layer MPNN, we can simplify the representation
of a node u as:

hL
u = MPNN(Gsubu ;Θ), (5)

where MPNN(·;Θ) denotes the composition of the message
functions and the update functions at all layers. According to
the updating rule, in L-layer MPNNs, Gsubu would contain the
L-hop neighbors NL(v) and the accompanied edges.

To perform memory replay over graphs, the naive approach
which stores individual nodes will lose the important explicit
topological information of the computation subgraph Gsubu .
A proper way should be to store representative computation
subgraphs of existing tasks. However, due to the rich connec-
tions among different nodes, the size of different computation
subgraphs varies and could be extremely large. Supposing the
average node degree of Gsubv is d, then the expected space
complexity of storing its nodes would be O(dL) (number of
edges not counted yet), which can easily exceed the memory
buffer size. For example, the average degree of the Reddit-CL
dataset is 492, and the maximal degree is 21,657, which would
easily result in intractable memory consumption.

C. Graph Sparsification via Information Bottlenecks

Intuitively, the nodes and edges in Gsubu do not contribute
equally to the representation of the target node u and we
may need to keep the most prominent ones for memory
replay. Since GNNs propagate information via edges, different
topological connection patterns between two nodes largely
determine the amount of information from one node to the
other. Specifically, the neighbors with multiple paths to u
would contribute more than those with few paths, as shown
in Figure 1. Mathematically, this hardness for information
propagation can be described with graph curvature. In this
work, we adopt the Balanced Forman curvature [11] (one
specific type of Ricci curvature) which is theoretically justified
to be negatively correlated with the information bottleneck.
Formally, the curvature is defined as:
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Definition 1 (Ricci curvature). Given an edge euv , its curva-
ture is defined as:

Ric(u, v) :=
1

du
+

1

dv
− 2 + 2

|#△(u, v)|
max{du, dv}

+
|#△(u, v)|
min{du, dv}

+
γ−1
max

max{du, dv}
(|#u

□(u, v)|+ |#v
□(u, v)|),

(6)

where du denotes the degree of a node, #△(u, v) and
#v

□(u, v) are the higher order paths which will be detailed
in the following, and γ−1

max normalizes the number of 4-cycles
according to how many cycles have shared edges.

1) #△(u, v) := N 1(u)∩N 1(v), i.e., the number of trian-
gles formed with u, v and one of their common 1-hop
neighbors.

2) #u
□(u, v) := {w ∈ N 1(u)|w ̸= v,∃q ∈ (N 1(w) ∩
N 1(v))\N 1(u)}. #u

□(u, v) counts the number of 4-
cycles based at edge eu,v , i.e., the path of length 3 prop-
agating information from u to v. The second predicate
excludes the paths of length 2, which are counted in the
triangles #△(u, v).

3) γmax = max
{
maxp∈#u

□
(u,v){|N 1(p) ∩

#v
□(u, v)\N 1(u)| − 1},maxq∈#v

□
(u,v){|N 1(q) ∩

#u
□(u, v)\N 1(v)| − 1}

}
denotes the maximal number

of 4-cycles based at edge eu,v traversing a common
node.

Note that although the curvature is defined based on each
edge euv , it does not only count the contribution of euv . As
shown in Figure 1(b), Ric(u, v) describes how easily informa-
tion can be propagated from u to v based on topological con-
nections of different lengths of paths around euv . Based on the
Ricci curvature, a computation subgraph Gsubu can be sparsified
by selecting the most informative structures for representing
the target node u. Specifically, to ensure the connectivity of the
sparsified graph, we start by first sampling the 1-hop neighbors
N 1(u) according to the curvature of the edges connecting u
and nodes in N 1(u). Then, we sample the 2-hop neighbors
that are connected to the selected 1-hop neighbors according
to the curvature of the edges connecting them. By repeating
this process, we sample a fixed size subset of nodes from 1-
hop to L-hop neighbors. Together with the associated edges,
we obtain a sparsified computation subgraph Ḡsubu . However,
the above process requires computing the curvature of a large
number of edges in Gsubu . For a graph with |E| edges and
maximal node degree as dmax, the computation complexity of
the curvature calculation for all edges is |E|d2max. On dense
graphs with large |E| and dmax, this would be intractable.

