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Abstract—Multivariate time series (MTS) data are becoming
increasingly ubiquitous in networked systems, e.g., IoT systems
and 5G networks. Anomaly detection in MTS refers to identifying
time series which exhibit different behaviors from normal status.
Building such a system, however, is challenging due to a few
reasons: i) labels for anomaly cases are usually unavailable or
very rare; ii) most existing approaches rely on manual model-
design and hyperparameter tuning, which may cost a huge
amount of labor effort. To this end, we propose an autonomous
anomaly detection technique for multivariate time series data
(TimeAutoAD) based on a novel self-supervised contrastive loss.
Specifically, we first present an automatic anomaly detection
pipeline to optimize the model configuration and hyperparame-
ters automatically. Next, we introduce three different strategies
to augment the training data for generating pseudo negative time
series and employ a self-supervised contrastive loss to distinguish
the original time series and the generated time series. In this
way, the representation learning capability of TimeAutoAD can
be greatly enhanced and the anomaly detection performance
can thus be improved. Extensive empirical studies on real-world
datasets demonstrate that the proposed TimeAutoAD not only
outperforms state-of-the-art anomaly detection approaches but
also exhibits robustness when training data are contaminated.

Index Terms—Multivariate time series, anomaly detection,
Automatic Machine Learning (AutoML), self-supervised learning,
contrastive loss.

I. INTRODUCTION

THE past decade has witnessed a rising proliferation
in Multivariate Time Series (MTS) data, along with a

plethora of applications in domains as diverse as IoT data
analysis [1], medical informatics [2], and network security
[3]. Given the huge amount of MTS data collected from
these systems, it is important to detect anomalous time series
which exhibit different behaviors from normal status [4, 5].
For instance, the anomalies in electrocardiogram represent
heart arrhythmia. Detecting these anomalies is beneficial to
the diagnosis of heart disease. Moreover, for a larger number
of time series data, it is time-consuming to manually construct
an anomaly detection pipeline and optimize hyperparameters.
Thus, it is meaningful to design an automatic machine learning
model for time series anomaly detection.

Tremendous efforts have been devoted to anomaly detec-
tion, existing anomaly detection approaches can be divided
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into four categories, i.e., classification based, distance based,
clustering based, and statistical anomaly detection methods
[6, 7]. Classification based anomaly detection methods aim at
learning a classifier from a set of labeled samples and can
be grouped into one-class [8–10] and multi-class [11, 12]
classification based methods depending on the label avail-
ability in training phase. One-class SVM [8] assumes that
all training data belongs to the same class and aims at
finding a maximum margin hyperplane in the feature space
to separate the normal data from the anomalies. Toupas et
al. [12] implement multi-class classification based anomaly
detection in intrusion detection systems utilizing a neural
network model. Distance based anomaly detection methods
assume that anomalous data locate far from normal data and
require a distance measure for decision-making. Ramaswamy
et al. [13] propose to detect anomalies based on the distance
of a sample from its kth nearest neighbor. Jin et al. [14]
extract feature from samples for Mahalanobis distance calcu-
lation and detect anomalies based on a predefined threshold.
Clustering based anomaly detection methods aim at grouping
similar samples into clusters. k-Means [15], k-Medoids [16]
and Gaussian Mixture Models [17] are well-known clustering
based anomaly detection methods. Furthermore, deep auto-
encoder based methods [18, 19] have been proposed recently,
which jointly perform dimensionality reduction and cluster-
ing analysis in the end-to-end manner. Statistical anomaly
detection methods assume that normal data appear in the
high probability area of the stochastic model, while anomalies
appear in the low probability area. For example, Wang et
al. [20] propose a statistical anomaly detection method based
on Tukey and Relative Entropy statistics, which analyzes the
monitoring data over historical periods to make decisions.

Automated machine learning (AutoML) has recently re-
ceived intensive attention. We concentrate on the automatic
pipeline configuration problem [21], i.e., joint module selec-
tion and hyperparameter optimization. There are two main
challenges against automatic pipeline configuration: 1) the
black-box nature of optimization objective; 2) the tight cou-
pling between AutoML pipeline configuration and hyperpa-
rameter optimization. Auto-WEKA [22] applies a general
purpose framework, i.e., sequential purpose model based algo-
rithm configuration to find optimal machine learning pipelines.
Liu et al. [21] propose an ADMM based method, which opti-
mizes the AutoML pipeline via a primal-dual decomposition
approach. Nevertheless, to our best knowledge, little work has
addressed the design of automatic anomaly detection pipeline
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configuration.
Despite many previous works have been developed for

anomaly detection in multivariate time series, there are still
a few challenges preventing them from building an effective
model: i) the design of an anomaly detection model and
the tuning for hyperparameters often employ a trial and
error procedure which are time consuming and could cost a
substantial amount of labor effort; ii) the labels for anomaly
cases are usually unavailable or very rare. Most existing
approaches assume all the training data are normal and train
their models based on normal samples. Nevertheless, the use
of abnormal samples is critical in the training procedure of
anomaly detection models. For example, the performance of
semi-supervised anomaly detection methods has been proven
to be superior to unsupervised methods since such methods
optimize the anomaly detection capability according to a few
labeled anomalies [23, 24].

To address the aforementioned challenges, we propose an
autonomous unsupervised anomaly detection model with a
novel self-supervised contrastive loss, a.k.a. TimeAutoAD, to
perform anomaly detection in multivariate time series data.
Specifically, TimeAutoAD differs from traditional time series
anomaly detection approaches in three aspects. First, the
anomaly detection pipeline configuration and hyperparameter
optimization are carried out automatically in TimeAutoAD.
Second, several negative sample generation approaches are
proposed to generate negative samples for contrastive training.
Finally, a novel self-supervised contrastive loss is proposed to
distinguish the original samples and the generated negative
samples. In this way, the representation learning capability
of TimeAutoAD is greatly enhanced, leading to superior
anomaly detection performance [25–27]. We conduct exten-
sive experiments on several multivariate real-world anomaly
datasets and numerous datasets in UCR and UEA archives.
Our experiments demonstrate that the proposed TimeAutoAD
outperforms state-of-the-art anomaly detection algorithms, and
the proposed TimeAutoAD is robust against the contaminated
training data.

Our contributions can be summarized as:
(1) TimeAutoAD has been proposed, which can automat-

ically configure anomaly detection pipeline and optimize its
hyperparameters. As far as we are aware of, this is the first
work that consider joint automatic ML pipeline configuration,
hyperparameter optimization, and negative sample generation
for time series anomaly detection.

(2) We have designed a novel self-supervised contrastive
loss which can be used to effectively enhance the anomaly
detection performance. In addition, several time series negative
sample generation methods have been proposed for contrastive
training.

(3) Extensive experiments have been conducted on nu-
merous datasets in UCR and UEA archives. It is seen that
TimeAutoAD achieves best anomaly detection performance
over most > 90% datasets.

The remainder of this paper is organized as follows. Section
II introduces the prior art on unsupervised anomaly detection
methods and Automatic Machine Learning. Section III dis-
cusses the design of TimeAutoAD framework and proposes the

self-supervised contrastive loss. Section IV provides extensive
experiment results to demonstrate the superior performance
of the proposed TimeAutoAD. Finally, the conclusion of this
paper is given in Section V.

II. RELATED WORK

A. Unsupervised Anomaly Detection

Tremendous efforts have been taken for anomaly detection,
this paper focuses on unsupervised anomaly detection (i.e.,
no labeled data in trainging phase). Unsupervised anomaly
detection methods are widely applied in real-world applica-
tions due to their advantage of not requiring any labeled data.
Existing techniques for unsupervised anomaly detection can
be grouped into three categories, i.e., one-class classification
methods, clustering-based methods, and reconstruction-based
methods.

For one-class classification methods, One-Class SVM [8]
aims at finding a maximum margin hyperplane in the feature
space to separate the normal data from the anomalies. Based
on One-Class SVM, Support Vector Data Description (SVDD)
[9] uses a hypersphere instead of the hyperplane to enclose the
majority of the data in feature space. Both of these methods,
however, cannot work well with high-dimensional data due
to the curse of dimensionality. As a remedy, Deep SVDD
[10] is proposed to train a neural network while minimizing
the volume of a hypersphere. Recently, a temporal one-class
classification model named THOC is proposed [28], which
utilized multiple hyperspheres obtained with a hierarchical
clustering process for anomaly detection.

Clustering based methods can be further categorized as
partitioning based methods, density based methods and grid
based methods. Partitioning-based methods partition data into
a few cluster. CD-trees [29] is proposed to partition data into
clusters efficiently, the data in the sparse cluster are deemed as
anomalies. Density-based methods perform anomaly detection
by estimating the density of samples and the samples located
in low-density area are deemed as anomalies. Breunig et al.
[30] propose LOF, which assumes that the local density of
anomalies will be lower than that of its nearest neighbors.
Grid-based methods perform clustering on a grid structure.
Zhong et al. [31] propose an algorithm based cell partition
which can generate cluster centers automatically. The gener-
ated clusters can further be labeled as normal or attack clusters
and the samples in the attack clusters are deemed as anomalies.

Reconstruction based methods determine whether an input
time series is normal or abnormal based on the reconstruction
error. Principal Component Analysis (PCA) [32] is a conven-
tional reconstruction-based method, which reconstructs data
based on linear transformation. Different from PCA, Auto-
encoder [33] is more flexible, which can reconstruct data based
on both of linear and non-linear transformation. BeatGAN [25]
uses auto-encoder as a generator to reconstruct samples and
utilizes the Generative Adversarial Networks (GANs) to regu-
larize the reconstruction error. However, reconstruction-based
methods also have many shortcomings since such methods
do not consider the latent space data distribution. To address
this problem, DAGMM [34] combines a deep auto-encoder
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and the Gaussian Mixture Model (GMM) to perform anomaly
detection. Nevertheless, DAGMM is not tailored for anomaly
detection in MTS.

Different from the previous anomaly detection approaches,
we propose TimeAutoAD, which can automatically config-
ure an unsupervised time series anomaly detection pipeline
and simultaneously optimize its hyperparameters. Moreover, a
novel self-supervised contrastive loss is proposed to enhance
the representation learning ability of the proposed model.

B. Automatic Machine Learning

Automatic Machine Learning (AutoML) aims to automate
the time-consuming model development process and has re-
ceived a significant amount of research interest recently. Pre-
vious works about AutoML mostly focus on the domains of
computer vision and natural language processing, including
object detection [35, 36], semantic segmentation [37, 38],
translation [39], and sequence labeling [40]. However, Au-
toML for time series learning is an underappreciated topic
so far and the existing works mainly focus on supervised
learning tasks. Ukil et al. [41] propose an AutoML pipeline
for automatic feature extraction and feature selection for time
series classification. Kuppevelt et al. [42] develop an AutoML
framework for supervised time series classification, which
involves both neural architecture search and hyperparameter
optimization. Olsavszky et al. [43] propose a framework called
AutoTS, which performs time series forecasting of multiple
diseases. Li et al. [44] propose AutoOD, which is an automated
outlier detection framework and aims at searching for the op-
timal neural network model within a predefined search space.
Nevertheless, to our best knowledge, no previous work has
addressed time series anomaly detection based on AutoML. To
this end, we design an AutoML framework to perform time se-
ries anomaly detection, which can automatically configure an
anomaly detection pipeline and optimize its hyperparameters
simultaneously.

III. PROPOSED METHOD

Let X = {x1,x2, · · ·xN} denote a set of N multivariate
time series. xi ∈ RD×Ti in X represents the ith sample with
D dimensions and Ti length. As a special case, D equals to
1 for univariate time series.

A. TimeAutoAD Architecture

For a copious amount of multivariate time series data, it is
time-consuming to manually construct an anomaly detection
pipeline and optimize its hyperparameters. To address this
challenge, the proposed TimeAutoAD framework can automat-
ically configure an anomaly detection pipeline with an array
of functional modules, each of these modules is associated
with a set of hyperparameters. We assume there are a total
of M modules and there are Qi options for the ith functional
module. Let ki ∈ {0, 1}Qi denotes an indicating vector for ith

module, with the constraint 1⊤ki=
∑Qi

j=1 ki,j = 1 ensuring
that only a single option is chosen for each module. Let
θCi,j ∈ Ci,j and θDi,j ∈ Di,j respectively be the continuous

and discrete hyperparameters of jth option in ith module (con-
strained to the set Ci,j and Di,j). Let {ΘC ,ΘD} denote the set
of variables to optimize, i.e., ΘC = {θCi,j ,∀i ∈ [M ], j ∈ [Qi]},
ΘD = {θDi,j ,∀i ∈ [M ], j ∈ [Qi]}, and K = {k1, . . . ,kM}.
We further let f(K, {ΘC ,ΘD}) denote the corresponding
objective function value and we use Area Under the Receiver
Operating Curve (AUC) as the objective function for anomaly
detection. The overall optimization problem can be expressed
as follows:

max
K,ΘC ,ΘD

f(K, {ΘC ,ΘD})

subject to

{
ki ∈ {0, 1}Qi , 1⊤ki = 1,∀i ∈ [M ],

θCi,j ∈ Ci,j ,θ
D
i,j ∈ Di,j ,∀i ∈ [M ], j ∈ [Qi].

(1)
We solve the above problem (1) based on alternating op-

timization, which is presented in Algorithm 1. The rationale
behind the advantage of alternating optimization is that it de-
composes the AutoML problem into sub-problems with small
number of variables. And this is crucial for the optimization of
f(K, {ΘC ,ΘD}) whose convergence is strongly dependent on
the number of variables. Indeed, for n variables, the number of
evaluations needed for critical point convergence is typically
O(n ∼ n3) [45].

1) Anomaly Detection Pipeline Configuration: We first as-
sume that the hyperparameters {ΘC ,ΘD} are fixed during the
pipeline configuration. We aim at selecting the better module
option K to optimize objective function f(K, {ΘC ,ΘD}), we
can delineate it as a K−max problem:

K(t+1) = max
K

f(K, {ΘC(t),ΘD(t)}) + χK(K),

χK(K) =

{
0, if K ∈ K
−∞, else ,

(2)

where K is the feasible set, i.e., K = {K : K = {ki},ki ∈
{0, 1}Qi , 1⊤ki = 1,∀i ∈ [M ]} and χK(K) is a penalty term
that makes sure K belongs to the feasible region.

Problem (2) can be interpreted as a combinatorial multi-
armed bandit problem as the selection of the optimal M arms

(in this case, modules) from
M∑
i=1

Qi on bandit feedback. We

propose a customized Thompson Sampling to effectively solve
this multi-armed bandit problem. The detailed information
about the proposed customized Thompson Sampling is pre-
sented in Algorithm 2.

There are nine modules in our anomaly detection pipeline
(as elucidated in Fig. 1), which are all necessary for anomaly
detection. Specifically, our anomaly detection pipeline consists
of three key parts, i.e., auto representation learning, auto
anomaly score calculation and auto negative sample gener-
ation. Some modules (i.e., encoder, decoder, attention layer,
similarity selection, data augmentation and auxiliary classi-
fication network modules) are used for auto representation
learning. Some modules (i.e., EM estimator and estimation
network modules) are used for auto anomaly score calculation.
And negative sample generation module is used to generate
negative samples for contrastive training.

Similar to DAGMM [34], we also detect anomalies based
on the anomaly score that is calculated according to the latent
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Fig. 1. The anomaly detection pipeline of TimeAutoAD. There are totally nine modules forming this pipeline, namely data augmentation, negative sample
generation, encoder fen, attention mechanism, decoder fde, similarity measurement selection fsim, estimation network fest , EM estimator fEM, auxiliary
classification network fclas. And fBCE represents the binary cross entropy computation, D(xi,x

rec
i ), E(y

i
) and Lself(xi) represent the reconstruction

error, sample energy and self-supervised contrastive loss of input sample xi, respectively.

Algorithm 1: Operator splitting from alternating optimization to solve problem (1)

K−max: K(t+1) = max
K

f(K, {ΘC(t),ΘD(t)}) + χK(K),

Θ−max: {ΘC(t+1),ΘD(t+1)} = max
ΘC ,ΘD

f(K(t), {ΘC ,ΘD})+χC(ΘC)+χD(ΘD),

where (t) represents the iteration index.

space representation of the input data. Firstly, data augmenta-
tion module is utilized to increase the sample diversity, which
will be discussed in detail in Appendix C. And the encoder,
attention mechanism, decoder and similarity measurement
selection modules are utilized together to generate the low-
dimensional representation of the input time series. Given an
input time series xi, we can first acquire the encoder latent
states hi as:

hi = fen(xi), (3)

where fen refers to an encoder with an optional attention
mechanism. The use of attention layer could lead to better
latent space representation and we evaluate the effect of
attention layer by comparing the performance of the anomaly
detection pipeline with and without attention layer, which is
presented in Appendix D. Then, the reconstructed time series
xrec
i and the reconstruction error can be generated as follows:

xrec
i = fde(hi),

zi = fsim(xi,x
rec
i ),

(4)

where fde and fsim represent the decoder and the similarity
measurement function, respectively. Specifically, there are
three options for the encoder and decoder, namely, Recurrent
Neural Network (RNN), Long Short Term Memory (LSTM),
Gated Recurrent Unit (GRU). And fsim characterizes the level
of similarity between the original time series and the recon-
structed one. Three possible similarity measurement functions
are considered in this paper, i.e., relative Euclidean distance,
Cosine similarity, or concatenation of both. Finally, we can get
the low-dimensional representation of the input time series,
which is a concatenation of encoder latent states hi and
reconstruction error zi, as shown below:

y
i
= [hi; zi], (5)