Fortunately, to sample the nodes, the exact values of the
curvature are not essential. Instead, only the relative mag-
nitudes of the curvatures matter, and thus we may derive
surrogate metrics whose values are positively correlated to the
curvature. Considering that the curvature describes the easiness
of information flow on graphs, which is closely related to the
graph diffusion process, the following theorem is derived:

Theorem 1. Given a graph Gsubv and the accompanied node
set Vv . For a graph (probability) diffusion process starting
at v, we denote the probability distribution over a specific

Algorithm 1 Computation subgraph sparsification
1: Input: Gsubu , node set Vsub, edge set Esub, memory budget
{kl|l = 1, ..., L}.

2: Output: Sparsified computation subgraph Ḡsubu

3: Initialize a node set V = {u}, an empty edge set E.
4: for each l← 1 to L do
5: Initialize a temporary node set Vtemp = {u}
6: Initialize a probability set P = {}
7: for each v ∈ Vtemp do
8: for each w ∈ N 1(v) do
9: Compute p3(w, v)

10: P = P ∪ {p3(w, v)}
11: end for each
12: end for each
13: Sample a set of kl nodes Vsamp according to P
14: V = V ∪ Vsamp

15: for each v ∈ Vtemp do
16: for each w ∈ Vsamp do
17: if ew,v ∈ Esub then
18: E = E ∪ {ew,v} ▷ Store the accompanied

edges
19: end if
20: end for each
21: end for each
22: Vtemp = Vsamp

23: end for each
24: Construct Ḡsubu with V and E.

node u after i steps as pi(v, u). Accordingly, at the beginning,
p0(v, v) = 1 and p0(v, w) = 0 for w ∈ Vv\{v}. Setting
the rule of propagating the probability mass from node v
to neighbors as: 1

dv
stays at v, and 1

dv
is propagated to

each neighbor, the probability distribution on each neighbor
u ∈ N 1(v) after a 3-step diffusion, i.e. p3(v, u), is positively
correlated to Ric(u, v).

According to Theorem 1, a higher p3(v, u) indicates a
higher curvature between v and u, i.e., node v has a higher
contribution to the representation of u in the message passing.
Therefore, the diffusion probability distribution can be utilized
as a surrogate for the Ricci curvature when sampling the
most informative structures. Specifically, given a computation
subgraph Gsubu containing the neighbors from 1-hop to L-
hop, we set a fixed memory budget K as the total number
of nodes to sample from each hop. Denoting the budget
for the l-th hop as kl, we have

∑L
l=1 kl = K. Then the

detailed sampling procedure is described in Algorithm 1. The
probability computation is shown in the form of for-loop for
clarity. In practice, the random walk visiting probability of
multiple nodes is implemented in parallel with mature deep
learning libraries like Deep Graph Library (DGL).

Since the memory budget K is constant regardless of the
graphs or models, the memory space complexity for replaying
one node is reduced to O(1), which is manageable and similar
to the traditional continual learning setting. With the sparisi-
fied computation subgraphs stored in the Subgraph Episodic

https://www.dgl.ai/
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TABLE I
STATISTICS OF DATASETS AND TASK SPLITTINGS

Dataset CoraFull-CL [74] Arxiv-CL 1 Reddit-CL [3] Products-CL 2

# nodes 19,793 169,343 232,965 2,449,029

# edges 130,622 1,166,243 114,615,892 61,859,140

# classes 70 40 40 47

# tasks 35 20 20 23

Memory SEM, the loss of learning on task τ becomes:

L =
∑
u∈Vτ

l(MPNN(Gsubu ;Θ),yu)︸ ︷︷ ︸
loss of the current task Lτ

+ λ
∑

Ḡsub
v ∈SEM

l(MPNN(Ḡsubv ;Θ),yv)︸ ︷︷ ︸
auxiliary loss Laux

. (7)

Unlike in traditional learning which selects λ manually,
to overcome the severe class imbalance problem in graph
datasets, we choose to balance the loss with the class sizes
as shown in Section IV-B3.

IV. EXPERIMENTS

In this section, we aim to answer the following three re-
search questions: RQ1: Whether storing subgraphs (sparsified)
guarantees a better performance compared to only storing
nodes? RQ2: How does the performance change with different
sparsification rates (different amounts of nodes and edges are
removed)? RQ3: Whether our proposed model can outperform
existing state-of-the-art methods in both class-IL and task-IL
scenarios? Our codes will be available online upon acceptance.

A. Datasets

We adopted four large public datasets following the settings
of Continual Graph Learning Benchmark (CGLB) [73], in-
cluding the datasets with up to millions of nodes, hundreds
of millions of edges, and tens of tasks, which are very
challenging for both class-IL and task-IL scenarios. Among
the datasets, CoraFull-CL [74] and Arxiv-CL [75] are citation
networks, Reddit-CL is a graph constructed from Reddit posts,
and Products-CL [75] is an Amazon product co-purchasing
network. For all datasets, each task contains two classes. For
each class, 60% of the data are used for training, 20% are used
for validation, and the remaining 20% are used for testing.
Originally, these datasets were not for continual learning, and
were proposed by different works. The links to the original
sources, as well as detailed dataset statistics are included in
Table I.