Once the latent space representation y
i

of the input time
series is acquired, Gaussian Mixture Model (GMM) is used
to fit the distribution of the latent space representation. The
estimation network and EM estimator are utilized to estimate
the mixture probability, mean and convariance of GMM.
Assuming there are H mixture components in the GMM
model, the mixture probability, mean, covariance for compo-
nent h in the GMM module can be respectively expressed as
ϕh,µh,

∑∑∑
h and can be calculated as:

γ
i
= fest(yi),∀i ∈ [N ],

ϕh =
∑N
i=1

γ
i,h

N ,∀h ∈ [H],

µ
h
,
∑∑∑

h = fEM({y
i
,γ

i,h
}Ni=1),∀h ∈ [H],

(6)

where N is the number of input samples, fest is the estimation
network which is a multi-layer feed-forward neural network
and γ

i
∈ RH is the mixture-component membership predic-

tion vector. fEM is the EM estimator which can estimate the
mean and convariance of GMM via the EM algorithm. The hth

entry of this vector represents the probability that y
i

belongs
to the hth mixture component.

GMM is employed in this framework for two reasons. First,
GMM is a flexible and powerful model that has been proved
to be capable of approximating any continuous distribution
arbitrarily well under mild assumptions. Second, once we
obtain a GMM model using the training data, we can calculate
the distance between an input time series and the centroids of
GMM in the latent space, which are proportional to the sample
energy function. Therefore, the GMM model, in combination
with the sample energy function, help to characterize the level
of abnormality of an input time series. The time series that is
far away from the centroids of the GMM in the latent space
will be deemed as an anomaly. And it is worth noticing that
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TimeAutoAD may suffer from the singularity problem as in
GMM. In this case, the training algorithm may converge to a
trivial solution if the covariance matrix is singular. We prevent
this singularity problem by adding 1e − 6 to the diagonal
entries of the covariance matrices.

We next introduce three crucial functions in our anomaly
detection process: 1) reconstruction error D(xi,x

rec
i ), 2) the

proposed self-supervised contrastive loss Lself(xi), 3) sample
energy E(y

i
). For reconstruction error D(xi,x

rec
i ), it repre-

sents the difference between the input time series xi and the
reconstructed time series, which can be expressed as:

D(xi,x
rec
i )= ||xi − xrec

i ||22. (7)

For the proposed self-supervised contrastive loss Lself(xi),
it is related to the negative sample generation and auxiliary
classification network modules, which will be discussed in
Section III-B. Sample energy E(y

i
) of the input time series

xi is used to characterize the level of anomaly. E(y
i
) can be

calculated as follows:

E(y
i
)=− log(

∑H

h=1
ϕh ·

exp(− 1
2 (yi−µ

h
)
⊤∑∑∑−1

h (y
i
−µ

h
))√

|2π
∑∑∑

h|
).

(8)
In the training phase, we adopt the end-to-end training

strategy. Given a dataset with N time series, for fixed pipeline
configuration and hyperparameters, the neural networks are
trained by minimizing an overall loss function containing the
aforementioned three functions:

Loverall =
1

N

∑N

i=1
D(xi,x

rec
i ) + λ1

1

N

∑N

i=1
Lself(xi)

+ λ2
1

N

∑N

i=1
E(y

i
),

(9)
where λ1 and λ2 are two weighting factors govern-
ing the trade-off among these three parts and also are
optimized in our AutoML framework with range in
{0.0001, 0.001, 0.01, 0.1, 1}. Minimizing reconstruction error
D(xi,x

rec
i ) seeks to construct a one-to-one mapping between

the time series and their low-dimensional representations.
By minimizing the proposed self-supervised contrastive loss
Lself(xi), we seek to acquire the more accurate decision
boundary between normal samples and anomalies. And the
estimation network can be greatly combined with the represen-
tation y

i
by minimizing the sample energy E(y

i
), which will

promote the generation for mixture-component membership
prediction. The aforementioned three functions work together
and jointly optimize the neural networks.

In the testing phase, we use the sample energy as the
anomaly score. The input samples with high sample energy
will be deemed as anomalies.

2) Hyperparameters Optimization: Once the anomaly de-
tection pipeline is constructed, we then emphasize on optimiz-
ing the hyperparameters for the given pipeline, which can be

expressed as a Θ−max task, as given below,

{ΘC(t+1),ΘD(t+1)} = max
ΘC ,ΘD

f(K(t), {ΘC ,ΘD})

+χC(Θ
C) + χD(Θ

D),

χC(Θ
C)=

{
0, if ΘC ∈C
−∞, else , χD(Θ

D)=

{
0, if ΘD∈D
−∞, else ,

(10)
where C and D denote the feasible region of continuous and
discrete hyperparameters, respectively. f(·) is the objective
function given in problem (1). χC(ΘC) and χD(Θ

D) are
penalty terms that make sure the hyperparameters fall in the
feasible region. The above problem can be solved using grid
search [46], random search [47], trust-region based derivative-
free optimization [48] or Bayesian Optimization (BO) [49].
Unless specified otherwise, we adopt Bayesian Optimization to
solve this Θ−max task owing to its remarkable effectiveness.
The detailed information about Bayesian Optimization we
utilized will be presented in Appendix A.

The complete process of the proposed TimeAutoAD is
presented in Algorithm 2. It is seen that TimeAutoAD consists
of two main stages, i.e., anomaly detection pipeline configu-
ration and hyperparameter optimization. In every iteration of
TimeAutoAD, the proposed customized Thompson Sampling
is utilized to refine the pipeline configuration at first. After that,
Bayesian optimization is invoked to optimize the hyperparam-
eters of the model. Finally, the sampling parameters of the
chosen options will be updated according to the performance
of the configured pipeline.

In Algorithm 2, r ∼ Bernoulli(
∼
r) represents the Bernoulli

trial, which can turn the continuous reward
∼
r , ranging from

0 to 1 and representing the reward probability, to a binary
reward r. There are a few parameters of the proposed AutoML
framework, i.e., number of TimeAutoAD iterations L, number
of Bayesian Optimization iterations B, pre-defined upper
bound fupp and lower bound flow to objective function f ,
and Beta distribution priors α0 and β0. In the experiment,
we respectively set L = 100, B = 30, fupp = 1, flow = 0.7,
α0 = 10 and β0 = 10. It is worth mentioning that the proposed
TimeAutoAD is robust against to the framework hyperparame-
ter (i.e., fupp, flow, α0, β0), which will be discussed in Section
IV-C.

B. Self-supervised Contrastive Loss

To further enhance the anomaly detection performance of
the configured pipeline, we propose a self-supervised con-
trastive loss which is integrated into our pipeline as negative
sample generation module and auxiliary classification network
module. Deldari et al. [50] propose TS − CP 2 which is
the first Change Point Detection method that employs a
contrastive learning strategy though learning an embedded
representation which separates pairs of embeddings of time
adjacent intervals from pairs of interval embeddings separated
across time. Note that the proposed self-supervised contrastive
loss is different from contrastive learning [50, 51], which is a
learning technique to teach the model to minimize the distance
of similar (positive) samples and maximize the distance of
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Algorithm 2: Procedure of TimeAutoAD
Input: L: pre-defined threshold for maximum number of iterations. B: pre-defined threshold for maximum Bayesian

optimization iterations. α0 and β
0
: pre-defined Beta distribution priors. fupp and flow: pre-defined upper bound

and lower bound to objective function f .
Set: α(t)

i ∈ RQi , β(t)

i
∈ RQi : the cumulative reward and punishment for ith module for the tth iteration, specifically,

α
(1)
i = α0 and β(1)

i
= β

0
.

for t = 1, 2, · · · , L do
for i = 1, 2, · · · ,M do

Sample wi ∼ Beta(α
(t)
i ,β(t)

i
)

end
Obtain the TimeAutoAD pipeline configuration by solving the following optimization problem:

maxmize
K

M∑
i=1

(ki)
⊤
wi subject to ki ∈ {0, 1}Qi , 1⊤ki = 1,∀i ∈ [M ],

for b = 1, 2, · · · , B do
Hyperparameters optimization: Update hyperparameters utilizing Bayesian optimization and the obtained

objective function value is denoted as f(K(t), {ΘC(t)
b ,Θ

D(t)
b }), where K(t) denote the module options in tth

iteration and {ΘC(t)
b ,Θ

D(t)
b } denote both of the continuous and discrete hyperparameters in bth Bayesian

optimization iteration in tth iteration.
end
Update Beta distribution of the options in the configured pipeline:
1. Let f (t) = max{f(K(t), {ΘC(t)

b ,Θ
D(t)
b }), b = 1, · · · , B} denote the performance of TimeAutoAD model at the

tth iteration.
2. Compute the continuous reward

∼
r :