B. Experimental Settings

1) Continual learning setting and model evaluation.: In
continual learning, a model continuously learns a sequence
of tasks. During training, the model has access only to the

1https://ogb.stanford.edu/docs/nodeprop/#ogbn-arxiv
2https://ogb.stanford.edu/docs/nodeprop/#ogbn-products

data of the current task, while during testing, the model is
expected to perform well on all previously learned tasks. The
setting is further divided into class-incremental (class-IL) and
task-incremental (task-IL) scenarios according to whether the
task indicators are given.

Suppose the model learns on a citation network with a two-
task sequence {(physics, chemistry), (biology, math)}. In class-
IL scenario, after training, the model is required to classify
a given document into one of the four classes. In task-IL
scenario, the model is only required to classify a document
into to (physics, chemistry) or (biology, math), while cannot
distinguish between physics and biology or chemistry and
math. Generally speaking, given a task sequence containing
T tasks and each task contains n classes, during testing, task-
IL only requires a model to pick a class for a given node
from n classes, while class-IL requires a model to pick from
T × n classes. In our experiments, the datasets contain up to
35 tasks and 70 classes. In the case with 35 tasks and each
task contains 2 classes, after learning the entire task sequence,
class-IL setting requires a model to pick the correct class
from 70 classes, while task-IL still only requires the model to
distinguish between 2 classes (task identity is given to indicate
which two classes are being tested). Considering the difficulty
mentioned above together with the forgetting issue, class-IL
is more practical and challenging than task-IL. Besides task-
IL and class-IL, domain-IL has also been studied and refers
to a scenario in which the task is fixed but the domain of the
data constantly changes. The difficult of domain-IL is typically
between task-IL and class-IL. Existing works typically adopt
task-IL or class-IL tasks, which can be naturally constructed
from most real-world datasets. While the domain-IL scenario
is usually studied for specific applications including knowl-
edge graph [41] and recommender system [40], [76].

For continual learning models, the most thorough evaluation
is the accuracy matrix Macc ∈ RT×T . Each entry Macc

i,j

denotes the model’s accuracy on task j after learning task
i. Then each row Macc

i,: shows the model’s accuracy on all
previous tasks after learning task i, and each column Macc

:,j

shows how the model’s accuracy on task j changes when being
trained consecutively on all T tasks. To derive a single numeric
value for evaluation, the average accuracy (AA)

∑T
i=1 Macc

T,i

T and

average forgetting (AF)
∑T−1

i=1 Macc
T,i−Macc

i,i

T−1 after learning all T
tasks will be used. All experiments are repeated 5 times on one
Nvidia Titan Xp GPU, and results are reported with average
performance and standard deviations.

2) Baselines and model settings: Our adopted baselines
include the methods specially designed for continual graph
learning: Experience Replay based GNN (ERGNN) [9] and
Topology-aware Weight Preserving (TWP) [38], and mile-
stone works designed for traditional continual learning on
Euclidean data but also applicable to GNNs: Elastic Weight
Consolidation (EWC) [25], Learning without Forgetting (LwF)
[26], Gradient Episodic Memory (GEM) [7], and Memory
Aware Synapses (MAS) [27]). We also adopt joint training
as the upper bound. A jointly trained model is simultaneously
trained on all tasks. Therefore, it has no forgetting problem
and can serve as an upper bound on the continual learning

https://ogb.stanford.edu/docs/nodeprop/#ogbn-arxiv
https://ogb.stanford.edu/docs/nodeprop/#ogbn-products
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TABLE II
PERFORMANCE COMPARISONS UNDER CLASS-IL ON 4 DATASETS WITH SGC BACKBONE (↑ HIGHER MEANS BETTER). THE BEST AND THE SECOND BEST

PERFORMANCE OBTAINED BY CONTINUAL LEARNING MODELS ARE HIGHLIGHTED BY BOLDFACE AND UNDERLINE, RESPECTIVELY.

Continual learning techniques CoraFull OGB-Arxiv Reddit OGB-Products
AA/% ↑ AF/% ↑ AA/% ↑ AF /% ↑ AA/% ↑ AF /% ↑ AA/% ↑ AF /% ↑

Fine-tune 3.5±0.5 -95.2±0.5 4.9±0.0 -89.7±0.4 5.9±1.2 -97.9±3.3 7.6±0.7 -88.7±0.8
EWC [25] 52.6±8.2 -38.5±12.1 8.5±1.0 -69.5±8.0 10.3±11.6 -33.2±26.1 23.8±3.8 -21.7±7.5
MAS [27] 6.5±1.5 -92.3±1.5 4.8±0.4 -72.2±4.1 9.2±14.5 -23.1±28.2 16.7±4.8 -57.0±31.9
GEM [7] 8.4±1.1 -88.4±1.4 4.9±0.0 -89.8±0.3 11.5±5.5 -92.4±5.9 4.5±1.3 -94.7±0.4
TWP [38] 62.6±2.2 -30.6±4.3 6.7±1.5 -50.6±13.2 8.0±5.2 -18.8±9.0 14.1±4.0 -11.4±2.0
LwF [26] 33.4±1.6 -59.6±2.2 9.9±12.1 -43.6±11.9 86.6±1.1 -9.2±1.1 48.2±1.6 -18.6±1.6

ER-GNN [9] 34.5±4.4 -61.6±4.3 21.5±5.4 -70.0±5.5 82.7±0.4 -17.3±0.4 48.3±1.2 -45.7±1.3
SSM-uniform [23] 73.0±0.3 -14.8±0.5 47.1±0.5 -11.7±1.5 94.3±0.1 -1.4±0.1 62.0±1.6 -9.9±1.3
SSM-degree [23] 75.4±0.1 -9.7±0.0 48.3±0.5 -10.7±0.3 94.4±0.0 -1.3±0.0 63.3±0.1 -9.6±0.3

Joint (Not under continual setting) 81.2±0.4 - 51.3±0.5 - 97.1±0.1 - 71.5±0.1 -

SEM-curvature (Ours) 77.7±0.8 -10.0±1.2 49.9±0.6 -8.4±1.3 96.3±0.1 -0.6±0.1 65.1±1.0 -9.5±0.8

Fig. 2. Influence of buffer size and sparsification levels on the performance of SEM on different datasets. (a) Average accuracy on Arxiv-CL dataset. (b)
Average forgetting on Arxiv-CL dataset. (c) Average accuracy on CoraFull-CL dataset. (d) Average forgetting on CoraFull-CL dataset.

performance. Besides, fine-tune (without continual learning
technique) is adopted as the lower bound. All models are
implemented based on four popular backbone GNNs, i.e.,
Graph Convolutional Networks (GCNs) [1], Simple Graph
Convolution (SGC) [77], Graph Attention Networks (GATs)
[78], and Graph Isomorphism Network (GIN) [79]. In the
paper, we show the results on the SGC backbone, and the
results of the other backbones are provided in Appendix A.
For the backbone models, the input dimension is determined
by the dimension of the node attribute vector in the given
dataset, and the output dimension is determined by the number
of classes in each task. To fairly compare different continual
learning techniques, all backbones are set as 2-layer with 256
hidden dimensions. For the multi-head mechanism in GAT, we
adopt 8 heads, each of which outputs 32 dimensions. Therefore
the hidden dimension of GAT is also 256. For all backbone
models, the hidden dimension is validated over 32, 128, 256,
and 512 on the validation set, and 256 turns out to be the best
option.

3) Class imbalance & class-IL classifier: According to
Section IV-B1, the performance on different tasks contribute
equally to the average accuracy. However, unlike the tra-
ditional continual learning with balanced datasets, the class
imbalance problem is usually severe in graphs, of which the
effect will be entangled with the effect of forgetting. To
balance the data by simply choosing an equal number of
graph nodes from each class is impractical. For example,
in the Products-CL dataset, the largest class has 668,950
nodes, while the smallest contains only 1 node. Therefore,

sampling an equal amount of nodes from each class would
result in either deleting many classes without enough nodes
or sampling a very small number of nodes from each class so
that all classes can provide enough nodes. Moreover, deleting
nodes in a graph would also change the original topological
structures of the remaining nodes, which is undesired. To this
end, we propose to rescale the loss according to the class
sizes. Denoting the set of all classes as C, and the number of
examples of each class as {nc | c ∈ C}, we can calculate a
scale for each class c to balance their contribution in the loss
function as sc =

nc∑
i∈C ni

. Finally, the balanced loss is:

L =
∑
v∈Vτ

l(f(ev;θ), yv) · syv

+
∑

ew∈SEM
l(f(ew;θ), yw) · syw

, (8)

λ in Equation (7) is omitted as it will influence the balance
of each class. Empirically, this choice results in significantly
better performance for all methods.