∼
r = max{0, f

(t)−flow
fupp−flow }

3. Obtain the binary reward r ∼ Bernoulli(
∼
r).

for i = 1, 2, · · · ,M do
α

(t+1)
i = α

(t)
i + ki · r

β(t+1)

i
= β(t)

i
+ ki · (1− r)

end
end
Output: A TimeAutoAD model with optimized hyperparameters.

different (negative) samples in latent space. While the pro-
posed self-supervised contrastive loss aims to maximize the
distance between normal samples and the generated negative
samples in latent space. And the proposed contrastive train-
ing is somewhat similar to Generative Adversarial Network
(GAN) [52, 53] since the proposed negative sample generation
and auxiliary classification network can be regarded as the
generator and discriminator, respectively. According to [25–
27], the representations generated by the encoder have a direct
impact on the anomaly detection performance. The anomaly
detection performance will be enhanced when the encoder
representation learning ability is enhanced. For example, the
semi-supervised anomaly detection methods [23, 24] usually
have superior performance than unsupervised methods. Such
methods utilize a small pool of labeled anomaly samples which
will significantly promote the model representation learning
capability. Instead, the proposed self-supervised contrastive
loss does not require any labeled anomaly samples. We make
full use of the internal structure and characteristics of unla-
beled data to generate negative samples. In this way, we can

acquire more training data, thereby improving the performance
of the anomaly detection model.

Given a normal time series xi ∈ RT , we can generate
the negative sample xneg

i through the proposed three different
negative sample generation methods, which are illustrated in
Fig. 2 and will be discussed as follows:

a) Negative Sample Generation Method 1: We firstly
shift the time series, then randomly choose a segment of
original time series and enlarge their values by P times. And
P is chosen randomly with the interval [min(xi),max(xi)],
min(xi) and max(xi) represent the minimum and maximum
value of input time series xi, respectively. The shift size, the
size of the chosen segment and P are three hyperparameters
which will be automatically optimized in our model.

b) Negative Sample Generation Method 2: We randomly
inject noises on a few selected timestamps. The absolute value
of the noise term belongs to the interval [min(xi),max(xi)].
The number of chosen timestamps is a hyperparameter which
will be automatically optimized.

c) Negative Sample Generation Method 3: We randomly
choose two segments of a time series and exchange their
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Fig. 2. Illustration of an original sample and three different generated negative
samples from GunPoint dataset. Red color curve represents the original
sample from GunPoint dataset, and the three Blue curves represent three
different negative samples generated according to original sample through
three different negative sample generation tricks.

locations. The size of chosen segment is a hyperparameter
which will be automatically optimized.

Previous work has shown that the negative sample genera-
tion methods of natural language processing can be applied to
time series data [54]. For negative sample generation method
1, it is inspired by the generation methods of inconsistent
sequences in [55]. The inconsistent sequences can be gen-
erated by deleting, permuting, inserting and replacing random
tokens in a consistent sequence in [55]. For negative sample
generation method 3, it is inspired by the word shuffling
method in [56], which shuffles two randomly sampled words
in a sentence to generate the fake sentence. As for nega-
tive sample generation method 2, it is inspired by the fact
that many anomalous samples may contain signal similar
to impulse noise in real-word data [57]. Furthermore, it is
worth mentioning that all the negative samples generated by
the three proposed methods are motivated by examples in
real-world data, i.e., they represent real-world anomalies. For
the negative samples generated by method 1, for example,
they could represent the anomalies in ECG data. Specifically,
the shift operation in a normal ECG data could lead to
the abnormal PR interval in ECG, which may represent the
abnormal impulse transmission from atria to ventricles1. The
enlarge of a segment in normal ECG data could lead to the
abnormal ST segment in ECG data, which may represent
the ischemic cardiac disease [58]. For the negative samples
generated by method 2, for example, they represent the anoma-
lies contaminated by impulse noise, which can be caused
by measurement errors of sensors. For the negative samples
generated by method 3, for example, they could represent
the anomalies that caused by the clock non-synchronization
in wireless sensor networks [59]. Specifically, the anomalies
could be the acquired data from the wireless sensor network
which have some nodes with imperfect synchronization. In
this paper, the proposed TimeAutoAD can automatically select

1https://ecgwaves.com/overview-of-the-ecg-waves-deflections-intervals-
durations/

one of the three aforementioned negative sample generation
methods, and we generate one negative sample xneg

i for each
positive sample xi. The proposed contrastive self-supervised
loss Lself aims to distinguish the positive time series sample
from the negative ones, which can be given as:

hpos
i = fen(xi), hneg

i = fen(x
neg
i ),

opos
i = fclas(h

pos
i ), oneg

i = fclas(h
neg
i ),

Lself(xi) = fBCE(o
pos
i , lpos) + fBCE(o

neg
i , lneg),

(11)

where hpos
i ∈ RS and hneg

i ∈ RS are respectively the
latent space representations of positive samples and negative
samples, S represents the length of latent space representation.
fclas is the auxiliary classification network which is a multi-
layer feed-forward neural network with a sigmoid activation
function. The input of fclas are hpos

i and hneg
i , and the output

of fclas are opos
i ∈ R1 and oneg

i ∈ R1. fBCE represents binary
cross entropy and can be expressed as:

fBCE(o
pos
i , lpos)=−lpos ·log(opos

i )−(1−lpos)·log(1−opos
i ),

fBCE(o
neg
i , lneg)=−lneg ·log(oneg

i )−(1−lneg)·log(1−oneg
i ),

(12)
where lpos = 0 and lneg = 1 are the labels for positive time
series and negative time series, respectively. Details about the
proposed self-supervised loss Lself are shown in Fig. 1, we can
see that minimizing Lself allows the encoder to distinguish the
positive samples from the negative samples in the latent space,
and consequently enhance the time series anomaly detection
ability.

C. Module Options and Hyperparameters in TimeAutoAD

The proposed TimeAutoAD can automatically configure
the time series anomaly detection pipeline and optimize its
hyperparameters. As mentioned above, the configured anomaly
detection pipeline consists of three key parts, i.e., auto rep-
resentation learning, auto anomaly score calculation and auto
negative sample generation. A total of nine modules constitute
these three key parts. Each module has its options and the
hyperparameters in each option belong to given intervals,
which are presented in TABLE I. The detailed explanations of
all hyperparameters and their value type are listed in TABLE
II. Furthermore, we have conducted ablation study to evaluate
the effectiveness of modules in our pipeline, which is presented
in Appendix D.

IV. EXPERIMENT

We examine TimeAutoAD for time series anomaly detection
from four aspects:

1) Effectiveness: Will TimeAutoAD effectively model the
temporal dynamic of MTS and capture the unusual
patterns?

2) Robustness: Can TimeAutoAD maintain its effective-
ness in the presence of contaminated training data?

3) Parameter Sensitivity: Whether TimeAutoAD is robust
against the choice of AutoML framwork parameters?

4) Visualization: How can we visualize and interpret the
obtained TimeAutoAD model?
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TABLE I
MODULES, OPTIONS, AND HYPERPARAMETERS OF TIMEAUTOAD.

Module Options Hyperparameters

Data Augmentation
Scaling Naug ∈ [0, 100], hamp ∈ [0.5, 1.8]

Shifting Naug ∈ [0, 100], hshift ∈ [−10, 10]

Time-Warping Naug ∈ [0, 100], htm ∈ [T/10, T/4]

Negative Sample Generation
Generation Method 1 P ∈ [min(xi),max(xi)], M

sh ∈ [T/10, T/4], Mchos ∈ [T/32, T/8]

Generation Method 2 Mts ∈ [T/10, T/4]

Generation Method 3 Mchos ∈ [T/10, T/4]

Encoder RNN / LSTM / GRU henc ∈ [1, 32]

Attention Self-Attention / No Attention None

Decoder RNN / LSTM / GRU hdec ∈ [1, 32] or [nfeat, 4 ∗ nfeat]

EM Estimator Gaussian Mixture Model Gcom ∈ [1, 10]

Similarity Selection
Relative Euclidean Distance

None
/ Cosine Similarity / Both

Estimation Network Multi-Layer Feed-Forward Neural Network elayer ∈ [1, 5], enodei ∈ [8, 128]

Auxiliary Classification Network
Multi-Layer Feed-Forward Neural Network

clayer ∈ [1, 5], cnodei ∈ [8, 128]
with Sigmoid Activation Function

TABLE II
EXPLANATION OF HYPERPARAMETERS IN TABLE I.