The number of the output heads of a model in a standard
classification task equals the number of classes and is fixed at
the beginning. But in the class-IL scenario, the output heads
continually increase along with the new classes. To better
accommodate the new classes, cosine distance is adopted
by a number of works [80]–[82] to modify the standard
softmax classifier. In our experiments, all baselines except
LwF adopt the standard classifier, since only LwF exhibits
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TABLE III
PERFORMANCE COMPARISONS UNDER TASK-IL ON 4 DATASETS WITH SGC BACKBONE (↑ HIGHER MEANS BETTER). THE BEST AND THE SECOND BEST

PERFORMANCE OBTAINED BY CONTINUAL LEARNING MODELS ARE HIGHLIGHTED BY BOLDFACE AND UNDERLINE, RESPECTIVELY.

Continual learning techniques CoraFull OGB-Arxiv Reddit OGB-Products
AA/% ↑ AF/% AA/% ↑ AF /% ↑ AA/% ↑ AF /% ↑ AA/% ↑ AF /% ↑

Fine-tune 56.0±4.2 -41.0±4.5 56.2±2.6 -36.2±2.6 79.5±24.2 -11.7±4.8 64.4±3.8 -31.1±4.4
EWC [25] 89.8±1.0 -5.1±0.5 71.5±0.6 -0.9±0.6 83.9±15.1 -2.0±1.5 87.0±1.4 -1.7±1.2
MAS [27] 92.2±0.9 -3.7±1.3 72.7±2.6 -18.5±2.5 61.1±7.1 -0.5±1.0 80.6±4.3 -13.7±3.7
GEM [7] 91.5±0.5 -1.9±0.9 81.1±1.7 -4.0±1.8 98.9±0.1 -0.5±0.1 87.7±1.8 -7.0±2.0
TWP [38] 94.3±0.9 -1.6±0.4 89.4±0.4 0.0±0.3 78.0±18.5 -0.2±0.4 81.8±3.3 -0.3±0.8
LwF [26] 93.8±0.1 -0.4±0.1 71.1±3.2 -1.5±0.8 98.6±0.1 -0.0±0.0 86.3±0.2 -0.5±0.1

ER-GNN [9] 86.3±1.0 -9.2±0.9 86.4±0.3 0.5±0.6 97.4±0.2 4.7±0.1 86.4±0.0 11.7±0.0
SSM-uniform [23] 95.3±0.5 0.2±0.5 88.5±0.6 -1.3±0.5 99.2±0.0 -0.2±0.0 93.1±0.8 -1.8±0.3
SSM-degree [23] 95.8±0.3 0.6±0.2 88.4±0.3 -1.1±0.1 99.3±0.0 -0.2±0.0 93.2±0.7 -1.9±0.0

Joint (Not under continual setting) 95.5±0.2 - 90.3±0.4 - 99.5±0.0 - 95.3±0.8 -

SEM-curvature (Ours) 95.9±0.5 0.7±0.4 89.9±0.3 -0.1±0.5 99.3±0.0 -0.2±0.0 93.2±0.7 -1.8±0.4

better performance through the classifier modified with the
cosine distance.

C. Studies on Sparsification Levels and Buffer Sizes
(RQ1,RQ2)

In Figure 2, we show the average accuracy and forgetting
obtained with different buffer sizes and sparsification levels
on OBG-Arxiv-CL and CoraFull-CL datasets. Buffer size
(per class) denotes the number of nodes whose sparsified
computation subgraphs are stored. For clarity, we covert the
buffer size into the ratio of the dataset size. For thorough
investigation, we vary the buffer size from 1 node per class
(0.02% of the size of Arxiv-CL and 0.1% of CoraFull-CL)
to the size of the entire training set (60%). The sparsification
level is denoted as the number of neighbors to keep for each
hop. Since the backbones are 2-layer, only the 2-hop neighbors
are concerned.

To clearly denote the numbers of neighbors we store from
neighbors at each hop, we enclose them in a square bracket,
[n1, n2, ...], where ni denotes the budget for the i-th hop.
When the computation subgraph covers 2-hop neighborhood,
there are two entries in the brackets, i.e. [n1, n2]. Accordingly,
there are two extreme cases. First, [0, 0] denotes the situation
when we only store the individual center nodes without con-
sidering the neighborhood (topology). Second, [∞,∞] means
that we have unlimited budget for each hop and store the entire
computation subgraph. From Figure 2, we could see a signif-
icant increase in the performance when the buffer starts to
store subgraphs ([5, 5]) compared to storing individual nodes
([0, 0]), while the performance gain brought by storing denser
computation subgraphs (from [5, 5] to [∞, ∞]) is relatively
low. This implies the importance of topological information
and indicates the computation subgraphs are highly redundant
and our sparsification strategies can effectively preserve the
crucial information.

D. Comparisons for Class-IL Scenario (RQ1,RQ3)

In this subsection, we compare SEM and the baselines under
the class-IL scenario. For Arxiv-CL, Products-CL, and Reddit-
CL datasets, we choose the buffer size to be 400 per class.
For CoraFull-CL, we only allow a budget of 60 per class.
For the memory based baselines, we allow a budget of up

to 800 per class for all datasets to highlight the advantage
of SEM. As shown in Table II, under the class-IL setting,
SEM-curvature not only outperforms the baselines with a large
margin on all datasets, but also outperforms the two memory
replay baselines based on uniform sampling and degree based
sampling. The performance is even comparable to the joint
training. To understand the learning dynamics, we visualize
the accuracy matrices of the most representative methods
including SEM, the two best baseline methods ER-GNN and
LwF (based on knowledge distillation), and fine-tune. As
shown in Figure 3, by comparing the columns of different
matrices, we can find different forgetting patterns. First, SEM
maintains a very stable performance of each task throughout
the entire training process. The performance exhibits no abrupt
decrease compared to the baselines. Second, the performance
of ER-GNN on each task is not monotonically decreasing.
Instead, the performance on a task may first decrease and
experience a resurgence later. This may be the benefit of the
memory buffer, which keeps driving the model to a favorable
point for previous tasks. In contrast, the performance of LwF
decreases monotonically. Fine-tuning a model in the class-IL
scenario is ineffective as the knowledge of previous tasks is
completely overwritten by new tasks.

E. Comparisons for Task-IL Scenario (RQ1,RQ3)

Finally, we also compare SEM with different baseline
approaches in the task-IL scenario. As explained in Sec-
tion IV-B1, during testing on each task, class-IL requires
the model to pick a class from all learnt classes, while
task-IL only require the model to distinguish between the
classes within the given task. Therefore, class-IL is much more
challenging especially when the number of classes are large.
In our experiments, the datasets contain at least 40 classes
(OGB-Arxiv and Reddit) and at most 70 classes (CoraFull),
which significantly increase the learning difficulty of class-IL.
Accordingly, as shown in Table III, task-IL is experimentally
much less challenging than class-IL, and many more methods
perform very well in this scenario.

However, our method still outperforms all baseline tech-
niques on 4 different datasets. Moreover, on all datasets,
our method obtains comparable performance with joint train-
ing (Joint). Considering that joint training is simultaneously
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Fig. 3. From left to right: accuracy matrix of SEM, ER-GNN, LwF, and Fine-tune on Arxiv-CL dataset. In an accuracy matrix, an entry at the i-th row and
j-th column is the model’s accuracy on the j-th task after learning the i-th task.

TABLE IV
META-PATHS FROM v TO u VIA A RANDOM WALK OF 3 MOVES

Meta-path 1 2 3 4 5 6 7 8 9 10

Start v v v v v v v v v v

Intermediate node 1 v v u u v u p p p p

Intermediate node 2 v u v u p p v u p q

End u u u u u u u u u u

trained on all tasks with full topological information (without
the forgetting issue), and is the upper bound on the continual
learning models, the effectiveness of our method is very
significant.

V. CONCLUSION

In this paper, we developed Ricci curvature based graph
sparsification technique to perform continual graph represen-
tation learning. We employed Subgraph Episodic Memory
(SEM) to store the topological information in the form of com-
putation subgraphs. By leveraging Ricci curvature to assess the
informativeness, we can reduce the memory consumption of a
computation subgraph from O(dL) to O(1), and enable GNNs
to utilize the most informative topological information for
memory replay. Our proposed method outperforms the existing
state-of-the-art methods on 4 public datasets in both class-IL
(more practical and challenging) and task-IL scenarios.

A. Proof Details

In this section, we theoretically analyze the correlation
between the graph diffusion process and the curvature under
the lazy random walk framework.

Proof. Since the diffusion process is modeled as a lazy random
walk model in which the probability of staying at a node v
is defined as 1

dv
.To calculate the probability of starting at a v

and arriving at another node u after 3 moves, we first divide
the walks into 10 meta-paths in Table IV. Totally, we have
10 different paths. v and u are always the starting and ending
nodes, and the choice of the two intermediate nodes could be
different. In Table IV, p and q denote two nodes other than

v and u. Since p and q do not refer to specific nodes, some
seemingly different meta-paths actually refer to a same meta-
path and are not listed, e.g. path vpqu and vqpu, path vppu
and vqqu, etc.