Hyperparameters Meaning Type
Naug The number of data augmentation samples Discrete
hamp The scaling size of a time series Continuous
hshift The shift size of a time series Discrete
htm The number of time-warping timestamps Discrete
P Magnification of the chosen segment Continuous

Msh The shift size of a time series Discrete
Mchos The size of the chosen segment Discrete
Mts The number of chosen timestamps Discrete
henc The size of encoder hidden state Discrete
hdec The size of decoder hidden state Discrete
nfeat The dimension of multivariate time series Discrete
Gcom The number of mixture-component of GMM Discrete
elayer The number of neural network layers in estimation network Discrete
enodei The number of nodes in each layer in estimation network Discrete
clayer The number of neural network layers in auxiliary classification network Discrete
cnodei The number of nodes in each layer in auxiliary classification network Discrete
T The timestamps number of the input time series Discrete

Datasets and Baselines: TimeAutoAD is utilized for detect-
ing collective anomalies in this paper, which have been studied
in many scenarios as ECG time series anomaly detection
[25], IoT time series anomaly detection [63], Trace time
series anomaly detection [57]. And it is worth mentioning
that TimeAutoAD could deal with stream data when choosing
a sliding window with a suitable size. We first assess the
anomaly detection performance of the proposed TimeAutoAD
on several public real-world datasets, i.e., Train-Ticket dataset
[57], IoT-23 dataset2, and HeartBeat dataset3. We create the
training dataset with only normal samples, and we set the
ratio of normal samples to abnormal samples as 10:1 in
both validation and testing sets. It is worth mentioning that
due to the characteristics of RNN/LSTM/GRU, the proposed
TimeAutoAD is able to deal with time series of different
lengths.

2https://www.stratosphereips.org/datasets-iot23
3https://www.physionet.org/physiobank/database/challenge/2016

* Train-Ticket is a train ticket booking system based
on a microservice architecture which contains 41 mi-
croservices, and the anomalies are added into the 41
microservices to generate anomalous samples [64].

* IoT-23 is a dataset of network traffic from the Internet
of Things devices. It has 20 malware captures executed
in IoT devices, and 3 captures for benign IoT devices
traffic.

* HeartBeat dataset is collected in either a clinical or non-
clinical environment, sourced from several contributors
around the world. The normal samples represent the
recordings that were sourced from healthy contributors
and the abnormal samples were from patients with a
confirmed cardiac diagnosis.

We next assess the anomaly detection performance of the
proposed TimeAutoAD on a multitude of UEA multivariate
time series datasets [65] and a total of 85 UCR univariate
time series datasets [66] to further assess the performance
of the proposed TimeAutoAD. For datasets in UCR and
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TABLE III
AUC SCORES OF TIMEAUTOAD AND STATE-OF-THE-ART ANOMALY DETECTION METHODS. BOLD AND UNDERLINED SCORES RESPECTIVELY

REPRESENT THE BEST AND SECOND-BEST PERFORMING METHODS.

Model Train-Ticket IoT-23 Heartbeat ECG200 ECGFiveDays ItalyPD LSST RacketSports PhonemeSpectra

LOF [30] 0.7145 0.6402 0.5527 0.6271 0.5783 0.6061 0.6492 0.4418 0.5646
IF [60] 0.5991 0.6544 0.5329 0.6953 0.6971 0.7510 0.6185 0.5012 0.5355
OCSVM [8] 0.9155 0.5000 0.5799 0.7109 0.6799 0.9016 0.5000 0.5000 0.4444

GRU-ED [61] 0.9148 0.7430 0.6189 0.7001 0.7412 0.8289 0.7412 0.7163 0.5401
DAGMM [34] 0.8850 0.7964 0.6048 0.5729 0.5732 0.7994 0.5113 0.3953 0.5262
Latent ODE [62] 0.8556 0.7945 0.6577 0.8214 0.6111 0.8221 0.6828 0.8232 0.6813
BeatGAN [25] 0.9394 0.8021 0.6431 0.8441 0.9012 0.9798 0.7296 0.6289 0.4628
DeepSVDD-LSTM [10] 0.9051 0.8056 0.6598 0.6585 0.7887 0.7553 0.6285 0.7986 0.6193

TimeAutoAD
0.9669 0.8926 0.7791 0.9442 0.9851 0.9879 0.7804 0.9825 0.8567

without Lself

TimeAutoAD 0.9713 0.9041 0.8031 0.9651 0.9963 0.9959 0.7965 0.9983 0.8817

Improvement 3.19% 9.85% 14.33% 12.10% 9.51% 1.61% 5.53% 17.51% 20.04%

UEA archives, we follow the strategy in [67] to create the
training, validation, and testing sets. Following the previous
work [68, 69], we employ AUC (Area Under the Receiver
Operating Curve) to evaluate performance, which is a widely-
used evaluation metric in anomaly detection. The proposed
TimeAutoAD is compared with a set of state-of-the-art meth-
ods including Local Outlier Factor (LoF) [30], Isolation Forest
(IF) [60], OCSVM [8], GRU-ED [61], DAGMM [34], Latent
ODE [62], BeatGAN [25] and DeepSVDD [10]. To allow fair
comparison, the neural networks in DeepSVDD are replaced
by LSTM, as DeepSVDD-LSTM. Furthermore, we also con-
duct hyperparameter optimization for each of the state-of-the-
art methods.

A. Effectiveness

We assess the anomaly detection performance of TimeAu-
toAD and state-of-the-art anomaly detection methods on three
public real-world anomaly detection datasets, i.e., Train-Ticket
dataset, IoT-23 dataset, HeartBeat dataset, which are presented
in TABLE III. Furthermore, the anomaly detection results
of TimeAutoAD on a multitude of multivariate time series
are presented in TABLE III. Due to the space limitation,
we only present a portion of the results on UCR archive
in TABLE III. And the characteristics of each datasets are
summarized in Appendix F, TABLE A3. It is seen from
TABLE III that the deep learning based methods like GRU-ED
and BeatGAN achieve superior performance over traditional
anomaly detectors, such as LOF and OCSVM, since such
methods do not consider temporal dependencies among time
series data. And it is observed that TimeAutoAD outperforms
all the competing methods, indicating the superior anomaly
detection performance of TimeAutoAD. Moreover, it is worth
mentioning that the proposed self-supervised contrastive loss
function Lself plays an important role, as presented in TABLE
III by comparing the TimeAutoAD with and without Lself .

In addition, to further assess the superior performance of
the proposed TimeAutoAD, we evaluate TimeAutoAD on the
remaining univariate time series datasets in UCR archive,

which are presented in Appendix B, TABLE A1. It is seen
that TimeAutoAD achieves the best anomaly detection per-
formance over the majority > 90%, demonstrating the effec-
tiveness of the proposed model. Please note that solving an
AutoML problem incurs additional compuational cost than the
traditional model training approach due to the hyper parameter
optimization and pipeline configurations, especially for large
datasets [70]. The proposed TimeAutoAD is nevertheless
computationally efficient for three reasons: 1) TimeAutoAD
provides a compact search space containing succinct mod-
ule options and hyperparameters selections, which has been
detailed in Section III-C; 2) TimeAutoAD is composed of
highly effective searching procedures, as shown in Algorithm
2, which make the configuration of anomaly detection pipeline
and the optimization of hyperparameters less computationally
expensive; 3) TimeAutoAD is tailored for time series anomaly
detection, the computational complexity of TimeAutoAD is
therefore much less than that of the AutoML approach for
image data [71, 72]. In fact, in the experiment, the training of
TimeAutoAD takes only a few hours on almost all the datasets
(e.g., Train-Ticket, IoT-23, ECG200) with a single NVIDIA
GeForce GTX TITAN X GPU, asserting its computational
efficiency.

TABLE IV
ANOMALY DETECTION RESULTS (AUC SCORES) ON

ITALYPOWERDEMAND DATASET WHEN TRAINING DATA ARE

CONTAMINATED.

Ratio c% TimeAutoAD BeatGAN GRU-ED

0% 0.9959 0.9798 0.8289
5% 0.9794 0.9374 0.7926

10% 0.9676 0.8827 0.7654

Ratio c% OCSVM IF DeepSVDD

0% 0.9016 0.7510 0.7553
5% 0.8030 0.7252 0.7226

10% 0.7539 0.7011 0.6974
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B. Robustness

In this subsection, we investigate how the proposed
TimeAutoAD performs in the presence of contaminated train-
ing data. We take samples from the normal class mixed with
c% of samples from the anomaly class for model training
[34]. TABLE IV reports AUC scores of TimeAutoAD and
the baselines when c = 5% and c = 10%. As we can see,
in general, the contaminated training data have a negative
effect on anomaly detection performance. We also notice that
the proposed TimeAutoAD can maintain excellent detection
performance with 10% contaminated training data. To further
evaluate the robustness of TimeAutoAD, we carry out exper-
iments on datasets presented in TABLE III, and the results
are summarized in TABLE V. It is seen that the anomaly
detection performance of TimeAutoAD slightly degrades when
training data are contaminated, indicating the robustness of
TimeAutoAD.