Then we calculate the probability of walking from v to u
via each meta-path. In our random walk process, the self-loop
is added to each node and at each step the probability to not
move is 0. In other words, a path vv does not imply that the
walker stays at the original node, instead it chooses the self-
loop of v. Since the probability of choosing each neighbor is
equal, this setting ensures the probability of taking path vv
to be 1

dv
. Note that this does not include v into N 1(v), since

dG(v, v) = 0, and v ∈ N 0(v). And we have dv−1 = |N 1(v)|.
Besides, we assume the graph to be a simple, i.e. two nodes
can be connected via no more than one edge. The probabilities
of each meta-path are:

p(vvvu) =
1

dv
· 1
dv
· 1
dv

=
1

d3v
(9)

p(vvuu) =
1

dv
· 1
dv
· 1

du
=

1

d2v · du
(10)

p(vuvu) =
1

dv
· 1

du
· 1
dv

=
1

d2v · du
(11)

p(vuuu) =
1

dv
· 1

du
· 1

du
=

1

dv · d2u
(12)

p(vvpu) =
∑

p∈N 1(v)∩N 1(u)

1

dv
· 1
dv
· 1
dp

=
∑

p∈N 1(v)∩N 1(u)

1

d2v · dp
(13)

p(vupu) =
∑

p∈N 1(u)

1

dv
· 1

du
· 1
dp

=
∑

p∈N 1(u)

1

dv · du · dp
(14)
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p(vpvu) =
∑

p∈N 1(v)

1

dv
· 1
dp
· 1
dv

=
∑

p∈N 1(v)

1

d2v · dp
(15)

p(vpuu) =
∑

p∈N 1(v)∩N 1(u)

1

dv
· 1
dp
· 1

du

=
∑

p∈N 1(v)∩N 1(u)

1

dv · du · dp
(16)

p(vppu) =
∑

p∈N 1(v)∩N 1(u)

1

dv
· 1
dp
· 1
dp

=
∑

p∈N 1(v)∩N 1(u)

1

dv · d2p
(17)

p(vpqu) =
∑

p∈N 1(v),q∈(N 1(p)∩N 1(u)\{v})

1

dv
· 1
dp
· 1
dq

(18)

The Equation 9 to 12 correspond to the paths only concerned
with Summing up the Equations 9 to 12, Equations 14 and 15
as p1, we get:

p1 =
1

dv
· ( 1

d2v
+

2

dvdu
+

1

d2u
+
|N 1(u)|
dudp

+
|N 1(v)|
dvdp

) (19)

=
1

dv
· ( 1

d2v
+

1

dvdu
+
|N 1(v)|
dvdp

)

+
1

du
· ( 1

d2v
+

1

dvdu
+
|N 1(v)|
dvdp

) (20)

Since both ( 1
d2
v
+ 1

dvdu
+ |N 1(v)|

dvdp
) and ( 1

d2
v
+ 1

dvdu
+ |N 1(v)|

dvdp
) are

positive, the two terms of p1 are positively correlated to the
first two terms 1

dv
and 1

du
of Equation 6, respectively. When-

ever 1
dv

or 1
du

increases, their corresponding part in p1 would
increase. Similarly, we will find the correspondence between
the rest terms of Equation 6 and the random walk probabilities.
Equations 13, 16, and 17 depends on the common neighbors
of u and v, which corresponds to the triangle counter #△ in
Equation 6 By summing up these equations, we get:

p2 =
∑

p∈N 1(v)∩N 1(u)

1

d2v · dp
+

∑
p∈N 1(v)∩N 1(u)

1

dv · du · dp
(21)

+
∑

p∈N 1(v)∩N 1(u)

1

dv · d2p
(22)

=
∑

p∈N 1(v)∩N 1(u)

1

dp
· ( 1

d2v
+

1

dv · du
+

1

dv · dp
) (23)

By definition, |N 1(v)∩N 1(u)| = |#△(u, v)|. Since all sum-
mation terms in Equation 21 are positive, we can rewrite it in a
more concise format by assuming all nodes in N 1(v)∩N 1(u)
has a degree dp = d̄p:

p2 =|#△(v, u)| · 1
d̄p
· ( 1

d2v
+

1

dv · du
+

1

dv · d̄p
) (24)

And the corresponding terms in Equation 6 is:

|#△(u, v)| · ( 2

max{du, dv}
+

1

min{du, dv}
). (25)