C. AutoML Framework Parameter Sensitivity Analysis

Although the parameters of the anomaly detection pipeline
can be automatically optimized in our AutoML framework,
there are a few AutoML prior parameters need to be set.

We analyze the robustness of the proposed method against
the choice of Beta distribution priors α0 and β

0
in

our AutoML framework for each combination of α0 ∈
{5, 10, 15, 20, 25, 30} and β

0
∈ {5, 10, 15, 20, 25, 30}. We

observe that the proposed model is robust against the choice
of Beta distribution priors α0 and β

0
. In the experiment, we

set α0 = 10 and β
0
= 10, respectively.

We also analyze the robustness of the proposed method
against the choice of fupp and flow, we observe that the
proposed model is robust against the choice of fupp and flow.
And it is necessary to ensure flow < f < fupp. In the
experiment, we set fupp = 1 and flow = 0.7 for most of the
datasets. The detailed content about the AutoML framework
parameter sensitivity analysis will be discussed in Appendix
E.

D. Ablation Study

To verify the efficiency of the proposed AutoML framework,
here we present a comparison between TimeAutoAD and
TimeAutoAD-. For TimeAutoAD-, both anomaly detection
pipeline configuration and hyperparameter search are random.
TimeAutoAD and TimeAutoAD- are tested ten times on
ECGFiveDays dataset and the result is presented on Fig. 3.
It is seen that the performance of the configured pipeline
by TimeAutoAD continues to improve and stabilize with
the number of iterations grows, while the performance of
TimeAutoAD- shows an unstable trend, demonstrating the
efficiency of the proposed AutoML framework.

E. Visualization

A synthetic dataset is used to elucidate the underlying
mechanism of TimeAutoAD model for detecting time series
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Fig. 3. The illustration of the ablation study of TimeAutoAD.

Fig. 4. Anomaly interpretation via analysis in latent space. In the left, red

and blue curves respectively represent the abnormal and normal sample. In

the right, red dot and blue dots respectively represent the latent representation

of abnormal sample and normal samples.

anomalies. Fig. 4 shows the latent space representation learned
via TimeAutoAD model from a synthetic dataset. In this
dataset, smooth Sine curves are normal time series. The
anomaly time series is created by adding noise to the normal
time series over a short interval. It is evident from Fig. 4
that the latent space representations of normal time series
lie in a high density area that can be well characterized by
a GMM; while the abnormal time series appears to deviate
from the majority of the observations in the latent space.
In short, the proposed encoder-decoder structure allows us
to project the time series data in the original space onto
vector representations in the latent space. In this way, we can
detect anomalies via clustering-based methods, e.g., GMM,
and easily visualize as well as interpret the detected anomalies
in time series.

V. CONCLUSION

In this paper, we proposed TimeAutoAD, i.e., an AutoML
framework, to carry out unsupervised autonomous anomaly
detection for multivariate time series data. Also, we pro-
posed three negative sample generation methods and a novel
self-supervised contrastive loss function to enhance anomaly
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TABLE V

AUC SCORES OF TIMEAUTOAD WHEN TIME SERIES TRAINING DATASETS ARE CONTAMINATED WITH 5% AND 10% ANOMALY SAMPLES.

Ratio Train-Ticket IoT-23 Heartbeat ECG200 ECGFiveDays ItalyPD LSST RacketSports PhonemeSpectra

0% 0.9713 0.9041 0.8031 0.9651 0.9963 0.9959 0.7965 0.9983 0.8817

5% 0.9648 0.8921 0.7946 0.9518 0.9842 0.9794 0.7869 0.9878 0.8724

10% 0.9597 0.8853 0.7825 0.9339 0.9759 0.9676 0.7754 0.9752 0.8613

Decline 1.16% 1.88% 2.06% 3.12% 2.04% 2.83% 2.11% 2.31% 2.04%

detection performance. Our empirical studies demonstrated
the effectiveness of the proposed TimeAutoAD on a large
number of real-world datasets. In the future work, more inter-
esting negative sample generation methods for unsupervised
time series anomaly detection could be designed. And semi-
supervised learning based autonomous anomaly detection for
multivariate time series data could be considered.

APPENDIX A

BAYESIAN OPTIMIZATION

Let θ and f(θ) denote the variables needed to be op-
timized and the objective function, respectively. Given the
objective function values during the preceding T iterations
v = [f(θ(0)), f(θ(1)), · · · , f(θ(T ))], we pick up the variable
for sampling in the next iteration via solving the maximization
problem that involves the acquisition function i.e., Expected
Improvement (EI) based on the posterior Gaussian Process
(GP) model.

Specifically, the objective function is assumed to fol-
low a GP model [49] and can be expressed as f(θ) ∼
GP(m(θ),K), where m(θ) represents the mean function.
And K represents the covariance matrix of {θ(t)}Tt=0, namely,
Kij = κ(θ(i),θ(j)), where κ(·, ·) is the kernel function. In
particular, the poster probability of f(θ) at iteration T + 1 is
assumed to follow a Gaussian distribution with mean µ(θ∗)
and covariance σ2(θ∗), given the observation function values
v :

µ(θ∗) = κT [K + σ2
nI]

−1v,

σ2(θ∗) = κ(θ∗,θ∗)− κT [K + σ2
nI]

−1κ,
(A.1)

where κ is a vector of covariance terms between θ∗ and
{θ(t)}Tt=0, and σ2

n denotes the noise variance. We choose the
kernel function as ARD Matérn 5/2 kernel [49] in this paper:

κ(p,p′) = τ20 exp(−
√
5r)(1 +

√
5r +

5

3
r2), (A.2)

where p and p′ are input vectors, r2 =
∑d
i=1 (pi − p′

i
)
2
/τ2i ,

and ψ = {{τi}di=0, σ
2
n} are the GP hyperparameters which are

determined by minimizing the negative log marginal likelihood
log(y|ψ) :

min
ψ

log det(K + σ2
nI) + vT (K + σ2

nI)
−1v. (A.3)

Given the mean µ(θ∗) and covariance σ2(θ∗) in (A.1),
θ(T+1) can be obtained via solving the following optimization
problem:

θ(T+1)=argmax
θ∗

EI(θ∗)

=argmax
θ∗

(µ(θ∗)−y+)Φ(µ(θ
∗)−y+

σ(θ∗)
)+σϕ(

µ(θ∗)−y+

σ(θ∗)
),

(A.4)
where y+ =max[f(θ(0)), f(θ(1)), · · · , f(θ(T ))] represents

the maximum observation value in the previous T itera-
tions. Φ is normal cumulative distribution function and ϕ
is normal probability density function. Through maximizing
the EI acquisition function, we seek to improve f(θ(T+1))
monotonically after each iteration.

APPENDIX B

RESULTS ON UCR ARCHIVE

In Section IV-A, we have presented a portion of the results
on UCR archive in TABLE III. The anomaly detection results
for the remaining datasets on UCR archive are summarized
in TABLE A1. It is seen that TimeAutoAD achieves best
anomaly detection performance over the majority > 90% of
the UCR datasets.

APPENDIX C
DATA AUGMENTATION

In this subsection, we will introduce three data augmentation
methods for time series data, which are utilized in this paper.

• Scaling: Increasing or decreasing the amplitude of the
time series. There are two hyperparametes, the number
of data augmentation samples Naug ∈ [0, 100] and the
scaling size hamp ∈ [0.5, 1.8].

• Shifting: Cyclically shifting the time series to the left or
right. There are two hyperparametes, the number of data
augmentation samples Naug ∈ [0, 100] and the shift size
hshift ∈ [−10, 10].

• Time-warping: Randomly “slowing down” some times-
tamps and “speeding up” some timestamps. For each
timestamp to “speed up”, we delete the data value at
that timestamp. For each timestamp to “slow down”, we
insert a new data value just before that timestamp. There
are two hyperparametes, the number of data augmentation
samples Naug ∈ [0, 100] and the number of time-warping
timestamps htm ∈ [T/10, T/4] and T is the number of
timestamps in the input data.
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TABLE A1
AUC SCORES OF TIMEAUTOAD AND STATE-OF-THE-ART ANOMALY DETECTION METHODS ON UCR TIME SERIES DATASET. BOLD AND UNDERLINED

SCORES RESPECTIVELY REPRESENT THE BEST AND SECOND-BEST PERFORMING METHODS.

dataset TimeAutoAD DeepSVDD-LSTM Latent ODE BeatGAN DAGMM GRU-ED IF LOF OCSVM
Adiac 1 1 1 1 1 1 0.9375 0.4375 0.8125
ArrowHead 0.9876 0.7708 0.8592 0.7923 0.872 0.4008 0.7899 0.442 0.4648
Beef 1 1 1 1 1 0.8333 1 0.4167 0.75
BeetleFly 1 1 1 1 1 1 0.35 0.4 0.5
BirdChicken 1 0.9 1 0.8 0.9 0.6 0.5 0.4 0.7
Car 1 0.8462 1 0.6233 0.3346 1 0.2854 0.4231 0.5
CBF 1 0.8201 0.6573 0.9909 0.7983 0.8606 0.6408 0.9399 0.5
ChlorineConcentration 0.6653 0.5649 0.5672 0.5291 0.5724 0.5048 0.5449 0.5899 0.6151
CinCECGTorso 0.8951 0.6511 0.6761 0.9966 0.7908 0.4958 0.6749 0.9641 0.5
Coffee 1 0.8 1 1 1 0.9333 0.75 0.7167 0.8667
Computers 0.8354 0.738 0.744 0.738 0.6563 0.7686 0.468 0.5714 0.6311
CricketX 1 0.8423 0.9744 0.8754 0.8123 0.7892 0.7405 0.6282 0.5962
CricketY 1 0.9311 0.954 0.9828 0.8997 0.931 0.8161 0.9827 0.5862
CricketZ 1 0.6944 0.9583 0.8285 0.6897 0.8333 0.6521 0.6249 0.5
DiatomSizeReduction 1 0.9 0.8571 1 1 0.9913 0.9783 0.9946 0.7989
DistalPhalanxOutlineAgeGroup 0.9912 0.7637 0.8333 0.8 0.8333 0.6879 0.7021 0.6858 0.5989
DistalPhalanxOutlineCorrect 0.8626 0.6993 0.8333 0.5342 0.6721 0.6193 0.6204 0.7693 0.7427
DistalPhalanxTW 1 0.9778 0.9143 1 1 1 0.9643 1 0.9524
Earthquakes 0.8418 0.8069 0.7421 0.6221 0.5529 0.8033 0.5671 0.5428 0.5
ECG5000 0.9981 0.8707 0.5648 0.9923 0.8475 0.8998 0.9304 0.5436 0.7855
ElectricDevices 0.8427 0.7206 0.5626 0.8381 0.7172 0.7958 0.5518 0.5528 0.5514
FaceAll 1 0.8368 0.7674 0.9821 0.9841 0.9844 0.7639 0.7847 0.5278
FaceFour 1 0.8368 1 1 1 0.9286 0.9286 0.4286 0.6786
FacesUCR 1 1 0.6368 0.9276 0.9065 0.8786 0.6782 0.8296 0.6973
FiftyWords 0.9971 0.8275 0.8187 0.9895 0.9901 0.5643 0.9474 0.807 0.7719
Fish 0.9697 0.7868 0.9394 0.8523 0.7273 0.5909 0.4772 0.6212 0.5682
FordA 0.6229 0.5229 0.6204 0.5496 0.5619 0.6306 0.4963 0.4708 0.6393
FordB 0.6008 0.5055 0.6212 0.5999 0.6021 0.5949 0.5949 0.4971 0.5507
GunPoint 0.9362 0.8012 0.8479 0.7587 0.4701 0.5657 0.4527 0.5173 0.5659
Ham 0.8961 0.6389 0.8579 0.6556 0.7667 0.6358 0.6348 0.6296 0.5
HandOutlines 0.8808 0.6876 0.8362 0.9031 0.8524 0.5679 0.7349 0.7413 0.6814
Haptics 0.8817 0.5291 0.8579 0.7266 0.6698 0.5826 0.6674 0.5167 0.5
Herring 1 0.8333 0.9581 0.8333 0.6528 0.8026 0.7231 0.7105 0.6053
InlineSkate 0.8556 0.5987 0.8039 0.65 0.7147 0.5559 0.4223 0.6254 0.5059
InsectWingbeatSound 0.91 0.7212 0.6574 0.9605 0.9735 0.7549 0.7861 0.9333 0.6861
LargeKitchenAppliances 0.8708 0.5391 0.7703 0.5887 0.5824 0.7975 0.5025 0.5289 0.5135
Lightning2 1 0.6591 0.9242 0.6061 0.7574 0.5758 0.909 0.7197 0.5114
Lightning7 1 0.8421 1 1 1 1 1 0.4211 0.7105
Mallat 0.9996 0.9212 0.6639 0.9979 0.9701 0.5728 0.8377 0.8811 0.5242
Meat 1 0.625 1 1 0.975 1 0.7001 0.7001 0.675
MedicalImages 0.8021 0.4379 0.6306 0.6735 0.6473 0.6619 0.6059 0.6035 0.6084
MiddlePhalanxOutlineAgeGroup 1 0.9201 0.954 0.9673 0.8512 0.7931 0.7414 0.431 0.6437
MiddlePhalanxOutlineCorrect 0.8669 0.5125 0.7355 0.4401 0.7012 0.7013 0.4818 0.5725 0.4979
MiddlePhalanxTW 1 0.8505 0.9524 1 1 1 0.9762 1 0.9286
MoteStrain 0.9336 0.6206 0.7348 0.8201 0.5755 0.7084 0.6217 0.5173 0.5044
NonInvasiveFetalECGThorax1 1 0.7639 0.9167 1 1 1 0.9306 0.8611 0.8333
NonInvasiveFetalECGThorax2 1 0.8819 0.9028 0.9167 1 1 0.9722 1 0.9028
OliveOil 1 1 0.9167 0.9167 0.9167 0.9167 0.9583 1 0.7917
OSULeaf 0.9909 0.4227 0.8864 0.8125 0.8892 0.8352 0.375 0.6823 0.5
PhalangesOutlinesCorrect 0.7423 0.5342 0.7049 0.4321 0.5521 0.6625 0.5192 0.6629 0.5532
Phoneme 0.8849 0.7978 0.6823 0.7054 0.5826 0.7964 0.4904 0.5943 0.5
Plane 1 1 1 1 1 1 1 0.4 0.75
ProximalPhalanxOutlineAgeGroup 0.998 0.967 0.8024 0.975 0.9723 0.9614 0.82 0.775 0.71
ProximalPhalanxOutlineCorrect 0.9255 0.8408 0.6482 0.5823 0.7221 0.9051 0.5348 0.7474 0.6573
ProximalPhalanxTW 1 1 0.8664 0.9663 0.9623 0.9079 0.8889 0.9311 0.9097
RefrigerationDevices 0.8629 0.4596 0.7483 0.7264 0.5722 0.5434 0.4665 0.5714 0.5
ScreenType 0.8572 0.7453 0.7453 0.7453 0.5472 0.7686 0.4921 0.5289 0.6815
ShapeletSim 0.9975 0.6212 0.9 0.7421 0.5721 0.9728 0.5611 0.5481 0.5
ShapesAll 1 1 1 0.9 0.95 1 0.85 0.95 0.65
SmallKitchenAppliances 0.9586 0.8843 0.7151 0.6541 0.7321 0.9621 0.6812 0.6563 0.5
SonyAIBORobotSurface1 0.9998 0.9246 0.6886 0.9982 0.9834 0.9991 0.8129 0.9731 0.5174
SonyAIBORobotSurface2 0.9907 0.7492 0.6211 0.9241 0.8994 0.9236 0.5981 0.7152 0.5111
StarLightCurves 0.9135 0.8674 0.5548 0.8083 0.8924 0.8386 0.8161 0.5028 0.5699
Strawberry 0.7805 0.6786 0.6786 0.6786 0.5659 0.8184 0.4738 0.4433 0.4328
SwedishLeaf 0.9512 0.5682 0.9394 0.6963 0.5758 0.6566 0.6212 0.6212 0.25
Symbols 0.9987 0.6869 0.7669 0.9881 0.9762 0.947 0.8025 0.9942 0.6474
SyntheticControl 1 0.964 1 0.736 0.6524 1 0.3299 0.66 0.5
ToeSegmentation1 0.9437 0.6381 0.7112 0.8819 0.6264 0.5726 0.5226 0.6708 0.5083
ToeSegmentation2 0.9907 0.6809 0.8225 0.9358 0.8243 0.6157 0.5612 0.7021 0.5141
Trace 1 1 1 1 1 1 0.9211 0.4211 0.6316
TwoLeadECG 0.9959 0.593 0.6485 0.8759 0.6941 0.8641 0.5967 0.8274 0.6477
TwoPatterns 0.9996 0.7229 0.5899 0.9936 0.7163 0.9297 0.5411 0.7371 0.6542
UWaveGestureLibraryAll 0.9941 0.8978 0.6487 0.9935 0.9898 0.8106 0.9342 0.7896 0.7217
UWaveGestureLibraryX 0.7477 0.6613 0.6136 0.6563 0.6796 0.6009 0.5626 0.4696 0.5852
UWaveGestureLibraryY 0.9845 0.9292 0.6256 0.9742 0.9626 0.9357 0.9159 0.6244 0.6293
UWaveGestureLibraryZ 0.9957 0.9043 0.6587 0.9897 0.9883 0.9662 0.9161 0.8671 0.6074
Wafer 0.9903 0.6763 0.4947 0.9315 0.9586 0.6763 0.9436 0.5599 0.7043
Wine 1 0.8395 0.9135 0.8704 0.9074 0.7531 0.4259 0.6689 0.4074
WordSynonyms 0.9929 0.8005 0.7862 0.9862 0.9621 0.8245 0.8226 0.8442 0.6857
Worms 0.9749 0.653 0.8485 0.8978 0.7677 0.7126 0.5341 0.5896 0.5
WormsTwoClass 0.8891 0.4061 0.8312 0.6307 0.6957 0.7591 0.4021 0.4432 0.5795
Yoga 0.7538 0.4659 0.5823 0.6883 0.6766 0.5884 0.5421 0.6267 0.547
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Fig. A1. Ablation study on (a) ECG200 and (b) ItalyPowerDemand dataset.
TimeAutoAD(-a) represents TimeAutoAD without negative sample generation
and auxiliary classification network modules (i.e. without self-supervised
contrastive loss), TimeAutoAD(-b) represents TimeAutoAD without data
augmentation module, TimeAutoAD(-c) represents TimeAutoAD without
attention module and TimeAutoAD(-a-b-c) represents TimeAutoAD without
all the aforementioned modules.
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Fig. A2. The sensitivity analysis about Beta distribution priors α0 and β
0