Since both expressions have positive coefficients on the term
|#△(u, v)|, they are also positively correlated. Finally, by
definition, |#u

□(u, v)| or |#v
□(u, v)| refer to the number of

1-hop neighbors of u or v participating in a 4-cycle based at
edge eu,v . Therefore, the number of 4-cycles based at eu,v
is |#□(u, v)| = max(|#u

□(u, v)|, |#v
□(u, v)|). By observing

Equation 18, by traversing p, q via p ∈ N 1(v), q ∈ (N 1(p) ∩
N 1(u)\{v}), we are also counting the number of 4-cycles,
i.e. |#□(u, v)|.

VI. FUTURE DIRECTIONS

Although our proposed method achieves impressive perfor-
mance on multiple datasets under different learning scenarios,
there are still several perspectives that can be considered to
further improve the model.

First, our proposed method requires additional space for
storing the sparsified computation subgraphs. Although we
have demonstrated that the space consumption is acceptable
on graphs up to millions of nodes and tens of millions of
edges, some real-world graphs may be even larger and contain
billions or even trillions of nodes. On such graphs, if the
node attributes are highly diverse, maintaining a satisfying
performance may require large memory buffers.

Second, with some databases, due to privacy reasons, storing
information from the original graph may not be allowed. In
this case, we may have to design additional modules to erase
the identifying information before buffering the data.

Third, the idea of learning based graph augmentation from
AutoGCL [83] could be borrowed into our sparsification pro-
cess, and will be investigated in our future work. Specifically,
we will focus on the following challenges.

• AutoGCL does not constrain the sizes of the augmented
graphs, which is still subject to the memory explosion
problem studied in our work. Therefore, how to constrain
the size of the graphs generated by the learnable module
is the topmost challenge.

• AutoGCL generate different views of a given graph. Each
view contains both label relevant information and label
irrelevant information that serves to decrease the mutual
information between different views. In our sparsification
process, the label irrelevant information is undesired.
Therefore, how to retain only the label relevant infor-
mation is the second challenge.

Fourth, contrastive learning has achieved significant suc-
cesses recently. For instance, Hypergraph Contrastive Col-
laborative Filtering [84] boosts the representation quality for
recommender system based on hypergraph structure encoding
and contrastive learning. Directed Graph Contrastive Learn-
ing [85] proposes to generate different views by perturbing the
Lapalacian matrix, so that the directed graph structure is not
changed. The contrastive learning techniques is also promising
for boosting the continual learning performance. Specifically,
contrastive learning could avoid the dependency on the labels,
which could significantly reduce the overfitting to each task
and encourage the transferability of the learnt knowledge.
In this way, the forgetting problem can also be alleviated.
Towards this target, we will focus on two challenges.
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• Although with less dependency on the task specific infor-
mation, i.e. labels, contrastive learning based models still
have to continually adapt to new distributions, and expe-
rience the forgetting problem. Moreover, in the class-IL
setting, the final classifier, whose parameters are shared
across different tasks, still needs supervised training and
is subject to catastrophic forgetting.

• The existing continual learning works adopt task config-
urations constructed for supervised learning, and how to
properly configure the tasks for the self-supervised learn-
ing setting requires careful consideration. For instance,
how to split a given dataset into supervised and self-
supervised parts, whether the model is allowed to access
the self-supervised data all the time, etc.

Fifth, in this work, we target MPNNs working on homophil-
ious graphs. However, learning graphs with heterophily are
also practically important and are attracting increasingly more
attention recently. For example, [86] systematically studies the
challenges of learning on heterophilous graphs and proposes
several techniques for designing effective heterophilous GNNs.
[87] proposes a new constraint, i.e. homophily unnoticeability,
to ensure that the Graph Injection Attack (GIA) preserves the
graph homophily, so that the attack of GIA cannot be easily
counteracted simply by homophily recovery. Due to its practi-
cal importance, extending our proposed SEM-curvature to het-
erophilous graphs also deserves investigation. To achieve this
aim, we will focus on two challenges. First, SEM-curvature is
designed for MPNNs based on the message passing strategy.
Since simple message passing is not suitable for heterophilous
graphs [86], the curvature based graph sparsification in SEM-
curvature is not directly applicable to heterophilous graph
learning. Therefore, how to adapt the framework for analyzing
information propagation to heterophilous GNNs becomes a
key challenge. Second, existing works on continual graph
learning do not focus on heterophilous graphs, and the bench-
mark tasks constructed from heterophilous graphs are lacking.
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