in
ECG200 dataset, for each combination of α0 ∈ {5, 10, 15, 20, 25, 30} and
β
0
∈ {5, 10, 15, 20, 25, 30}.

APPENDIX D
ABLATION STUDY

The proposed TimeAutoAD can automatically configure the
time series anomaly detection pipeline and optimize its hyper-
parameters. The anomaly detection pipeline consists of three
key parts, i.e., auto representation learning, auto anomaly score
calculation and auto negative sample generation. Specifically,
encoder, decoder, attention layer, similarity selection, auxiliary
classification network and data augmentation modules consti-
tute the auto representation learning module. EM estimator
and estimation network modules are used for anomaly score
calculation. And the negative sample generation module is
employed for negative sample generation. All these modules

0.2 0.3 0.4 0.5 0.6 0.7
flow

0.780
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0.790

0.795

0.800

0.805

0.810

AU
C

fupp = 1
fupp = 0.95
fupp = 0.9
fupp = 0.85

Fig. A3. The sensitivity analysis about the pre-defined upper bound
fupp and lower bound flow to objective function f in MedicalImages
dataset, for each combination of fupp ∈ {0.85, 0.9, 0.95, 1} and flow ∈
{0.2, 0.3, 0.4, 0.5, 0.6, 0.7}.

are integrated together and optimized in an end-to-end manner.
In fact, it is revealed through ablation studies that modules
in our pipeline can effectively enhance the anomaly detection
performance. In particular, we evaluate the effects of data aug-
mentation, attention layer, negative sample generation and aux-
iliary classification network modules. We conduct experiments
on ECG200 and ItalyPowerDemand datasets which are pre-
sented in Fig. A1. TimeAutoAD(-a) represents TimeAutoAD
without negative sample generation and auxiliary classification
network modules (i.e. without self-supervised contrastive loss),
TimeAutoAD(-b) represents TimeAutoAD without data aug-
mentation module, TimeAutoAD(-c) represents TimeAutoAD
without attention module and TimeAutoAD(-a-b-c) represents
TimeAutoAD without all the aforementioned modules. It is
seen that the TimeAutoAD(-a-b-c) and TimeAutoAD have the
worst and best performance, respectively. And TimeAutoAD(-
a), TimeAutoAD(-b) and TimeAutoAD(-c) perform better than
TimeAutoAD(-a-b-c), indicating the necessity of these mod-
ules in our pipeline.

Furthermore, we evaluate the effects of three negative sam-
ple generation methods on different configurations which are
presented in TABLE A4. Vanilla represents the anomaly detec-
tion pipeline without self-supervised contrastive loss. Method
1/2/3 represent the pipeline with self-supervised contrastive
loss and the negative samples are generated by negative sample
generation method 1/2/3. We can observe that utilizing self-
supervised contrastive loss with negative sample generation
method will considerably improve the anomaly detection per-
formance. And it is worth noting that best choice of negative
sample generation methods varies for different datasets. This
shows that autonomous negative sample generation plays an
important role in constructing an effective anomaly detection
model.

APPENDIX E
AUTOML FRAMEWORK PARAMETER SENSITIVITY

ANALYSIS

We analyze the robustness of the proposed method against
the choice of Beta distribution priors α0 and β

0
in our
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TABLE A2
ABLATION STUDY ABOUT THREE NEGATIVE SAMPLE GENERATION

METHODS. THE ANOMALY DETECTION PIPELINE AND HYPERPARAMETERS

ARE FIXED. VANILLA REPRESENTS THE ANOMALY DETECTION PIPELINE

WITHOUT SELF-SUPERVISED CONTRASTIVE LOSS. METHOD 1/2/3
REPRESENT THE PIPELINE WITH SELF-SUPERVISED CONTRASTIVE LOSS

AND THE NEGATIVE SAMPLES ARE GENERATED BY NEGATIVE SAMPLE

GENERATION METHOD 1/2/3. BOLD SCORES (AUC SCORES) REPRESENT

THE BEST METHODS.

Dataset Vanilla Method 1 Method 2 Method 3
TwoLeadECG 0.8472 0.8487 0.8837 0.8659
ECGFiveDays 0.7917 0.8081 0.8099 0.8295

MoteStrain 0.7968 0.8175 0.8168 0.8108
ToeSegmentation2 0.8521 0.8640 0.8673 0.8611

AutoML framework, which are tested in ECG200 dataset
(average over 10 trials) and the results are shown in Fig. A2.
It is seen that, the choice of Beta distribution priors α0 and
β
0

will not have a significant impact on anomaly detection
performance, indicating that the our model is robust against to
the choice of Beta distribution priors. Thus, in the experiment,
we set α0 = 10 and β

0
= 10.

We also analyze the robustness of the proposed method
against the choice of fupp and flow, which are tested in
MedicalImages dataset (average over 10 trials) and the results
are shown in Fig. A3. It is seen that, the choice of fupp and
flow will not have a significant impact on model performance.
And it is necessary to ensure flow < f < fupp. In the
experiment, we set fupp = 1 and flow = 0.7 for most of
the datasets.

TABLE A3

THE CHARACTERISTICS OF DATASETS, INCLUDING THE LENGTH OF

MULTIVARIATE TIME SERIES, DIMENSION OF MULTIVARIATE TIME SERIES

AND THE NUMBER OF TRAINING, TESTING, VALIDATION INSTANCES.

Datasets Length Dimension Training instances Testing instances Validation instances

Train-Ticket 890 1 1000 1100 550

IoT-23 120 1 129 120 79

Heartbeat 405 61 147 96 67

ECG200 96 1 69 71 71

ECGFiveDays 136 1 14 283 188

ItalyPD 24 1 34 339 226

LSST 36 6 777 513 342

RacketSports 51 24 43 48 48

PhonemeSpectra 217 11 85 95 95

APPENDIX F
CHARACTERISTICS OF DATASETS AND CONFIGURED

PIPELINE

In this subsection, we will present the characteristics of the
datasets in TABLE III. The characteristics include the length of
multivariate time series, dimension of multivariate time series
(i.e., the number of variables) and the number of training,
testing, validation instances, which are summarized in TABLE
A3. Furthermore, we present the configured anomaly detection
pipelines for some datasets which are shown in TABLE A4.

TABLE A4

THE CONFIGURED ANOMALY DETECTION PIPELINE.

Module ECGFiveDays ItalyPD

Data Augmentation Scaling Shifting

Negative Sample
Method 2 Method 2

Generation

Encoder GRU RNN

Attention Self-Attention No Attention

Decoder LSTM RNN

EM Estimator GMM GMM

Similarity Selection Cosine Similarity Relative Euclidean Distance

Estimation Network
Multi-Layer Feed-Forward Multi-Layer Feed-Forward

Neural Network Neural Network

Auxiliary Multi-Layer Feed-Forward Multi-Layer Feed-Forward

Classification Neural Network with Neural Network with

Network Sigmoid Activation Function Sigmoid Activation Function
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